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Electromagnetic waves in a Josephson junction in a thin film
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We consider a one-dimensional Josephson junction in a superconducting 61m with a thickness
that is much less than the London penetration depth. We treat an electromagnetic wave propagating
along this tunnel contact. We show that the electrodynamics of a Josephson junction in a thin 61m
is nonlocal if the wavelength is less than the Pearl penetration depth. We 6nd the integrodiKerential
equation determining the phase difference between the two superconductors forming the tunnel
contact. We use this equation to calculate the dispersion relation for an electromagnetic wave

propagating along the Josephson junction. We find that the frequency of this wave is proportional
to the square root of the wave vector if the wavelength is less than the Pearl penetration depth.

I. INTRODUCTION is the Josephson &equency, C is the specific capacitance
of the tunnel junction, and

1+k A

where

2ej
hC (2)

The electromagnetic properties of tunnel Josephson
junctions have been the subject of intensive studies over
the past three decades. Considerable attention has been,
in particular, attracted to the investigation of SIS-type
Josephson contacts. In this case the tunnel junction is
formed by a thin layer of an insulator. This dielectric
layer between two superconducting plates can be treated
as a transmission line or a parallel plate resonator when
the electromagnetic properties are concerned. It follows
&om this approach that an electromagnetic wave with a
specific dispersion relation may propagate along the SIS-
type Josephson junction.

The existence of this Swihart electromagnetic wave re-
sults, in particular, in self-induced resonances, usually
referred to as Fiske steps. These specific resonances are
observed as peaks in the current-voltage curves of the
tunnel Josephson junctions and arise when the &equency
2eV/h, corresponding to the voltage across the Joseph-
son junction, V, becomes equal to the &equency of a
standing Swihart wave. ' The study of Fiske steps is
one of the methods to treat the electromagnetic prop-
erties of the SIS-type Josephson contacts. Recently, it
was successfully applied to investigate the electromag-
netic properties of the grain boundaries in YBa2Cu307
high-temperature superconductors.

Usually, the dispersion relation of a Swihart electro-
magnetic wave, u(k), is determined by the sine-Gordon
equation that leads to

c@p
16m2A j

is the Josephson penetration depth.
The Swihart electromagnetic wave corresponds to the

limiting case 1 « kA~. It follows then from Eq. (1)
that u = ~gAJk; i.e. , this wave is propagating along the
Josephson junction with a constant velocity

C8 =(dJAJ =
/87rAt

(4)

The linear dispersion relation u = c,k results in an
equidistant set of peaks in the current-voltage curves of
SIS-type Josephson tunnel junctions. '

We can determine the phase difference between the
two superconductors forming the tunnel contact p(y, t)
in the main&arne of the local Josephson electrodynamics,
i.e., by the sine-Gordon equation, as long as kA (& 1. It
means, in particular, that for an electromagnetic wave
propagating along a Josephson junction with A &( AJ
the dispersion relation u = c,k is valid in the region
A~' && k && A-'.

Let us now discuss the general case, i.e., the case when
restrictions on the wave vector k are given by the inequal-
ities kdo « 1 and k( « 1, where do is the thickness of the
insulating barrier and ( is the coherence length. We treat
here a SIS-type Josephson junction formed by two super-
conducting plates. In this case the space distribution of y
is one dimensional and the relation between the phase dif-
ference p(y, t) and the magnetic field in the superconduc-
tors is nonlocal if 1 « kA. As a result the function p(y, t)
is determined by an integro-differential equation, ' i.e.,
the electrodynamics of a Josephson junction is nonlocal
as far as the region of wave vectors, 1 &( kA, is concerned.
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Using this equation it was shown ' that the dispersion
relation for an electromagnetic wave with 1 « kA takes
the form

Cs

The phase velocity of this electromagnetic wave is in-
versely proportional to the square root of the wave vector
k. Note that it results in a nonequidistant set of the val-
ues of the voltage V corresponding to self-induced res-
onances in the current-voltage curve. (We present the
theory of self-induced Fiske resonances in the mainframe
of the nonlocal Josephson electrodynamics elsewhere. )

The nonlocality of Josephson electrodynamics is most
pronounced when considering a SIS-type Josephson junc-
tion in a thin superconducting film with the thickness
d « A. In this case the space scale of the magnetic Geld
variation in the superconductors forming the contact is
given by the Pearl penetration depth

A2
A.& ——&& A.

d

Thus, the electrodynamics of a Josephson junction in
a thin film is nonlocal if 1 « kA ~. This region of wave
vectors is much wider than the one given by the inequal-
ity I « kA.

In this paper we consider an infinite one-dimensional
Josephson tunnel junction in a superconducting Glm with
a thickness d « A. We show that the electrodynamics
of a Josephson contact is nonlocal if the space scale of
variation of p is less than the Pearl penetration depth,
i.e. , if 1 « kA ~. We derive the integro-differential equa-
tion determining the phase difFerence ip(y, t) We us. e
this equation to calculate the dispersion relation ur(k)
for a electromagnetic wave propagating along SIS-type
Josephson junction.

The paper is organized in the following way. In
Sec. II, we consider the electrodynamics of a long one-
dimensional Josephson junction in a superconducting
film with a thickness that is much less than the London
penetration depth. We treat the general case of an arbi-
trary relation between the Josephson penetration depth
and the effective Pearl penetration depth. We derive the
integro-differential equation determining the phase differ-
ence distribution along the Josephson junction. In Sec.
III, we apply this equation to calculate the dispersion
relation for an electromagnetic wave propagating along
the Josephson junction. In Sec. IV, we summarize the
overall conclusions.

II. BASIC EQUATIONS

Let us consider a thin superconducting film (zy plane)
with an infinitely long SIS-type Josephson junction paral-
lel to the y axis as shown in Fig. 1. (Note, that a Joseph-
son junction in a thin strip was considered by Humphreys
and Edwards, while treating the critical current depen-
dence on the external magnetic field. ) We treat here the
case when A )) (, in which the London equations govern

FIG. 1. A thin superconducting film with a Josephson
junction (thick line).

the fields and currents inside the superconductor. Thus,
outside the tunnel contact the relation between the cur-
rent density j and the magnetic Geld b is given by

4~A'b+ rotj = 0.
C

Introducing the vector potential A and combining
Eq. (7) with the equation

h = rotA,

we express the current density j in the form

3= (S —A),

where outside the tunnel junction the vector field S is
given by the formula

S = V'0
2' (1O)

and 0 is the phase of the order parameter.
The quantities j, A, and S are nearly independent on

the z coordinate in the limiting case of a thin film, i.e. ,
for d « A. Therefore, in order to find the Gelds and
currents we replace the superconducting film with the
thickness d « A by an infinitely thin current-carrying
sheet in the plane z = 0. The current density j in this
plane is determined then by the averaging of Eq. (9) over
the thickness d, ' which results in

(S —A) ~(z).
4vrA g

Let us now choose the London gauge; i.e. , let us assume
that divA = 0. Then, substituting Eq. (11) into the
Maxwell equation

—b,A+ A,~Ah(z) = A @Sb(z).

The vector field S is related to the phase difference

y(y) = 0(+o, y) —8(—O, y). (14)

This relation is given by the equation

4m .roth = —j,
C

we find the equation describing the vector potential A in
the form
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rot S = p'(y) b(x) z,
27r

(is)
OO 7r

qdq d8(S —A ) exp(iqysin6),
4m2 p

following from Eq. (10) and taking into account the sin-
gularity of the function 0(x, y) at x = 0. The vector z is
here for the unit vector along the z axis.

Applying the continuity equation divj = 0 to Eq. (11)
we find that div S = O. Thus, we can present the vector
field S as a curl of a certain vector field F, namely,

where 8 is the polar angle in the (q, q„) plane and

dJ'
Aq —— Aq p —.

27r

(2s)

(26)

S(p) = rot F,
The next step is to apply Fourier transformation to

Eq. (13), which results in

where p = (x, y) and

F = E(p) z. (17)

(q + p ) Aq p + A, ff Aq ——A,ff Sq. (27)

Substituting Eq. (17) into Eq. (1S) we find the equation
describing the function E(p) in the form

It follows from Eq. (27) that the relation between Az and
Sq has the form

AE = — (p'(y) 6'(x). Aq= S
1+ 2qA. g

(28)

Note that the scalar function E(p), determines both
components of the vector field S(p) reducing by this way
the complexity of the problem.

The current density across the Josephson junction
j (0, y) is a sum of two terms, namely, the tunnel and
the displacement current densities,

hC 02@j (O, y) = j, sin&p+ d8(z).
2e Ot2 (19)

At the same time it follows from Eq. (9) that the current
density j (0, y) can be written as

j (0, y) = [S (0, y) —A (0, y, 0)] b(z). (20)

Equating the expressions for the quantity j (0, y) given
by Eqs. (19) and (20) we find that

j, sing+ = [S (O, y) —A (O, y, O)] . (21)
hC 82y c

and thus

g fr

1+2)A,
(29)

To calculate the Fourier transform S we take the
derivative of Eq. (18) with respect to y and substitute
S instead of BE/By. As a result it comes out that

ES = — F"(y) h(x). (30)

S = dye" (y) exp( —iqysin8) .
2'7t g

(31)

Combining now Eqs. (31), (29), (25), and (21) we find
the integro-differential equation describing the phase dif-
ference y(y, t) in the form

It follows from Eq. (30) that the Fourier transform S is
given by the formula

Thus, to derive the closed form of the equation describ-
ing the phase difference y(y, t) it is necessary to find the
functional relation between

1 0
2 +»ny = lJ dy'K y" y', 32

~J2 Ot2 2 of

where
A (y) = S (O, y) —A (O, y, O) (22)

and p(y, t). We use here a Fourier transformation in
order to do it and defining the Fourier transforms for
A(r) and S(p) as Jo(v) is the zero-order Bessel function, and

and

A (x) = J Ax x exp(iqp + ipz)
dzqdp

27r 3

d q~(p) = J ~ xxp(~op)

(23)

(24)

c@p
16m2A

Note that Eq. (32) can be rewritten ass

1 8 p . lJ dy t9p+sing =
Bt2 7l ~ y —y l9y

(3s)

Using Aq„and Sq we can present the value of L by
the integral

in the limiting case when the characteristic space scale of
the phase difference variation is much less than A ~.
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IXI. DISPERSION RELATION

Let us now consider a small amplitude electromagnetic
wave propagating along the Josephson junction. The cor-
responding solution of Eq. (32) then reads

rp = po exp(iky —i~t), ~(pp( && l. (36)

an electromagnetic wave propagating along the SIS-type
tunnel Josephson junction in a thin film is proportional
to the square root of the wave vector.

The dispersion relation u oc ~k leads, in particular, to
a nonequidistant set of the self-induced Fiske resonances
in the current-voltage curves for the voltages V ) V,
where

Substitution of Eq. (36) into Eq. (32) results in the
following dispersion relation

her(A, ~ ) c,
C 2e A

(41)

where

~ = (ug /I + 2k2A, tr/gK(2kA, tr),

ii:(e) = f K(u) exp(ieu) du. (3S)

Note that for a thin superconducting film the relation
kA tr 1 corresponds to a wave length that is A/d times
bigger than the London penetration depth.

The function K(x) has the explicit form

1 1+gl —x2
ln

s Ql —z2 1 —Ql —x2K(xj =
Q

1 2 1
1 ——arctan

if'�(1,

if'&1.

Using Eqs. (37) and (39) we find, in particular, the
dispersion relation u(k) in the limiting cases kA, tr « 1
and kA.& && 1,

1 — '
In(kA, tr) if kA, tr « 1,

4k2A, pig
7r

, (egal + klan if kA.& &) 1.
Thus, for kA ~ && 1 and klan && 1 the &equency of

IV. SUMMARY

To summarize, we have found the integro-differential
equation describing the phase dift'erence in case of the
SIS-type tunnel Josephson junction in a thin supercon-
ducting film. We apply this equation to calculate the
dispersion relation for an electromagnetic wave propa-
gating along the Josephson contact. We have shown that
if the wavelength is small compared with the Pearl pen-
etration depth A ~, the &equency is proportional to the
square root of the wave vector.
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