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Thermodynamic properties of the 6-chain model in a uniform magnetic field
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A numerical approach for calculating an eigenvalue distribution function is developed and it is applied
to the study on a fully frustrated spin system called the 6-chain model. We examine the magnetic-field

dependence of the specific heat to clarify the relationship between the highly frustrated spins and the
lower-temperature peak which has been extensively investigated by Kubo. Our numerical data show

that with the increase of magnetic field, the peak width becomes broader and the height lower. This sen-

sitive dependence should be caused by lowering the high degeneracy of states contributing to the peak
formation. Qn the other hand, we also find that the higher-temperature peak observed commonly in an-

tiferromagnetic quantum spin chains is almost unchanged.

I. INTRODUCTION

So far, the frustrated spin systems have been treated
extensively in both experimental and theoretical investi-
gations. Among them, in particular, the quantum
Heisenberg antiferromagnets on the kagome lattice with
nearest-neighbor coupling have recently attracted much
interest. This is partly because the system is thought to
be a plausible model for the second layer He system
(S=

—,') adsorbed on graphite whose experimental data for
the heat capacity show a double peak anomaly it is also
the theoretical model of the compounds such as
SrCrsCa„O» (S=—,'). From a theoretical view point, the
system is a widely known example of a so-called "fully
frustrated quantum spin system" and thus the classical
ground state has infinite continuous degeneracy by its
definition. A simple picture predicts that the classical
Heisenberg antiferromagnet on the kagome lattice has a
residual entropy per site, which is contributed from the
following two sources: (i) The first is the number of
configurations where each spin is pointing to one of the
three directions (A, X, C, which take 2m /3 rad with each
other) with two nearest-neighboring spins not pointing to
a same direction (we assume that the system becomes co-
planar). It is thus equal to the degeneracy of the ground
states of the antiferrornagnetic three-state Potts model.
(ii) Starting from one of the above possible configurations,
one can recognize another source: the ground-state ener-

gy is not changed by the continuous local rotation of the
spins on every closed loop consisting of, e.g., X and C

spins around the axis defined by A. Harris, Kallin, and
Berlinsky have studied the quantum antiferromagnet by
using linear spin-wave theory and clarified that this con-
tinuous degeneracy gives rise to a dispersionless mode.
Consequently, the assumed order is unstable within the
semiclassical treatment, because of (ii).

In such a condition, the quantum effects can play a
definitely important role in determining the basic proper-
ties such as the type of magnetic order, which may be
unusual for the magnets without frustrations. For exam-
ple, as was discussed by Sachdev using the large-X expan-
sion method, the classical ordered state (a &3X&3
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FIG. 1. The b,-chain model defined on the kagome lattice
(dotted line). The solid lines represent the antiferromagnetic ex-
change coupling and the spins are located on the sites (open cir-
cles}.

structure) is selected from the large number of possible
candidates by quantum effects for large S. On the other
hand, when S becomes small, the quantum disordered
ground state might be realized due to both the large

quantum Quctuations and the effects of the lattice with a
small coordination number. Nevertheless, there is no es-
tablished conclusion whether the ground state is ordered
or disordered, which remains a greatly challenging prob-
lem.

In this paper, we will study the one-dimensional (1D)
S=

—,
' system called a 6-chain model, which is also a fully

frustrated quantum spin system and the relation with the
kagome lattice is shown in Fig. 1. There are some previ-
ous works on this model and rigorous results have been
obtained for the ground state. However, as was dis-
cussed by Kubo, the ground state of the system with the
periodic boundary condition is a twofold degenerate di-
mer state; thus, the finite excitation gap exists, which is
basically the same as that of the Majumdar-Ghosh mod-
el. ' As a result, the excited states or the finite-
ternperature properties should be investigated to learn
the essence of full frustration effects.

The quantum Monte Carlo simulation method is one of
the powerful techniques in the numerical methods, but
the negative sign problem may become severe when we

apply it to quantum spin systems with frustrations. " It is

0163-1829/95/51(1)/305(6)/$06. 00 51 305 Q~1995 The American Physical Society



306 HIROMI OTSUKA

thus probably hard to get reliable results. Another avail-
able standard approach is the exact diag onalization
method: when the ground state and a few excited states
are of interest, we may use the Lanczos procedure, which
requires the memory size of order JV for a JV-dimensional
Hamiltonian matrix. However, full diagonalization
should be carried out to clarify the finite-temperature
properties exactly, which needs 0(JV ) memory; the
manageable system size then becomes rather small com-
paring with the former case.

Our purpose of this paper is twofold: first, we present
and investigate a method to evaluate the eigenvalue dis-
tribution function of a large scale matrix, where O(JV)
memory is required. As the implementation of the
method, we employ a random vector sampling technique
which is similar to the idea presented by Imada and
Takahashi in the quantum transfer Monte Carlo
method. ' In our formulation, the distribution function is
expressed as the averaged value of the imaginary part of
the Green's-function matrix element, which is accurately
evaluated by the use of the recursion method. ' ' As a
second aim, we explore the thermodynamic properties of
the 5-chain model by using the evaluated eigenvalue dis-
tribution function. The double peak structure of the
specific heat is discussed: the lower-temperature peak po-
sition and its height are estimated more accurately than
those obtained by the transfer-matrix method in Ref. 6.
Moreover, the simulations are also carried out to clarify
the magnetic-field dependence of the lower-temperature
peak. We find that the peak shows a sensitive depen-
dence, which is highly contrasted to that of the Bonner-
Fisher peak located in the higher-temperature region. '

We think that this behavior is one of the key features for
characterizing the fully frustrated spin systems. There-
fore, the sensitive magnetic-field dependence may be ob-
servable in the experiment on the He multilayer films if
the double peak structure is a result of strong frustration
effects as suggested by Elser and Zeng. '

This paper is organized as follows: Our numerical
method for calculating the eigenvalue distribution func-
tions is explained in Sec. II, in which the applicability of
the procedure is examined through the numerical calcula-
tion on the 1D S=

—,
' XY spin model (exactly solved mod-

el). ' In Sec. III, the simulation results of the 6-chain
model are presented. For simplicity of the programming,
we take advantage of only the total S' as the quantum
number of the subspaces; we treat up to 26-site systems in
this paper. It is, however, possible to reduce the memory
size by employing the other symmetry groups such as the
space group; this programming effort obviously enables
us to investigate larger system sizes than 26. A summary
and discussions are given in Sec. IV.

II. METHODOLOGY

A. Numerical method

In general, the eigenvalue distribution function p(co)
may play a central role in describing the systems in vari-
ous fields and the calculation of p(co) is frequently the
main substance of investigations:

p(co)=g p„(co)=g Tr„5(co—%), (2)

where p denotes a set of the quantum numbers and Tr„ is
the trace over the basis set spanning the subspace defined
by p.

By writing the basis set as [ ~n;p): n =1, . . . , JV~[, we
can express p„(co) in terms of Green's-function matrix
elements:

and

P P ]
p„(co)= g p~(co, n ) = g ——Im 9'"„„(z)

n=1 n=1

(z) = (n;y.
1

m;p (4)

where z =co+i@ and e is a real positive infinitesimal. To
calculate the diagonal elements of the Green's-function
matrix, we introduce the recursion method, i.e., accord-
ing to the Lanczos procedure, we create a new basis set
using

~ n; p ) as the initial vector, where the Hamiltonian
has a tridiagonal representation:

ak, k =h

P"„, k =h —1

Pi, , k =h+1
0, otherwise .

Then, Qi„'„(z) can be expressed as a continued fraction
form in terms of coefficients [ak,PP:

0"„„(z)=
Z CX1

lp"I'

Z CX2

Previously, there have been some discussions about the
termination of the continued fraction expansion some
approximate terminators have been proposed. In our
practical calculations, however, we adopt the truncation
where the tridiagonal matrix elements are set to zero for
k )M, because the truncation effects may be negligibly
small when we use sufficiently large M. We will check
the convergence of the calculated quantities against M (M
is typically 50—200). Further, concerning the evaluation
of the continued fractions, a simple "brute force" type
calculation of 1m[ 9(co+i e) ] is carried out with a finite e,
which imposes a Lorentzian broadening to the 5 func-

p(co) =Tr 5(co—&),
where & is the Hamiltonian of a certain system under
consideration and "Tr" means the trace summation over
a complete basis set. When a system possesses some con-
served quantities such as the magnetization, the total
number of particles, the total momentum, and the other
quantities originating from a point group, the trace surn-
mation may be rewritten in the following form:
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tions contained in an eigenvalue distribution function.
Thus, we should estimate the positions and the residues
of poles contained in the smeared continuous function.
The finite e effects on the physical quantities are checked
with the decrease of e.

Our numerical approach may be reviewed as the gen-
eralization of the recursion method used in the electronic
structure calculations, where the one-electron problem
defined by the density functional theory is investigated in
the real space to obtain the density of state. ' ' For
instance, corresponding to "the local density of state, "
one may consider p&(co, n ) "the local eigenvalue distribu-
tion function, " where the real space basis I ~x) I should
be substituted by the complete basis set of a many-body
system, i.e., t ~n;p) I. One important point is that once
the recursion method is formulated, the treatment does
not depend upon whether it is a one-body problem or not.

For a given initial state, e.g., ~
n; p ), the computational

effort of the Lanczos procedure scales as JV„ for the sys-
tems with short-range interactions. This scaling property
means that even when the memory size of a computer al-
lows the calculations, the full trace summation in Eq. (3)
is out of the CPU time limitation for larger size systems
which scales as JV„. Consequently, to relax the bottle
neck of the JV„dependence, we should resort to a statisti-
cal treatment of the trace summation. For simplicity, we
suppose that the Hamiltonian matrix is real symmetric;
then except for the phase factor, an eigenstate of the
Hamiltonian is expressed as the linear combination of a
complete basis set with real coefBcients, and thus, each
normalized vector is represented by a point on the super-
surface of the unit sphere in A' dimensions. At this
stage, we define the vector ~Q;p I whose direction is Q
and consider the uniform integration of p„(co,Q) on the
surface instead of the trace summation in Eq. (3). It is
then clear that the integrated function is proportional to
the eigenvalue distribution function:

Jdip„(co, Q) ~p„(co) . (7)

above methods. In fact, as the system, i.e., JV, becomes
large, the number of sampling vectors N, can be reduced
to evaluate the physical quantities within the same accu-
racy. In the following numerical calculations, we can
also recognize this self-averaging property; we thus con-
clude that our sampling method efticiently contributes to
relax the CPU time problem in the full trace summation.

B. Simulation results of the one-dimensional
quantum XFmodel

In this subsection, we will show our calculation results
on the 10 spin- —,

' quantum XY system with the periodic
boundary condition:

&~r =2 g (SI"SP+t +SfSf+ i ) .

SI" and Sf are the components of the quantum spin on the
Ith site. The subspaces are classified by the total S' and
the systems up to N =22 are investigated. The number of
sampling vectors X, is a few thousands for smaller sys-
tems and several tens for larger ones. We divide the sam-
pling vectors into typically five groups, and calculate "the
short-time averages" for every group; the standard devia-
tions of these averages are used to estimate the error bars
of the calculated physical quantities. In the following
discussions, we measure the temperature in units of
1/kn.

We first show the eigenvalue distribution function of
the 10-site system in Fig. 2. This is an example of the his-
togram (S'=0), which is compared with the exact data
and exhibits a good agreement. In Fig. 3, the tempera-
ture dependence of the heat capacity C ( T) calculated
from the eigenvalue distribution functions is presented
with the exact result; we can also recognize the good
agreement for the thermodynamic quantity. As an exam-
ple of the system size dependence, we show the uniform
magnetic susceptibility y(T) at the low-temperature re-
gion in Fig. 4. The exact result in the thermodynamic

Therefore, we define our statistical treatment as the ran-
dom sampling on the supersurface of the unit sphere in
JV„dimensions. Finally, by normalizing the averaged
function according to the sum rule: 20—

(a) Sampling

and executing the summation over the subspaces, we can
evaluate the total eigenvalue distribution function. It
should be noted that in some cases, there is some other
useful prior information about the distribution functions
such as p(co) =p( —co) and it may also be possible to take
such information into the numerical calculation pro-
cedures, which are obviously expected to present rather
small statistical errors for the calculated quantities.

Since Imada and Takahashi proposed a random sam-
pling of the orthonormal basis in the quantum transfer
Monte Carlo method, ' similar techniques have been pro-
posed and applied to the investigation of many-body
properties of the quantum systems. ' As was carefully
discussed in Ref. 12, the strong self-averaging property is
expected for the numerical calculation when using the

0—

20—
(b) Exact

I i i i & I

0 5

FIG. 2. The histogram of the eigenvalue distribution func-
tion of the 10-site XY spin system (the energy mesh 5co=0.2):
(a) sampling result, (b) exact result (we take the y axis down-
ward). The number of sampling vectors N, =5000. The data of
the S'=0 subspace is shown as an example.
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FIG. 3. The specific heat for the 1D 10-site XF spin system.
The solid lines are the exact data and the open circles are the

sampling ones. The inset shows the overall behavior.

limit is also presented as the solid line. We can see that
the finite-size effects are decreasing with the increase of
the system size; the numerical results reproduce the exact
result accurately except for the lower-temperature region
(T(0.1).

The above simulation results enable us to conclude that
our numerical calculation method efticiently works for
the investigations of the many-body systems at finite tern-
perature.

III. RESULTS

N—g H S( .
1=1

(10)

In this section, we present our numerical simulation re-
sults on the b-chain model under the uniform magnetic
field H which is described by the Harniltonian

N N/2
&=2 g SI.SI+,+2 g S2( I.S2(+I

1=1 1=1

0 —~--~-"" ~-~m.o.
I

0
I

0.2
I

0.4

FIG. 5. The system size dependence of C( T) for the 6-chain
model at the lower-temperature region. The original points are
shifted rightwards according to 2/N for all system sizes data
and the error bars are dropped. The cross ( X ) shows the extra-
polated results obtained from these size-dependent data. We
also show the exact results for up to 14-site systems (solid lines).

The operator S& denotes the quantum spin of size —,
' on

the Ith site. We employ the periodic boundary condition,
i.e., SN+, =S„and X is a certain even number. The first
term is the Harniltonian of the 1D antiferromagnetic
Heisenberg model, which is known as the exactly solved
model. The second term expresses the next-nearest-
neighbor antiferromagnetic bonds, which introduce the
full frustration effects into the Heisenberg antiferromag-
net.

We start with showing the results at H=~H~=O in
Figs. 5 and 6: the former plots the system size depen-
dence of the specific-heat data and the latter is obtained
by the extrapolation. The solid 1ines in Fig. 5 show the
exact results for smaller systems (up to 14 sites) and the
symbols denote our simulation data; the agreement may
provide the reliability of our simulation results. We have

0.2

n„I II
0.2—

0 0

: N=~ Exact
. ¹22
: N=18

o . N-14
o N=10

0.1—

ij~~
//iran //~~

/gp

X

fp&&

O-. e ~
I a I

0 0.2 T 0.4

FIG. 4. The system size dependence of y(T) data for the XY
spin systems. The correspondence between symbols and the sys-
tem sizes is shown. The exact result for the infinite system is
drawn by the solid line.

0
I

0
I

2 T

FIG. 6. The overall behavior of C(T) for the 5-chain model
in the thermodynamic limit. The peak position T~-0. 12 and
the height C~ -0.2.
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N=22
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FIG. 7. The magnetization curves m(H) for the 6-chain
model. The correspondence between line types and the system
sizes is denoted. The temperature is fixed at T=0.02. The
vertical arrow indicates the excitation gap Eg obtained by
Kubo.

also performed the same check for other physical quanti-
ties such as the uniform magnetic susceptibility. Al-
though the system size dependence of the Bonner-Fisher
peak' (the higher-temperature peak) is almost absent, it
is observed in the lower-temperature peak, i.e., the height
becomes lower and the position comes to locate at lower
temperature with the increase of the system size. As a re-
sult, we estimate the peak position T~=0. 12 and the
height C =0.2, respectively. The previous numerical
study on this model had been carried out by using the
quantum transfer-matrix method and the existence of the
double peak structure is concluded. ' As mentioned in
that investigation, however, the low-temperature peak
does not converge because of the insufBcient Trotter
numbers. On the other hand, our final result seems to
coincide with the extrapolated values of those Trotter
dependent data. We thus conclude that the double peak
structure is confirmed quantitatively in the thermo-
dynamic limit.

Next, we show the magnetization curve m(H} of the
5-chain model for various size systems in Fig. 7. The
step functions expected for the ground states are smeared
by the finite-temperature effect (T=0.02); however, the
excitation gap can be estimated around Hg-0. 43; this
agrees well with the previous exact diagonalization result
indicated by the arrow. To clarify the magnetic-field
effects on the fully frustrated properties of the 6-chain
model, we should investigate the response from the excit-
ed states around the upper edge of the gap while keeping
the ground state unchanged. For this aim, we restrict the
magnetic-field strength as H (H .

We plot the magnetic-field dependence of the specific
heat for the 26-site system in Fig. 8; the contrasted
behavior of two peaks is clarified. With the increase of
the magnetic field, the height of the lower-temperature
peak becomes lower quickly and the width broader. On
the other hand, the higher-temperature peak is hardly
changed. The mean-field picture (coplanar order} pre-
dicts the fully frustrated effects as the simultaneous rota-

0.2—

N=26;: H=O D.
H=0. 1
H=0.2
H=0.3

FIG. 8. The magnetic-field dependence of C(T) for the 26-
site 5-chain model. The correspondence between the
magnetic-field strength and the line types is denoted.

tion of successive three spins, which gives rise to the high
degeneracy of the states. It should be noted that this de-
formation is accompanied with the rotation of the local
magnetization, so by applying the magnetic field, the en-
ergetically favorable orientation is realized. Correspond-
ing to the above simple picture, the various spin states
might degenerate around the upper edge of the excitation
gap and the magnetic field should resolve the degeneracy
according to their spin conditions. Consequently, we
think that the change observed in the lower-temperature
specific-heat peak is reAecting this magnetic-field effect.

IV. SUMMARY

In this paper, the method to calculate the eigenvalue
distribution function of a large scale matrix has been pro-
posed, where the sampling procedure about random ini-
tial vectors is performed instead of the full trace summa-
tion of the imaginary part of the Green's function. The
applicability of the method was examined through the
numerical calculations on the 1D S=—,

' XY spin system;
the feasible natures have been clarified. In particular,
since our method exhibits a strong self-averaging proper-
ty, accurate results are obtained by using a quite small
number of sampling vectors for larger matrices.

By using the above method, we have investigated the
5-chain model, where the magnetic-field effects on the
lower-temperature peak observed in the specific-heat data
were mainly discussed. The obtained results are summa-
rized as follows. (1) The double peak structure of the
specific heat is quantitatively obtained in the thermo-
dynamic limit: we estimate the lower-temperature peak
position Tz ——0. 12 and the height Cz —-0.2 at H =0. (2)
The lower-temperature peak exhibits a sensitive
magnetic-field dependence —with the increase of the
field, the peak becomes lower and broader quickly; it is
highly contrasted against the Bonner-Fisher peak which
is almost unchanged. The lower-temperature peak for-
mation is thought to be a resultant of the high degenera-
cy of states due to the strong frustration effects. Further,
the magnetic field may efhciently resolve the degeneracy,
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which should be detected as the field dependence of the
peak. We think the above observation exhibits one of the
characteristic features of the strongly frustrated systems.
Concerning the Heisenberg antiferromagnet on the ka-
gome lattice, the previously reported double peak struc-
ture is now thought to be a resultant of finite-size
effects. ' ' Therefore, our claim is as follows: the experi-
mental measurement for the specific heat with the mag-
netic field may provide a significant insight into the ques-
tion whether the low-temperature anomaly observed in
the He multilayer system has some relevance with the
frustration.

Finally we notice that the applicability of our numeri-
cal calculation method is not restricted to the quantum
spin systems. We also expect the method is efhciently ap-

plied to the correlated electron systems such as the high-
T, superconductors.
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