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Spiral spin states in a generalized Kondo lattice model with classIcal localized spins
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A generalized Kondo lattice model with classical localized spins is studied in a two-dimensional case.
Our model includes the case in which antiferromagnetic exchange coupling J exists between localized
spins. We obtain the magnetic phase diagram on the plane of J and fermion concentration n, and the or-
der of each phase transition on the phase diagram, taking into account all possible planar spiral orders
and canted ferromagnetic orders as well as the Neel order and the ordinary ferromagnetic order. In the
phase diagram, we find a large region of the stripe spiral phase, which is consistent with the results of
neutron-scattering experiments of La2 „Sr„Cu04.
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where p; is the fermion operator on the site i with spin
cr, S,. is the localized spin on the site I,, and cr is the

2

(cr „cr2) element of the Pauli matrix. This model is called
a generalized Kondo lattice model. In the limit of J& =0
or n =0, the model reduces to the antiferromagnetic (AF)
Heisenberg model, in which AF order is considered to
exist at T=O. On the other hand in the limit of J=O,
fermion kinetic energy stabilizes the ferromagnetic state:
Such effective ferromagnetic interactions are called the
double exchange interactions. Therefore, a competition
occurs between AF exchange interactions J and fermion
kinetic energies. Such frustrations may lead to spiral-
spin-ordered states as well as canted ferromagnetic (CF)
states. ' Further, the possibility of a spiral state has
been pointed out from experiments of the copper ox-
ides. ' Thus, since the spin-fermion model is an appropri-
ate model at least for a low-doping region of the copper
oxides, those experimental results give rise to much in-
terest in the study of spiral states in the present model as
well as the Neel state and the ferromagnetic states.

Models of mobile fermions and localized spins have at-
tracted much attention in connection with the heavy-
fermion compounds and the copper oxide high-
temperature superconductors. ' We define the spin-
fermion model on the square lattice by

H =Ho+H~,

Cig

pig—pf
pig

The purpose of this paper is to construct the magnetic
phase diagram on the J-n plane for the whole range of n
at the zero temperature, which may have areas of the
spiral phases and the CF phase. For this purpose we take
the classical limit of localized spins: We regard the local-
ized spins S as classical variables with the magnitude S.
Spin-wave corrections and shrinkage of spins due to
quantum fluctuations are left for future studies. This is a
good approximation for real compounds with large local-
ized spins. The formulation in this paper is similar to
that of our previous theory for the t-J model. ' Howev-
er, the present model is very different from the t-J model
in that the spins S; and the fermions p; have different de-
grees of freedom by definition. Thus we can straightfor-
wardly take the classical spin limit only for the localized
spins without touching the mobile fermions. Hence, our
theory does not have any limitations on the ferrnion con-
centration for its applicability. Moreover, we can take
the t-J limit, Jz —+ ~, in the present model, in which the
spin-fermion model reduces to the t-J model. Once we
introduce the classical-spin approximation of the local-
ized spins, we can solve the problem without any further
drastic approximation.

If we fix the configuration of these classical spins, our
Hamiltonian is bilinear in fermion operators, which is
easy to examine. We express the direction of the local-
ized spin at each site by polar coordinates ct;,P; as
S, =S(sinP; cosa;, sinP; sina;, cosP,. ). We rotate the spin
coordinate so that each spin points in the direction of the
new local z axis: S, =(O, O, S) in the new coordinate.
Then the fermion doublet (p; t,p;t& ) is also locally
transformed by

P; —=exp( —ia,.o., l2)exp( iP, o l2)—
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which leads to

Hx =
—,
' Jx Sg(c;&c;&

—c;~c; ~ ) .

In general, spiral states are specified by spiral wave vec-
tors q' and q defined by a; =q'-R, +ao, and

P; =q R;+Po, where R; is the vector to the site i in the
real space, and ao and Po are constant. Then all possible
spin-ordered states can be specified by q' and q in the first
Brillouin zone, and ao and Po. For spiral states, we only
consider the states with constant a,. independent of the
site i, i.e., q'=0 for simplicity, which are called planar
spiral states. We also consider the CF states, which are

I

H=g(&'+'(k, q)dq+d), ++@' '(k, q)d„dg )

+JS N(cosq„+cosq~) (4)

by a unitary transformation:

specified as q=0, q'=(m, n. ), and go+0. In this paper we
examine all possible planar spiral states and CF states.
The spin-disordered state is apparently of high energy in
our classical-spin model. The state with q„=q„ is called
the diagonal state, and that with q„Aq is called the
stripe state. For the spiral states, the Hamiltonian is di-
agonalized as

T
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where

e'*'(kq, ) =go(kq, )+D(kq, ),
D(k, q)=+ [$2(k, q)]2+(h3)

go(k, q) = —2t cosk„cos +cosk cos
qx qy

2

$2(k, q) = 2t sink„sin —+sink sin
qx . . qy

2

h3=JxS/2 .

We take the lattice constant as unity in this paper. Thus
the total energy is estimated as

E, ;„,(q) = g e"(k,q)9(JM —e"(k,q))
k, s=k

+JS N(cosq„+cosq„) .

Here, p is the chemical potential. For CF states, the
Hamiltonian is also easily diagonalized, and the total en-
ergy is obtained as

I

sufficiently large finite-size systems in this paper, such as
L XL with L =128,256, 512 for convenience. We also
discretize the canting angle Po as Po =n.l l2L, with
I =0, 1,2, . . . , L.

Figures 1 and 2 are the phase diagrams in the ground
state, for Jx =8t IS and for Jx =2t IS, respectively. The
phase boundaries for the two system sizes coincide very
well as we see in Figs. 1 and 2. This indicates that our
system sizes are su%ciently large for practical purposes,
and the phase diagrams can be regarded as being in the
thermodynamic limit. The ferromagnetic state is due to
the double exchange mechanism, which at J/t =0 has
been studied by Sigrist et al. In the ferromagnetic
phase, the total fermion kinetic energy is minimum, while
the total AF exchange energy of the localized spins is
maximum. The diagonal spiral (DS) state and CF state
for small n are due to the competition between the AF
exchange interaction J and the fermion kinetic energy.

0.15

with

Ecp(Pp) = g ecp(k, PO)&(p —ecp(k, Pp) )
k, s=+

+2JS N cos2PO,

0.1

0.05
DS

ecp( k Po ) =s Q [E(k ) +h 3 cosPO ] +h 3 sin 'Po (9)

where e(k) = —2t(cosk„+cosk ).
It is easy to obtain the total energy of the system for a

given spin configuration with the above expressions. The
spin configuration in the ground state is obtained by
minimizing the total energy. We may directly calculate
the total energy in the thermodynamic limit with
sufhcient accuracy by replacing the summation with an
appropriate integration in the above expressions and car-
rying out the integration. However, we deal with

0.5

FIG. 1. The phase diagram in the ground state for J& = 8t/S.
Solid lines and dotted lines are for system sizes 256X256 and
128X128. DS, SS, SS', and CF denote the phases of diagonal
spiral state, stripe spiral state with q=(~, q~) or (q, ~), stripe
spiral state with q=(q„O) or (O, q~ ), and canted ferromagnetic
state, respectively. Here, q~&O, m and q„XO,m..
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FIG. 2. The phase diagram in the ground state for Jz =2t/S.
Solid lines and dotted lines are for system sizes 512X512 and
256X 256. The notations of DS, SS, SS', and CF are the same as
Fig. 1.

FIG. 3. Orders of transitions in the ground state. System size
is 512X512. J+=2t/S. Solid lines and broken lines denote
first-order transition curves and second-order ones, respectively.

As increasing n, the fermion kinetic energy overcomes
the AF exchange energy and the DS phase and the CF
phases disappear. In the CF phase, the canting angle Po
goes to zero as one approaches to n =0, and the state
reduces to the Neel state.

On the other hand, for large n, Ruderman-Kittel-
Kasuya-Yosida (RKKY) interactions oscillating in space
with the wave vector near (n, n) give rise to another DS
phase. In particular, the spiral wave vector q continu-
ously goes to (m, n ) in the limit of n ~1. This is because
the peak in the momentum dependence of the spin Quc-
tuations of the ferrnions shifts to (n., m. ), and finally
diverges at n ~1 as easily verified from the particle-hole
symmetry.

Above the region of the ferromagnetic phase, we find
regions of various stripe phases. We find a finite region of
the state with q=(n. , O), which is referred to as the (m, O)

state in this paper, and find a large area of the stripe
spiral (SS) phase above that of the (n, 0) phase. In partic-
ular it is much larger than those of the DS phases and the
CF phase in Fig. 2 for Jz =2t/S. This is interesting be-
cause Jz is of the order of t in copper oxide compounds,
and the inelastic neutron-scattering experiments' show
the incommensurate peaks at q = (+m, +n+5q~ )

q=(+m+5q, +n) in the wave-vector dependence of the
spin fluctuations. The fermion concentrations for which
the SS state appears are very different from those in the
experiments. Nevertheless, this suggests at least that the
SS state is possible also in a model in which spins on the
Cu lattice sites are assumed to be localized.

Figure 3 is the phase diagram for Jz.=2t/S to show
the order of phase transitions. The solid lines are first-
order phase transition curves and the broken lines are
second-order ones. It is found that the transition be-
tween the Neel state and the DS state for low densities is
first order and that that between the CF state and the
Neel state is second order. The canting angle of the CF
state near the phase boundary of the Neel state continu-
ously goes to zero as one approaches the Neel state.

To summarize, we have obtained the phase diagram of

the spin-fermion model with classical localized spins. In
spite of the simplicity of the treatment, our theory de-
scribes various mechanism of magnetic phenomena, such
as double-exchange and RKKY interactions. As a result,
our phase diagram consists of the Neel, ferromagnetic,
canted ferromagnetic, diagonal spiral, stripe spiral, and
(n, O) phases. In particular, the large area of the stripe
spiral phase is obtained for Jz =2t /S, which is consistent
with the experimental results in the copper oxides.

For a close comparison to the copper oxides, we have
to examine the spin-wave excitations to go beyond the
classical-spin approximation and take into account the
quantum fluctuations. In particular, the stabihty of the
spiral states is the problem to be examined. However,
our treatment is a good starting point because the
classical-spin approximation can be regarded as taking
the leading order of the spin-wave expansion.

On the other hand, our classical-spin model has much
validity for compounds with large localized spins, such as
La& Sr Mn03. ' ' La& Sr Mn03 is three dimension-
al and has localized spins with S=3/2-2. Our calcula-
tion can be easily extended to the three-dimensional case.
We expect that the phase diagram in the three-
dimensional case would not be drastically different from
the present result under the classical-spin approximation.

We have ignored the possibility of the phase separation
in which fermions have spatially inhomogeneous distribu-
tion. However, this is justified, if we implicitly assume
intersite or long-range Coulomb interactions between
electrons and between electrons and atomic nuclei, which
exist in the real materials and suppress such inhomogene-
ous states. When the phase separation occurs, the charge
neutrality, including charges of dopants, is violated and
such a state is apparently of high energy because of the
Coulomb interactions. For example, in La& „Sr CuO4,
the charge neutrality must be kept in a large spatial scale,
if one takes into account all charges of electrons and
atomic nuclei of La, Sr, Cu, and O. Further, the
Coulomb interactions between electrons also raise the to-
tal energy for such inhomogeneous states. To take into



3030 MINORU HAMADA AND HIROSHI SHIMAHARA 51

account the correlation e6'ects in the fermion system due
to Coulomb interactions is another problem to be exam-
ined in the future.

We have not examined the nonplanar spiral spin states
in this paper. We have found in the t-J model that non-
planar spiral states appear but the deviation from the pla-
nar spiral state is small. Thus we expect that it is not
poor approximation technique to ignore the nonplanar
spiral states also in the present model. However, these
problems should be explicitly examined in a future study.
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