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The uniformly frustrated XY model on a triangular lattice is studied for two values of the
frustration: f = 1/4 and f = 1/3. These two cases are very special because the ground states of the
model have accidental degeneracy not related to symmetries. This degeneracy originates from the
possibility of constructing domain walls with zero energy. At any 6nite temperature, the accidental
degeneracy is removed by the spin-wave free energy, but the low free energy of the domain walls leads
to the possibility of phase transitions at temperatures that are much lower than can be expected
for the other values of the frustration not leading to accidental degeneracies. These conclusions are
supported by Monte Carlo simulations. The results are of relevance for the description of Josephson-
junction arrays in the presence of a perpendicular magnetic field.

I. INTRODUCTION

The progress made during the last decade in the experi-
mental investigation of Josephson-junction arrays and su-
perconducting wire networks has led to a revival of inter-
est in various kinds of two-dimentional (2D) XY models
which can be applied to the description of such supercon-
ducting systems. Of particular interest is the uniformly
frustrated XY model which describes regular Josephson-
junction arrays in a perpendicular magnetic field. The
Hamiltonian of this model can be written as

where the summation runs over pairs of nearest neighbors
on some regular lattice. The Josephson coupling, the nat-
ural unit of energy in the system, has been set equal to
1. For each plaquette (i.e. , site of the dual lattice) in a
position R the restriction gz~ A»i ——2vr f (where g&a
means the sum over the bonds surrounding the plaquette
R in a clockwise direction) has to be obeyed. In terms of
the Josephson-junction array the variable 0, corresponds
to the phase of the rth superconducting grain and f to
the magnitude of the magnetic field expressed in the num-
ber of flux quanta per plaquette. Due to the symmetries
of the cosine function Hamiltonian (1) is invariant with
respect to the transformations f ~ f 6 1 and f —+ f, —
and so it is sufficient to study the interval f 6 [0, 1/2].

The main difference between ordinary (f=0) and frus-
trated XY models is that the ground state in the frus-
trated model has not only continuous but also descrete
degeneracy. For example the f=1/2 model on square
or triangular lattices has the Ising-type degeneracy as-
sociated with antiferromagnetic ordering of positive and

negative vortices. It was also discovered that, for f=1/2
on a hexagonal lattice and f=l/4 on a triangular one,
different ground states can exist which are not related to
each other by symmetry. These ground states can be
constructed &om each other with the help of zero energy
domain walls which are likely to have a strong influence
on the properties of the system. The results of Monte
Carlo simulations do indeed indicate that both above
mentioned cases as well as the f =1/3 (Ref. 5) model on
a triangular lattice are characterized by a quite special
behavior in comparison with all the other studied cases
on these two lattices. Thus these particular systems seem
to deserve more attentive consideration.

In the present paper we investigate the properties of
the &ustrated XY model on a triangular lattice with
f = 1/4 and f = 1/3. Triangular arrays have also
been investigated experimentally. We will see that these
systems —and in particular the case f = 1/3—present
a wide family of ground states and zero energy domain
walls which should give rise to rather special thermody-
namic properties. We hope that our conclusions may also
be of relevance for some other &ustrated XY models.

II. VORTEX REPRESENTATION

Hamiltonian (1) depends on the choice of gauge vari-
ables A„I. The same model can be described in terms of
gauge-invariant bond variables

(2)

where n„~ is the integer for which the value of P„i is
shifted to the interval (—vr, x]. These bond variables have
to obey the constraints
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) p„= 2~(mR —f),
OR

where mg = gzR n„I are the integers defined on the
dual lattice. The mR's should not be seen as additional
independent variables: They are fully specified once the
P„l 's (belonging to a fixed interval of length 2vr) are given
and on a triangular lattice they can acquire only the val-
ues 1, 0 or —1. Hamiltonian (1) can be then rewritten in
the form

H = —J) cosP„i,
(rr)

subject to the constraints (3). The symmetries of differ-
ent ground states can much more easily be recognized in
terms of the gauge-invariant variables P„i (or m~) than
in terms of the phase variables 0, .

We can also define the quantitiy Q~ = mR —f and
interpret it as the topological charge on the correspond-
ing plaquette. The total charge of any state will be equal
to zero in the case of periodic boundary conditions. In
the ground state the QR will acquire only the two difFer-
ent values 1 —f and f when —f C (—vr, vr]. This charge
representation makes it possible to represent difFerent lo-
cally stable states of the system (including all the ground
states) by the corresponding configuration of the positive
topological charges 1 —f

B. Spin-wave free energy

In order to estimate the free energy of the system in
the limit of low temperatures it is suKcient to consider
the spin-waves in the harmonic approximation. Expand-
ing Hamiltonian (1) up to second order in fiuctuations
around a ground state configuration (P„~) one obtains

H= —) cos(P ~++ —(p ~)

(rr')

= const + —) K„(p, —p, )
(rr')

1= const+ — p M„p, , (4)

domain walls on all $„1=0 lines going in the same direc-
tion. On the other hand the hexagonal ground state can
equally be constructed from the necklace state by cre-
ation of an infinite number of zero energy domain walls.

It is well known that accidental degeneracies not re-
lated to lattice symmetries can be removed at arbitrary
low temperatures due to differences in the spin-wave &ee
energy. So in order to understand what state will be
dominant at low temperatures we should compare their
spin-wave free energies.

III. f=1/4

A. Ground states

where K„~ = Jcos P„~ and M is the dimensionless dy-
namical matrix. The y, 's are the deviations of 0, from
the equilibrium values. The spin-wave Bee energy per
site is given by

For the case f = 1/4 the ground state that is depicted
in Fig. 1(a) was the first to be discovered. + In the fol-
lowing we shall call it the hexagonal ground state. This
ground state is characterized by a fourfold discrete degen-
eracy; i.e., by its translation along the lattice it is possi-
ble to obtain four nonequivalent states. It also has the
continuous degeneracy associated with simultaneous ro-
tation of all phases, which is not visualized in the charge
representation.

The hexagonal state posesses a very interesting fea-
ture: For all bonds lying on straight lines that go through
the centers of hexagons the gauge-invariant phase difFer-
ences P„i are equal to zero. This allows one to construct
domain walls with zero energy by choosing one of these
lines and shifting the configuration on one of its sides with
respect to the other [Fig. 1(b)]. Doing this one obtains
another ground state. Any of the three possible direc-
tions can be chosen for such a domain wall. However, in
order to construct a ground state containing several zero
energy domain walls, the latter should be all parallel to
each other, because shifting the state along a $„~=0 line
breaks the $„~=0 lines in the two other directions.

Nonetheless, an infinite number of states with the same
energy can be constructed with the help of such zero en-
ergy domain walls. One of them is depicted in Fig. 1(c)
(we shall call it the "necklace" ground state). It can be
obtained &om the hexagonal ground state by creating

(27r) &TN'
sw = ——ln

det M

1 ) pqsMss' (q) V —qs' ~

q88
(6)

with

1
M., (q) = —) M„+,„+, exp [iq(u + s —u' —s')] .

uu'

For example in the hexagonal ground state there are four
inequivalent sites within the elementary cell, and so the
matrix M„i (q) is 4 x 4. In the limit of a large system we
get

where N is the total number of the sites on the lattice.
The zero eigenvalue of M which is related to the rota-
tional invariance of (1) can be removed by fixing the sum
of p, over the whole system.

For periodic ground states the position vector r can be
decomposed into the sum r = u+ s, where s denotes the
position of a site within an elementary cell of the ground
state pattern located at u. The harmonic Hamiltonian
(4) can then be expressed in terms of plane waves:
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T
+sw = VT ——1n(2z.T),

2

where

1 d q
p = — lndet M(q).

2 nz 27'

We have calculated the coefBcient p numerically for
five different ground states. In 'I'able I the value of p is
reported as a function of a parameter v expressing the

concentration of the zero energy domain walls (all par-
allel to each other) on the background of the hexagonal
ground state. Here v=1/n means that the distance of two
consecutive zero energy domain walls is equal to n times
the distance between two nearest lines on the lattice; for
instance v=1/2 corresponds to the necklace ground state.

It follows &om Table I that the hexagonal ground state
has the lowest free energy. It can be also seen that for
the other ground states the difference in &ee energy with
respect to the hexagonal one is almost exactly propor-
tional to the concentration of the domain walls v. One

FIG. 1. f=1/4 (a) Hexagon. al ground state. The values of the P„i 's are 7r/2 on the bonds surrounding a charged plaquette
and 0 elsewhere. It is easy to spot the P, i=0 lines forming a triangular sublattice. The discrete degeneracy of that ground
state equals 4. The segments linking the charges are guides to the eye in order to see easily the structure. (b) Ground state
with a zero energy domain wall obtained by shifting one half plane of the hexagonal charge configuration along a P„~=0 line.
(c) Necklace ground state obtained from the hexagonal ground state by introducing a maximum number of zero energy domain
walls. (d) Low free energy defect or "strip" defect. There are two contributions to the free energy: One comes from the
additional spin-wave free energy due to both zero energy domain walls and a second part from the nonzero energy of both
defect end points. (e) Single kink. A defect as in Fig. 1(d) can be broadened by double kinks along a zero energy domain wall,
but each kink involves an additional energy roughly equal to the one of a defect end point.
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TABLE I. f=1/4 .This table demonstrates the linearity
of the spin-wave free energy as a function of the concentra-
tion of zero energy domain walls. Here 0 corresponds to the
hexagonal ground state, 1/2 to the necklace ground state, and
fractional values v=1/n to the intermediate periodic ground
states in which the distance between the domain walls is n
times the distance between two nearest parallel lines on the
lattice.

and 2E is the energy of the two end points of this de-
fect. The defects with the minimal value of E = Ep will
dominate, and it seems very probable that E is minimal
for the minimal distance between the zero energy domain
walls [as in Fig. 1(d)]. A numerical evaluation of Eo gives

0
1/8
1/6
1/4
1/2

P
0.37527
0.37841
0.37948
0.38162
0.38774

&v—:v —v(o)
0

3.14 xlO
4.21 xlO
6.35 x10
12.47 x10

2.512 x10
2 ~ 526 x10
2.540 x10
2.494 x10

Ep = 0.44,

and the dependence on L would only lead to corrections
smaller than 5 x 10

With the help of Eq. (10) it is easy to estimate the
total concentration (per site) of such defects with any
size L:

can certainly interpret these results as evidence for the
low interaction between the domain walls and can ascribe
to a domain wall the Rnite &ee energy per unit length pT
with p = 2.5 x 10

C. Low-temperature defects and phase transitions

Thus we have obtained that even the maximal differ-
ence in &ee energy for different ground states is very small
and decreases with decreasing temperature. A natural
question is whether this small difference may lead to any
observable consequences. On the one hand a transition
to a phase in which the ground state with the lowest
spin-wave &ee energy will be dominant is possible. Al-
ternatively a large concentration of defects leading to a
mixture of different states could persist even at arbitrar-
ily low temperatures. If such transition should really
occur, at what temperature will it happen?

In order to investigate these questions we start our
analysis Rom the hexagonal ground state which in the
harmonic spin-wave approximation has the lowest free
energy. This ground state, in addition to a fourfold dis-
crete degeneracy, has also a continuous degeneracy, and
so several different possibilities for the phase transitions
are open, including the Berezinskii-Kosterlitz-Thouless
vortex pair unbinding. At 6.nite temperatures differ-
ent types of defects on the background of the ground
state will be thermally excited, but at low temperatures
(T « 1) the vortices (corresponding either to adding or
to substracting 1 to the Qn of a plaquette from a ground
state configuration) will be tightly bound in small pairs,
and the energy of domain walls (with the exception of
the special zero energy domain walls) will be too large
for the corresponding defects to be excited. So the only
extended defects that are expected to be present in the
system at low temperatures will have the form of a strip
enclosed by two zero energy domain walls [Fig. 1(d)].

The free energy of such a defect is equal to

F~(L) = 2E+ nTL,

where L is the length of the strip (in units of the lattice
constant),

1

1+ s (e~ —1) exp[2Eo/T]
' (i4)

and the average length (L) will be equal to

The defects will start touching or crossing each other
for c(L)2 1. Since for f=1/4 we have n —0.05 and
(L) = 21 this will happen when the concentration c is
much smaller than 1 and can be very well approximated
by

3
c — exp[ —2Eo/T]. (16)

Comparison with Eq. (15) shows that for n « 1 the
relation c(L) 1 will be fulfilled at temperatures close
to

2Ep
3 ln —'

Since o. is small, T, is significantly smaller than 1, and
therefore is substantially lower than the critical temper-
ature observed in LY models having a similar rational
frustration of the form f=p/q (with q & 5), but without
an accidental degeneracy.

It has to be noted that concentration (14), based on
Eq. (10), is evaluated by considering that the striped de-
fects are independent of each other. Whenever two non-
parallel defects are crossing each other, we should con-
sider an additional energy that is roughly equal to 4Ep,
and so this effect makes the concentration (14) overesti-
mated. On the other hand, adjacent parallel defects may
have a lower free energy than if they were independent.
To settle the question whether the latter effect is rele-
vant we consider such a set of defects as a unique defect

(3/m) PL i exp [
—F~ (L)/T]

1+ (3/m) Pz i exp[ —F~(L)/T] '

where m is the ratio of the total number of sites to the
number of possible positions of the defect end points (for
J'=1/4 we have m=2). The factor of 3 comes from the
summation over three possible directions. Performing the
summation gives
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but with kinks along its domain walls. Then we must
compare the "bare" &ee energy of the domain wall to its
decrease due to the presence of kinks [see Fig. 1(e)].

Let us consider a zero energy domain wall whose spin-
wave &ee energy per unit length is equal to pT. Its
&ee energy decrease due to configurational entropy of
the kinks will be equal to

b,F = Tln(l + 2e '~
) = 2Te

where Eq is the energy of the kink. At a temperatureT„Ei/1 na, the total domain wall free energy
ED~ ——pT —LE becomes negative. In the vicinity of
T„both the number and the size of the defects should
increase drastically due to the proliferation of the couples
of kinks. So T„yields an other interesting logarithmic
estimate for a transition temperature.

We have found numerically that the value of Eq difFers
&om Eo only by about 5 x 10 . So the direct calculation
gives T„= (3/2)T, ) T, and allows one to conclude
that in the calculation of T, the renormalization of o.
can be neglected. In addition, the comparison of the
small difference between Eo and Ei with the additional
energy due to a crossing of two defects implies that our
concentration (14), based on independent simple striped
defects, is overestimated. But at temperatures lower than
T, at which the defects are rare the above additional
energy can also be neglected. Therefore the value of T,
given by Eq. (17) can be used as an estimate for the
lower bound. of a transition temperature, because there
is no reason for a phase transition to take place when all
defects are well localized and far &om each other.

At temperatures higher than T, the strip defects start
merging with each other and the domain wall &ee energy
rapidly tends to zero; so we have to expect the disappear-
ance of the discrete order associated with the dominance
of one of the four equivalent hexagonal ground states.
This may happen as a first-order or a second-order phase
transition. Since typical defects at low temperatures are
very anisotropic and their crossing costs a relatively high
energy one may think also of a possibility of the exis-
tence in some intermediate range of temperatures of the
phase in which only noncrossing (i.e., parallel on the av-
erage) infinite domain walls are present. In this phase
only two of the four possible hexagonal states will be
intermixed (depending on the orientation of the infinite
domain walls). Thus the transition associated with de-
struction of the discrete order may be split into two.

The other kind of ordering present in the system, that
is, the XY-type ordering characterized by a finite rigid-
ity (i.e. , a finite helicity modulus), is not necessarily de-
stroyed-simultaneously with discrete ordering. Prom the
structure of the zero energy d.omain walls it can be seen
that they do not help to make a twist between two oppo-
site sides of the system, and. so the continuous degrees of
&eedom do not feel their presence directly and interact
only with kinks and corners on the domain walls. The
thermal fIuctuations will lead to a decrease of the he-
licity modulus not only due to the presence of the strip
defect end points and nonzero energy domain walls which
affect locally the rigidity, but also due to presence of vor-

tex pairs formed by the ordinary (integer) vortices or the
fractional vortices which can be associated with corners
on the domain walls.

In the general situation the destruction of XY-type
ordering is usually driven by the decoupling of (integer
or fractional) vortex pairs, and the fractional vortices (if
they can move around) are most dangerous since their
interaction energy is the lowest. In the present system,
however, the &actional vortices are always linked by a
domain wall with nonzero energy, and so in the vicinity
of the temperature T„which is logarithmically small, all
the efFects leading to the decrease of the helicity modu-
lus (including the presence of any kind of vortex pairs)
can be expected to be not important. Therefore it looks
more probable that the destruction of the XY-type or-
dering will take place as a separate phase transition at
the temperature which is higher than T, . It may be ei-
ther a transition with a universal or higher than universal
jump of the helicity modulus depending on what kind of
vortex pairs will be dominant at the transition.

On the other hand it cannot be altogether excluded
that the cumulative effect of all the mechanisms involved
in the decrease of the helicity modulus in the vicinity of
T, (which is only logarithmically small) might be be suf-
ficient to make that decrease important. In that case the
simultaneous destruction of both types of ordering may
happen which would be accompanied by a nonuniversal
jump. One has to bear in mind, however, that in that
case the destruction of the XY-type ordering may be-
come observable only at the scales which are much larger
than the typical size of the strip defect. In any case the
presence of the large quantity of strip defects should lead
to a significant decrease of the helicity modulus in com-
parison to the systems without accidental degeneracy.

IV. f=

A. Ground states

The case of f = 1/3 demonstrates even a larger variety
of ground states than f=1/4 One can ag. ain start from
the ground state with hexagonal symmetry [Fig. 2(a)].
This is the one which is observed in Monte Carlo sim-
ulations and was recognized. in Ref. 5. This state has
a ninefold degeneracy. Just as in the case f = 1/4 the
gauge-invariant phase difFerences P„~ on the lines that
go through the centers of hexagons are equal to zero,
and so again the zero energy domain walls can be con-
structed [Fig. 2(b)]. However, in contrast to the case of
J'=1/4, a shift of a half plane of a ground state configu-
ration along such a line can lead to two different config-
urations depending on the sign of the translation vector
determining the shift [note the diB'erence between the two
zero energy domain walls in Fig. 2(b)]. As in the case of
f = 1/4 it turns out to be possible to have an arbitrary
number of such domain walls with the same orientation
without any change in the total energy. If the domain
walls are introduced on every possible position (and with
the saine direction of the shift), the ground state depicted
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in Fig. 2(c) is obtained (the necklace ground state).
In all the ground states considered in this section the

gauge-invariant bond variables P„~ are determined by
the following rules:

(a) Each charged plaquette (i.e., the plaquette with

Qn =2/3 or mn ——I) is surrounded by three bonds on two
of which P„(counted in clockwise direction) is equal to
x/3 and on the third to 2vr/3.

(b) Each charged plaquette has three nearest neighbor
plaquettes. Two of these have another charged plaquette

(a)
I l I

I I I I I I

(b)

I L I I I

II 5 I ~ I I

MV~V~V~VV
I I

I I

I I & I 1 I I I

(c)
IC

I I I I I I I

IC

~ I& I& ~ ~ ~ I& ~ Ii I& ~

r v v v V v V V T T
~ li li ~ I& It ~ I& lt ~

~jP (i/\I Ijll I/\I IP 5 I/\I I/II I/\I+ ~ ~P ~P//
~ ~ E~ Ii Ii II Ii Ii li Ii Il Ii

Il II II II II Il II II II II I&

A/VIVVVVVVVVV'

( )

II Il I& II

II II I&

Ii

Ii I~ li

II II II
II II Il

II Il II I I

II II II

FIG. 2. f=1/3 (a) Hexag. onal ground state. The P„i's can be determined by the rules given in the text: the bonds carrying
the value 2ir /3 form hexagons containing six noncharged plaquettes. The P ~=0 lines forin a triangular sublattice the nodes
of which are the centers of the hexagons. The partial discrete degeneracy of this ground state due to the lattice symmetry
equals 9. (b) Ground state with two parallel zero energy domain walls along P i=0 lines with difFerent signs of the translation
vector The same . hexagonal ground state lies above and below the zero energy defect. (c) Necklace ground state obtained
from the hexagonal one with'zero energy domain walls with the smallest possible distance and each one with the same sign for
the corresponding translation vector. (d) Ground state with a strip consisting of a different configuration. As the horizontal
P„I=O lines are still there, it is still possible to perform shifts along thein. Therefore we could also consider this strip as a
thick zero energy domain wall. (e) Linear ground state obtained by repetition of the thick zero energy domain wall of (d). (f)
Different linear ground states separated by zero energy domain walls not corresponding to P,r=0 lines. (g) Butter8y ground
state obtained by a repetition of the wall depicted on the right hand side of (f). (h) Ground state with infiiiite size zero energy
doinain walls crossing one another The horizontal d. omain walls correspond to those of (c). The vertical one corresponds to
(d) but has been broken by the horizontal ones.



FRUSTRATED XYMODELS WITH ACCIDENTAL DEGENERACY. . . 3077

strips cannot be accompanied by any additional shift in
the same direction and the shifts have to correspond to
the same sign of the translation vector [as in Fig. 2(c)].
It is possible that other zero energy domain walls may
exist. However, we have never found a ground state with
zero energy defects of finite size.

B. Spin-wave free energy

P'P M~MPl~~

FIG. 2 (Continued).

as nearest neighbor, whereas the third does not.
is equal to 2~/3 on the bond which is ajacent to this
particular plaquette.

(c) The bonds lying between uncharged plaquettes
carry a zero value of P.

The hexagonal ground state of the f=1/3 model allows
also for the construction of zero energy domain walls with
more complex structure [Fig. 2(d)]. Placing such strips
one after another it is possible to construct the ground
state with linear structure [Fig. 2(e)] that looks quite dif-
ferent from the hexagonal one. Of course different com-
binations of parallel strips of hexagonal, necklace, and
linear ground states are also possible.

On the background of the linear ground state the zero
energy domain walls can be constructed which are not
related to $„=0 lines [Fig. 2(f)]. Repeating such walls
one after the other it is possible to construct one more pe-
riodic ground state ["butterffy" ground state, Fig. 2(g)]
that again differs very much from all the states consid-
ered before. It is interesting to note that we have three
difFerent regular ground states (hexagonal, linear, and
butterfiy) which represent three different groups of pla-
nar symmetries.

It is also possible to construct ground states with in6-
nite size zero energy domain walls crossing one another
[Fig. 2(h)]. Indeed linear strips as in Fig. 2(d) in one
direction and shifts as in Fig. 2(c) in another can be
combined without change of energy. The example of
Fig. 2(h) could be extended &om the top of the figure by
a hexagonal ground state with a nonbroken linear strip
[as in Fig. 2(d) but with the strip in a difFerent direction].
So there are many possible combinations, but the linear

TABLE II. f=1/3 Coefficient y., of the spin-wave free en-

ergy for four different types of ground state (g.s.)

g.s. type
Hexagonal
Necklace

Linear
ButterBy

P
0.23647
0.25720
0.26840
0.33321

&v—:t —t (o)
0

2.073 x10
3.193 x10
9.674 x10

We have calculated the spin-wave free energy for four
different periodic ground states: hexagonal, necklace, lin-
ear, and butterfly. The coefficient p in Eq. (9) is re-
ported in Table II. As in the case of f=1/4 the hexagonal
ground state (which, by the way, has the highest symme-
try) turns out to have the lowest spin-wave free energy.
This means that at low but finite temperatures this state
will be dominant and the zero energy domain walls on its
background will have a small but positive free energy.

As in the case of f=1/4 the extended defects with the
lowest free energy have the form of strips enclosed by zero
energy domain walls with 6nite energy defect end points.
But now, starting from the hexagonal ground state, we
can make such a defect not only by shifting the charges in
the strip, but also by deplacing them to obtain the linear
ground state inside the strip. We report in Table III the
coefficient p, associated with periodic ground states con-
structed with a succession of such strips of infinite length.
First we compare the hexagonal ground State with three
diff'erent concentrations v of domain walls: v=0 (corre-
sponding to the hexagonal state), v=1/6 (corresponding
to a shift on every sixth line), and v=1/3 (shift on every
third line, which is the closest possible spacing). There
are two results for v=1/3: The first (a) corresponds to
the necklace state and the second (b) to shifts with reg-
ularly alternating directions [as in Fig. 2(b) but with a
periodicity corresponding to six consecutive horizontal
lines]. Finally, the two last results of Table III represent
strips of the linear state (with periodicity correspond-
ing to twice the strip width): The first corresponds to
Fig. 2(d) and the second to a strip with the same hexag-
onal ground state below and above each strip [which is
not the case in Fig. 2(d)].

Prom these results we conclud. e that the free energy as-
sociated with a $„1=0 domain wall separating two difFer-
ent hexagonal ground states is equal to pT 6.3 x 10 T
per unit length. This gives o., = 2p 0.125 for the co-
efficient for a strip constructed by shifting. We will call
such a strip a "shifted strip defect. " We assume that the
free energy will also be proportional to the concentration
of strips of linear ground state. Thus we can ascribe a
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TABLE III. f=1/3 v. is the fraction of the number of lines
(in one direction) with a zero energy domain wall. This table
shows the linearity of the spin-wave free energy as a function
of the number of zero energy domain wall. The first value
for v=1/3 corresponds to shifts in the same direction and
with the same orientation of the corresponding translation
vectors, and the second to shifts with alternating opposite
orientations. The two last lines correspond to periodic ground
states with one linear strip every six lines. The second of them
corresponds to an additional shift between the configuration
of charge below and above the linear strip.

g.s. type
v =0

v =1/6
(a) v =1/3
(b) v =1/3
Linear strip

Linear strip+shift

P
0.23647
0.24709
0.25720
0.25742
0.26607
0.26562

Ap,
0

1.062 x10
2.073 x10-'
2.095 x10
2.960 x10
2.915 x10

6.372 x10
6.219 x10
6.285 x10

C. Low-temperature defects and phase transitions

In contrast with the case of f=1/4 we now have to con-
sider two kinds of extended defects at low temperature:
the shifted strip defects [Fig. 2(b)] and the linear strip
defects [Fig. 2(d)]. So we can calculate (numerically) the
energies of the end points of each defect and estimate
the characteristic temperatures in the same way as was
done in Sec. IIIC but using a value of m equal to 4.5
(now the width of the strips is equal to 3 and their length
can only be a multiple of 3/2). The results are shown in
Table IV. We obtain that the characteristic temperature
T,~ related to the linear strip defects is lower than T„
related to the shifted strip defects. Thus although the
lowest spin-wave &ee energy is for the defect of shifting
type, the linear defects will be more numerous because
of their lower defect end point energy.

value o.~
——64@ = 0.18 to the coefFicient giving the &ee

energy per length of a strip of linear ground state (the
factor of 6 comes from the fact that there is one strip per
six horizontal lines). We will call such a strip a linear
strip defect. Comparing the two last results of Table III
with the case of the uniform linear ground state in Ta-
ble II we can decompose the free energy of a linear strip
into two terms. The first of them can be associated with
the "bulk" &ee energy of the linear state inside the strip
and the second can be related to the boundaries between
the two types of ground states.

Nonetheless, the phase transition related to the dis-
appearance of the discrete ordering should be associated
with agglomeration and merging of shifted strip defects
because only proliferation of these defects is equivalent
to intermixing of difI'erent hexagonal states while linear
strip defects correspond to the appearance of metastable
states of the other type (involving an additional bulk free
energy). Therefore we should use T„and not T, ~ as an
estimate for the transition temperature although such es-
timate would be less certain than for f = 1/4 due to the
presence of the strip defects of the other type.

But as for f=1/4 we can still expect the hexagonal
order to be destroyed at a logarithmically small temper-
ature. It can be noted that the estimated temperatures
are lower than for f=1/4 because of the lower defect end
point energy. But even if the values of o. are not so small,
it is the zero energy domain walls that are responsible for
the peculiar behavior leading to a temperature decrease
of the phase transitions.

So the discussion of the difI'erent scenarios of the phase
transitions that was made for f=1/4 in Sec. III C is
also applicable for f=l/3 How. ever, there may be two
relevant difFerences between the two cases. First of all,
the helicity modulus is likely to be more affected (at T
T„)due to the two kinds of low-temperature defects and
thus the transitions may appear in a difI'erent sequence.
Second, the type of discrete degeneracy associated with
the hexagonal ground state is not the same for both cases;
thus the transitions may be of a difFerent nature.

Thus for both values of frustrations, the hexagonal or-
der is destroyed at an unusually low temperature that
depends on the spin-wave free energy of the zero energy
domain walls. The latter are, furthermore, responsible
for the lower temperature of the drop of the helicity mod-
ulus.

It is interesting to note that in contrast to the case
of f=1/4, in the f =1/3 model the accidental degener-
acy of the ground states will be removed if the form of
the interaction is changed; that is, the higher harmonics
are added to the interaction in Eq. (1). For example, in
the superconducting wire network the efI'ective interac-
tion function at low temperature is very close to a piece-
wise parabolic function (with a periodicity of 2m). In
that case the butterfly ground state of Fig. 2(g) will have
the lowest energy. For f = 1/4 the accidental degeneracy
cannot be removed by such a change of interactions.

V. MONTE CARLO SIMULATIONS

TABLE IV. f=l/3 Charact. eristics of the two kinds of
strip defects appearing at low temperature. The concentra-
tion c is calculated with Eq. (14). It can be noted that al-
though u is not so small the approximation (n « 1) we use
to produce the definition of T, [Eq. (17)] is not relevant ac-
cording to the number of digits that are shown.

Defect n Eo (L) T c(T = 0.03) c(T = 0.1)
Shift. strip 0.125 0.18 9 0.06 0.31 x 10 0.12
Linear strip 0.18 0.086 6.5 0.03 1.08 x 10 0.38

In this section we discuss some snapshots we have
taken during Monte Carlo simulations and compare our
predictions with what has been seen in simulations made
by the other authors.

The striking feature of our shots (each from a 36 x 36
site system) is the disappearence of the hexagonal or-
dering at temperatures close to our estimates of T, [cf.
Figs. 3(a) and 3(c)]. Furthermore, the structure of the
defects appearing at low temperature corresponds well to
our analysis. In particular for f=1/3 at T=0.03 ( T &)
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FIG. 3. f=1/4 (a) Sna. pshot at T=0.1 close to T, . The segments linking the charges are a guide to the eye. We can spot two
long defects. One of them runs through the whole lattice. The concentration c calculated with Eq. (14) is equal to 0.44 x 10
(b) f=l/4 Snapsho. t at T=0.25 greater than T, . The strip defects have broadened and we are not able to define clearly a
main representative among the four hexagonal ground states. The concentration c calculated with Eq. (14) is equal to 0.46. (c)
f=1/3 Snapsh. ot at T=0.03 close to T,g. We can mainly observe the presence of linear strip defects. Two shifted defects also
occur but they are continued by linear ones which are likely to weaken the energy of their end points. (d) f=1/3 Snapsh. ot at
T=0.1 slightly greater than T„. Numerous defects are present and the hexagonal order is lost. We can also observe the rare
occurrence of the butter8y ground state that would involve a higher spin-wave free energy.

mainly linear defects can be seen [Fig. 3(c)], whereas at
T=0.1 both kinds of defects are present, although they
cannot easily be distinguished because of their high den-
sity [cf. Fig. 3(d)].

Although the concentration c evaluated using Eq. (14)
and quoted in the figure captions for f=1/4 and in Ta-
ble IV for f=1/3 corresponds well to the shots observed
close to T, for both values of f, it is overestimated for
higher T because the short-range interaction between the
defects has not been taken into account. Obviously, the
average length of the defects is equally overevaluated be-
cause we neglect the inHuence of the crossing energy of
the defects. For f=1/4 we have found numerically that
the crossing energy is twice the defect end point energy.
For f=1/3, it depends on the particular type of defect
crossing.

However, in several shots taken at low temperatures we
have seen a strip defect going through the whole lattice
[cf. Fig. 3(a)]. Such a defect has an abnormally low
energy because of the lack of defect end points. This is a
finite size effect that could deeply perturb the behavior
of the system in the numerical simulations. Indeed such
a defect has no energy dependence on the strip width

(note that this is not true for the linear strip defect for
f=1/3). So if the system size is not much larger than
the typical size of the defects, the abnormal defect could
take on too much statistical importance.

Finally, for both values of &ustrations the hexagonal
order seems clearly destroyed on the shots corresponding
to a temperature larger than T, in agreement with our
predictions [see Fig. 3(b) for f=1/4 at T = 0.25, and see
Fig. 3(d) for f=1/3 at T=0.1].

The Monte Carlo simulations on the triangular lattice
made by Shih and Stroud and by Kim, Lee, and Choi
(up to sizes of 256x256 for J'=1/4) indicate that the
phase transitions occur at an unusually low temperature
for the frustrations f=1/4 and f=l/3 These tem.pera-
tures correspond well to our analysis. Indeed for f=1/4
a maximum of the speci6c heat has been observed at
T 0.15 and this corresponds to the temperature of the
proliferation of kinks we have estimated. The helicity
modulus observed at this temperature seems to be larger
than its critical value, but this is not conclusive because
strong Rnite size effects are also observed even in large
systems. Anyway, it drops at lower temperature than in
any studied &ustrated XY model without accidental de-
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generacy. As for f=1/3, the helicity modulus drops at a
temperature even lower than for f=1/4; this is as well in
accordance with our conclusions.

Quite generally, it is rather difficult to study numeri-
cally the nature of the phase transitions in the XY model
with accidental degeneracy because system sizes much
larger than the typical size of the strip defect are needed
to observe the destruction of the discrete ordering and
still larger scales would be involved if one is interested
in investigation of the mutual inHuence of two types of
disordering. Therefore it may be rather dificult even to
distinguish whether one single or two separate transitions
take place.

VI. CONCLUSION

We have investigated the XY model on the triangular
lattice for f=1/4 and f=1/3 Both .values of the frustra-
tion manifest an infinite discrete degeneracy and a wide
variety of the ground states which are related to each
other not by the symmetries of the lattice but by the
possibility of the construction of the special zero energy
domain walls. This feature is the cause of the unexpected
behavior which has been seen in numerical simulations.

At an arbitrarily small temperature the infinite de-
generacy is removed by the spin-wave free energy, and
in both cases studied the most favorable state is the
one with the hexagonal symmetry (which is the high-
est degree of symmetry possible). The low free energy of
the spin waves results in the unusual anisotropic form
of the typical defects at low temperatures. Our low-
temperature analysis allows us both to understand what
low-temperature defects should be observed in numerical
simulations and to obtain an estimate for the character-
istic temperature below which nothing relevant should

happen. At slightly higher temperature, but still small
in comparison with critical temperatures for the other
values of frustration (of the form f=p/q with some small

q) devoid of zero energy domain walls, both the hexago-
nal order associated with the discrete degeneracy of the
hexagonal ground state and the XY quasi-long-range or-
der are likely to be destroyed. However, we cannot draw
any precise conclusions about the nature of the phase
transitions. We have discussed various scenarios for the
temperature behavior and pointed out some difFerences
between f=1/4 and f=1/3 which could be relevant for
the phase transitions of these systems.

Our analysis is supported by the results of Monte Carlo
simulations. In the experimental situation the implica-
tions of the accidental degeneracy could be more difB-
cult to observe because the details of the particular sys-
tem can be important. As an example, the accidental
degeneracy of the ground state can be removed by a
small difFerence of the form of the phase-phase interac-
tion (as happens for f = 1/3). Nevertheless, even if
this degeneracy is removed, it is likely that an abnormal
number of metastable states with low energy will per-
sist, which could again be responsible for more numerous
low-temperature excitations being possibly less mobile
than other defects, since (around the critical tempera-
tures) they would imply a more complex structure than
usual. So it seems possible that a peculiar frequency be-
havior might be seen in dynamical measurements on
superconducting networks and arrays corresponding to
an XY model with accidental degeneracy.
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