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We analyze two extended versions [the Ishimori model (IM) and a related system, which will be
called the modified Ishimori model (MIM)] of the continuous Heisenberg model in (2+1) dimensions
within the complex Hirota scheme. The IM is an integrable (2+1)-dimensional topological spin-
field model that has been studied in many theoretical frameworks. The MIM has been introduced
quite recently by some of the present authors [Phys. Rev. B 49, 12915 (1994)]. Using the same
stereographic variable in the Hirota formulation, we build up some exact solutions both for the IM
and the MIM in the compact and noncompact case. For the IM, the configurations are a class
of static solutions related to a special third Painleve equation, time-dependent solutions linked to
another kind of the third Painleve transcendent, and asympotic time-dependent solutions whose
energy density behaves as a Yukawa potential. For the MIM, configurations are a class of exact
solutions expressed in terms of elliptic functions, and a class of time-dependent solutions related to
a particular form of the double sine-Gordon and the double sinh-Gordon equations with variable
coefBcients. We discuss the configurations and certain known solutions which clarify the difFerent
possible phenomenological roles played by the considered topological spin-field models.

I. INTRODUCTION

Topological field models, usually relevant to string
theory, have been applied successfully in the last years
to handle many problems pertinent to condensed matter
physics. 2

Here we consider the topological spin-Geld model in
two-space and one-time dimensions:

Sg ———[S,S +a S„„]+PS„Q —S P„,2i
(l.la)

2P2$ 2~2P2Q (1.1b)

where n2 = kl, P = kl, subscripts denote partial
derivatives, S = S(x, y, t) is a 2x2 matrix defined by

(~S+ —Ss) ' (1.2)

S+ ——S~ + iS2, the asterisk means complex conjuga-
tion, Q = &(Tr(i/2)S[S, Ss]) is a conserved topological
charge density, and P is a real scalar field. The functions
S~(x, y, t) (j=1,2,3), which are real-valued components
of a classical unit "spin" vector S(z, y, t), belong to the
two-dimensional (2D) sphere S2 (e2 = 1) or the pseudo-
sphere S ' (r = —1), i.e. ,

Ss + lc (Si + S2) = 1.

For P2 = —1, Eqs. (1.1) describe the Ishimori model
(IM), which can be regarded as an integrable version
(it has a Lax pair formulation ) of the continuous
2D Heisenberg model. Both the compact (m = 1)
and the noncoxnpact (v2 = —1) IM's admit exact so-
lutions classified by an integer topological charge (lo-
calized solitons and vortexlike and closed stringlike

configurations ). Furthermore, the IM possesses an
infinite-dimensional symmetry algebra of the Kac-Moody
type with a loop algebra structure. ' This feature char-
acterizes other nonlinear Geld equations in 2 + 1 dimen-
sions of physical significance having a Lax pair formu-
lation, such as the Kadomtsev-Petviashvili equation,
the Davey-Stewartson equation, and the three-wave
resonant system. Apart &om these nice properties, at
present it is not known whether the IM is a Hamiltonian
system.

Conversely, for P2 = +1, Eqs. (1.1) describe a spin-
field system endowed with a Hamiltonian structure. We
shall call this system a modified Ishimori model (MIM).
Similarly to what happens for the IM, the MIM allows
a symmetry algebra of the Kac-Moody type with a loop
algebra structure. However, this does not imply that
the MIM is surely integrable. In fact, so far a Lax pair
has been found only for P &

——O. is The question of the
integrability of the MIM for P „g0 remains open.

Just as it occurs for the IM, the MIM provides similar
solutions; a few of them turn out to be of the helical and
the rotontype, and meronlike configurations provided by
a &actional topological charge. These results indicate
that the IM and the MIM may refer to diferent physical
situations. This appears mostly evident in relation to the
configurations endowed with a nonvanishing topological
charge. In fact, the vortices found in the compact IM
(Ref. 3) and the stringlike configurations allowed by its
noncompact version have an integer topological charge,
while, as we shall see later, the meronlike excitations in
MIM are characterized by a fractional topological charge.

The above considerations suggest that it should be in-
teresting to pursue a comparative study of the IM and
the MIM. Keeping in mind this idea, in the following
we apply the Hirota representation to look for a spe-
cial class of configurations by choosing the same form of
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the stereographic variable in terms of which one can ex-
press the spin-field components and the auxiliary field P.
In doing so, for the (compact and noncompact) IM we
obtain some static and dynamical con6gurations which
can be expressed in terms of certain special forms of
the third Painleve transcendent. Other interesting time-
dependent configurations lead to asymptotic expressions
for the spin-6eld variables which are associated with an
energy density of the Yukawa type.

On the other hand, for the noncompact MIM we find,
as static exact configurations, a class of solutions ex-
pressed in terms of elliptic functions. (A corresponding
class of configurations for the compact MIM has been
already determined in Ref. 13.) Fiirthermore, for both
the compact and the noncompact MIM another result
is constituted by a class of time-dependent solutions re-
lated, respectively, to a particular form of the double
sine-Gordon and the double sinh-Gordon equations with
variable coefEcients.

For our purposes, let us recall the Hirota scheme.
This consists essentially in writing Eqs. (1.1) by using
the stereographic projection representation

solutions to the CHF by setting f = [a'(z')]i~2 and
g = [a(z)]i~2vP([z~), where a(z) and @(~z~) are, respec-
tively, a complex and a real function to be determined.
This choice corresponds to the stereographic variable

To be precise, below we shall limit ourselves to the
cases 0! = 1) K = +1.

II. CASE Pi = —1

Let us put Eqs. (1.5), for P2 = —1 (IM), in the CHF.
Then, the compatibility condition P„.= P... [see (1.6)]
entails

a(z) = ao exp[(A/2)z ], (2.1)

where ao and A are, respectively, an arbitrary complex
and a real constant. On the other hand, the complex
form of (1.5a) furnishes the nonlinear ordinary differen-
tial equation

2Q 1 —K2/(f2

1+ K /Q/2' 1+ K2/(/2' (1.4)
(2.2)

and putting ( = ~&, where f = f(x, y, t) and g = g(x, y, t)
are two arbitrary differentiable complex functions. Then,
Eqs. (1.1) take the form

(If I' —K'lgl') ('D» —D.' —n'Dw) (f' .g)
u=lnr, (i) @=tan —, for r =1;4'

where a(z) is given by (2.1) and z = re's. Using the
transformation

f*g(iD» ——D —n D„)(f'.f —K g' g) = 0, (1.5a)

4in4-+ n'P'4ww = &, [D,(g f)D-(g'. f')

(ii) @ = tanh —, for r = —1,4'

Eq. (2.2) takes, correspondingly, the form

(2.3)

Dw(g'. f*)D—*(g.f)] (1 5b)
with A =

~ f ~
+ K ~g~, where the operators D», D

and D„stand for the "antisymmetric derivatives, " i.e. ,
D»(a. b) = a»b —ab», and so on.

A particular solution to Eq. (1.5b) valid for any value
(+1) of the parameters n2 and P2 is given by

2i22 D„(f'.f + K g'. g),

(1 6)

&w =
&

D-(f'. f + ~'g'. g).

However, the compatibility condition P „=Pw is not
identically satisfied. Therefore, this is a constraint which
has to be taken into account in order to solve Eq. (1.5a).

Interesting phenomenological aspects of the IM and
the MIM can be evidenced assuming first that f and
g are (complex) functions of z = 2: + iy and its conju-
gate, namely, f = f(z, z', t) and g = g(z, z', t). Conse-
quently, with the help of the operators 0, =

2 (8 —iBw)
and 8 ~ = 2(B +

ilaw),

Eqs. (1.5), (1.6) and the related
compatibility condition can be written in complex form.
We shall call the full set of these equations complex Hi-
rota's formulation (CHF) of the spin-field model (1.1)
(see the Appendix). Second, we are looking for special

p„„+A2e4" sing = O (2 4)

and

p„„+%2~4"si.nhp = 0. (2.5)

Equations (2.4) and (2.5) are related to a special case
of the third Painleve transcendent, defined by

W2 1 A f s 1)W = ——W ——
i

WW»r 16 W (2.7)

Thus, Eq. (2.7) corresponds to the particular case of the
third Painleve equation (2.6) where no ——ni ——0 and
0!2 = —CI3 = —

~~ .A

Dynamical configurations to the IM yielding (2.7)
when the time is switched ofF can also be obtained. In-
deed, starting &om

d W 1 (dWi 1dW 0!3
+(noW +ni)+nzW +—,

dz2 W ( dz ) z dz TV'

(2 6)

where W = W(z), and nz (j = 0, 1, 2, 3) are arbitrary
constants.

This can be seen by putting in (2.4) and (2.5): (i) e2" =
»r, W = e'~, and (ii) e "= cr, W = e ~, respectively. We
get
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O' = Ca(t) (2 8)

where g is given by (1.7) and p(t) is a function of the
tixne to be found, the CHF provides p = exp[—i(Et+D)]
with E, D real constants, and

p„„+A e "sing+ 2Ee "sin —= 0 (e = 1) (2.io)

or

p„„+A e "sinhp + 2Ee "sinh —= 0 (K = —1).
2

(i+ ~'@')
~
@„„+ q„-~ —2~'yy„'+ W'r'(1 —~'@')

r
+E(i+ ~'@')y = O. (2.9)

By xneans of the substitution @ = tan &4 (for r2 = 1) or

@ = tanh &4 (for r2 = —1), Eq. (2.9) becomes

large and the small-w behavior of g(~; v, p) under certain
conditions for the parameters p, and v. For example, as
v M oo one has

1
rg 1 —pI'

2J
(2.16)

where I' denotes the gamma function. This expansion
will be used later to provide explicit asymptotic solutions
to the Ishimori model.

(ii) Equation (2.14) resembles Eq. (1.31) of Ref. 16,
but it is really diferent &om the latter because the term
W —1/W in (2.14) has opposite sign. At present, the
role of Eq. (2.14) in the context of spin-field models seems
unknown. Its possible physical meaning could be ex-
plored following a procedure similar to that exploited in
Ref. 16.

Now, by substituting

(2.11) i(Any Et+8)i—@
( ) (2.17)

The change of variables TV = e'~ and e " = a trans-
forxns Eq. (2.10) into the third Painleve equation

into (1.4), where b is a constant, we get the spin-field
components S~ in terms of @ [see (2.8), (1.7), and (2.1)]:

W2 1 A fs '1 5 Ew..= .--w. ——
~

w' ——
~

— (w'-1),
a 16 g W) 8a

(2.12)

Si = 2 cos(Axy —Et + h) 1+K (2.18a)

which corresponds to the choice o;0 ———ng ———
8 and

A(13 — i6 of the &ee parameters n~ present in
(2.6).

By rescaling the independent variable 0, namely, by
setting ( = i 40, Eq. (2.12) takes the form

S2 ——2 sin(Any —Et + h) 1+ r2

1 —r2@
S3 ——

1+~2@2

(2.18b)

(2.18c)

R'~ 1 2v
Wgt —— ——Wt + W ——+ —(W —1),W ( W

(2.i3)
Limiting ourselves, for simplicity, to consider the com-

pact case (K2 = 1), the quantities (2.18) become

——W —W ~ = ——(W2 —1),
7 TV

(2.i4)

with p =
On the other hand, by taking TV = e ~ with e " = o,

Eq. (2.11) reduces forxnally to Eq. (2.12), where now W
is a real function. Assuming v. = 4o., we are led to the
equation

Si ——cos(Axy —Et + b') sin. p,
S2 ——sin(Axy —Et + b) sing,
S3 = cos p)

(2.i9)

where sing = —.(W —W*), cosy = i(W+ W'), and
W = W($) satisfies Eq. (2.13). The auxiliary field P can
be derived from (1.6) keeping in mind that

g=' ' '+ '[a(z)]"@(r)and f = [a (z')]",
with v = —~.

Equations (2.13) and (2.14) are invariant under the
transformations

a(z) being expressed by (2.1). We get

= —2AxSs, Py ———2AySs, (2.20)
1 — 1R'm =,R' (2.15) which furnishes the topological charge density [see (1.16)]

respectively.
At this stage some comments are in order.
(i) Equation (2.13) coincides formally with Eq. (1.31)

of Ref. 16 for the scaling limit of the spin-spin correla-
tion function of the two-dimensional Ising model. To be
precise, in Ref. 16 a one-parameter family of solutions
g(7; v, p) to the above mentioned Eq. (1.31) was found by
the request that these remain bounded as the indepen-
dent variable v approaches in6nity along the positive real
axis. Ru'thermore, the authors of Ref. 16 built up the

1
Q = -(dye —4 *) = &(»s* —ySsy).

The total topological charge,

+OO +OO

Qr=~ f f Q«« (2.21)

can be evaluated, in principle, &om the properties of the
third Painleve transcendent W defined by Eq. (2.13) [see
(2.i9)].
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Another interesting, more explicit example of solution
to the IM related to the third Painleve equation arises
&om (2.11) by choosing A = 0 and E ( 0. In fact, in this
case Eq. (2.11) can be written as

The expression (2.28) tells us that, for large values of
p, the energy density of the spin configuration (2.24) is
of the Yukawa type.

III. CASE P2 = I

where e4 = W, e" = r = 2p/(~E~) 2, and

e*(I&I~—&)y(„)

(2.22)

(2.23)

By using the stereographic variable (1.7) in the CHF
of the spin-field model (1.1) for P2 = 1 (MIM), &om the
coxnpatibility condition P„.= P ., [see (1.6)] we obtain

a z =aoz",

We rexnark that (2.22), where W and p are real quan-
tities, is exactly Eq. (1.3) (for v = 0) studied in Ref. 16.
Therefore, we can exploit (2.16) to provide an explicit
asymptotic solution to the IM. In doing so, from (1.4)
and (2.23) we find

where ao is an arbitrary complex constant, and A is a
real number. On the other hand, with the aid of (3.1)
the complex version of (1.5a) yields

(I+~2y2)
~
@„„+-@„~+—,(1—~2@2)@ = 2~2@@2.

)
Si ——cos(~E~t —D)sinh —,'y

2'

S2 ——sin(~ E~t —D)sinh —,2'

S3 = cosh —,'Y

2'

(2.24a)

(2.24b)

(2.24c)

(3.2)

By way of change of variables u = ln r, and (i) @ = tan~&,

for e2 = 1, (ii) @ = tanh&z, for e2 = —1, Eq. (3.2) can
be written as

p„„+A sing=0,

where sinh&z ——2(W2 —W 2) and cosh&z ——2(W2 +
W )

By resorting to (2.16) with v = 0 and identifying w

with p, as p ~ oo we have

p„„+A sinhp = 0, (3.4)

p = 2arcsin[k sn(Au, k)], (3.5)

respectively. The first is the equation for the pendulum,
which admits the solution

W(p;0, )tx) 1 —p(m) ~ e '~p

Then, the spin-field coxnponents (1.4) become

Si —2p(vr) ~ cos(~E~t —D)e ~p

S2 —2p(xr) & sin(~E~t —D)e ~p

S3 ~ 1)

(2.25)

(2.26a)

(2.26b)

(2.26c)

where sn(. ) denotes the Jacobian elliptic function of mod-
ulus k (0 ( k ( 1). The spin-field components, the
auxiliary field ((), the topological charge density, and the
energy associated with (3.5) and their limit cases (k = 0
and k = 1) have been already discussed in Ref. 13.

However, for the reader's convenience, below we report
the main results. Let us take A = 1 for simplicity. Then,

i ~ 1—dn(n, k) 1/2 i ~ 1+dn(n, Xc)

)
1/2

by taking g = . ' and j
where dn2(. ) —1 = k2sn2( ), the variable (1.7) reads

where the parameter p is real. The auxiliary field P re-
lated to (2.23) turns out to be a constant. This can
be seen &om (1.6) with f = 1 and g = ( [see (2.23)].
The topological charge density vanishes. On the other
hand, the energy density E' carried by the spin compo-
nents (2.16) is

1

( z i 1 —dn(u, k)

(z') 1+dn(u, k)
(3.6)

Introducing (3.6) into (1.4) gives the radially symmetric
spin-Beld configuration

3

8 = —) S „=—pcoshp = —iEiW (W + W ),

Si = k sn(u, k) cos 8,
S2 = k sn(u, k) slxl 8~

Ss ——dn(u, k),
(3.7)

(2 27) while the auxiliary field p turns out to be

(t = 2arcsin[sn(u, k)] + (t 0, (3.7')
where R' obeys the special Painleve equation of the third
kind (2.14), S~ = &„', W~ = s&~. With the help of
(2.25), we obtain the asymptotic value

being a constant of integration. The topological
charge density is

2~E(p, (m)e ~p (2.28)
d

Q = ——dn(u, k),
T (LB

(3.8)
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which implies a vanishing total topological charge QT =
0. Now, we recall that the MIM is a constrained Hamil-
tonian system described by the Hamiltonian density 3

3

II = II +II, = —) (S,'.+a. 'S,'„)+. (a—'y.'+y„'),
'2=a

(3.17)

apart &om a constant of integration.
The Hamiltonian density (3.9) related to the configu-

ration (3.16) or (3.17) becomes

The auxiliary field P corresponding to (3.6) can be de-
rived from (1.6). It readsis

P = 4arctanr,

where

(s.9)
1 4

(1+ r2)2' (s.is)
3

JIM = ).-(~.*+ '.)
2=1

H, = (a'y-.'+ y„'),
where the terms on the right-hand side are the contribu-
tion of the magnetic part and of the field P, respectively.

The topological charge density is

= 2a2(qp„—Ay),

(3.9')

(3.10)

1 1 —r
Q = - (4*+ + 4 yy)

Therefore, the total topological charge

(s.19)

Py ——-2(qp —A ),

q and p are a pair of canonical variables de6ned by

+oo +ooj e~*" (3.20)

S2
q = —arctan —, p = S3,

1
(3.11)

A + a'A„„=0 (qp ) + a28y(qpy) (3.12)

The quantities (3.10) obey Eq. (l.lb) (P2 = 1). It is note-
worthy that for a2 = 1 (the case under consideration),
Eq. (3.12) takes the form

and A = A(x, y, t) is a difFerential function determined
by the compatibility condition P „=Py, namely, T = o.(1 —r )S + o (r —1)Sp, (3.2i)

where o. stands for the step function, S is given by (3.16),
and Sp = (0, 0, 1).

A con6guration having an opposite topological charge,
QT = —2, can also be found. This reads

vanishes. Anyway, starting from (3.16), we can construct
a static solution endowed with a &actional topological
charge QT' = +2, i.e.,

V'. v =0 (s.is)
T = o(r —1)S + o'(1 —r)Sp. (3.22)

where

v = VA —qV'p. (s.i4)

vi ———"———sin8dn(u, k ))2 r

Therefore, the MIM (for a2 = 1) can be regarded as an
incompressible "spin Quid, " in which the velocity is given
by (3.14). Formula (3.14) enables us to find the expres-
sion for the velocity of the configuration (3.7), (3.7'). In
doing so, from Eqs. (3.14), (3.10), and (3.11) we obtain

The static solutions (3.21) and (3.22) bear some analogies
with other Geld configurations provided by a &actional
topological charge (QT ——+ 2), such as, for instance, the
merons discovered in the two-dimensional O(3) nonlin-
ear cr model and in four-dimensional non-Abelian gauge
theory.

Now let us deal with Eq. (3.4). This can be considered
as an equation of the sinh-Gordon (sinh-Poisson) type
in the variable u = lnr. It is related to the description
of negative-temperature configurations in the theory of
vortex filaments in He. It affords the solution

1 2v2 = ——= ——cos 8 dn(u, k ),2 r (s.i5) p = 4arctanh[~ksn(v, k )], (3.23)

where va and v2 are the components of v along the x and
y axes, respectively.

We note that ~v~
= IIy [see (3.9')]. Then, the contri-

bution to the total energy density due to the field P can
be interpreted essentially as the kinetic energy density
of the configuration (3.7), (3.7'). The nonlinear excita-
tion (3.7) allows us to build up a configuration endowed
with a fractional topological charge. This can be done
for k = 1. In fact, in this case sn(u, k) m tanhu and
dn(u, k) m sechu. Thus, from (3.7) we have

r —12 r —1.2 2r
Sa = cos 8, S2 —— Sin 8) S3 ——r2+1 ' r2+1 ' r2+1

(s.i6)

where

e —A2

sk
u —up ) (s.24)

c and up are constants of integration, c & A, and A: is a
positive number such that

c+ 3A2 —+8A2(c+ A2)A:= ( 1.
C —A2

(s.25)

The condition c ) A ensures the reality of (3.23).
The spin-6eld components can be obtained with the

aid of (3.23) by replacing into (1.4) the stereographic
variable
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( = e'l + 'l" Jksn(v, k ) (3.26)

[see (1.7), where a(z) is given by (3.1) and a() ——(ao(e' '].
Putting for simplicity Hp = 0 these are

where a, b, Hp are real constants and u = lnr. The auxil-
iary field P turns out to be a constant and the topological
charge density Q is zero [see (3.28) and (3.32)], while for
the energy density we obtain

2~k sn(v, k2) cos(Ae)
1 —k sn2(v, k~)

2~k sn(v, k2) sin(A8)
1 —k sn2(v, k2)

(3.27a)

(3.27b)

H = 2a e " cosh[4(au + b)]. (3.34)

and

(t) = i(E4+D) (3.35a)

In analogy to the IM, using Eq. (2.8), we can introduce
special dynamical solutions for the MIM as well. In this
case the CHF furnishes

1+ksn2(v, k2)

1 —k sn2(v, k2)
' (3.27c)

On the other hand, by choosing g(z) = ga(z) Q(r) and

f(z') = ga'(z'), Eq. (1.6) yields

A2 (1 —~2@ ) ~2@2vP

(3.35b)

2A (1+k sn2(v, k2) i
r (1 —ksn2(v, k2))

(3.28) By means of the transformations @ = tan &2 (for rc2 = 1)
or @ = tanh&2 (for K2 = —1) and u = lnr, we get

and Ps = 0.
By integrating (3.28), we get

tt(r) = 2k/ [2II(k, v;ts )
—F(v;k )j+ const,

(3.29)
A2

2

(~2 = 1),

(3.36)

()t; = —1).

where F(v; k2) and II(k, v; k2) denote the elliptic integral
of the first and the third kinds, respectively, i.e.,

sn(v, A: ) dt
Il(v;k2) =

g(1 —t~) (1 —k2t2)
(3.30)

sn(v, A; ) dt
ll(k, v;k2) =

p (1 —kt2) g(1 —t2) (1 —k2t2)

(3.31)

Looking at (3.28) and (l.lb) the topological charge
density is given by

1 A d (1+ksn2(v, k2))
r r dr (1 —ksn (v, k2) ) ' (3.32)

Si —cos Hosinh[2(au + b)],

S2 ——sin Hosinh[2(au + b)],

Ss ——cosh[2(au + b)],

(3.33a)

(3.33b)

(3.33c)

which leads to a vanishing total topological charge. %'ith
the aid of Eqs. (3.27) and (3.9), we can easily evaluate
the energy of the spin-field configuration (3.28), (3.29).
We shall omit here its explicit expression.

Concerning the limit cases k = 0 and k = 1, only the
latter will be considered, because the former leads to a
complex value of p. The case k = 1, which corresponds
to A = 0, yields [see (3.27)]

(3.37)

These equations look as, respectively, a double sine-
Gordon and a double sinh-Gordon equation with vari-
able coeKcients. Indeed, they resemble formally those
obtained from (2.10) and (2.11) by setting A = 0. There-
fore, in this case both the IM and the MIM allow con-
figurations having the same characteristics. Finally, we
notice that for small p Eqs. (3.36) and (3.37) can be lin-
earized to give equations of the Bessel type.

IV. CONCLUSIONS

We have investigated two extended versions of the con-
tinuous Heisenberg model in 2+ 1 dimensions using the
Hirota technique. The first system is the Ishimori model,
while the second one has been introduced in Ref. 13 and
can be regarded as a modified version of the former.
The basic motivations for a comparative study of these
models are the following: (i) the IM allows a Lax pair
representation, but it seems to be not endowed with an
Hamiltoiiian structure; (ii) the MIM admits a Lax pair
only for special values of the auxiliary field (conversely,
it can be described by a Hamiltonian); (iii) the. models
can be formulated in an unified manner. To the aim
of clarifying the possible phenomenological aspect of the
systems, we have looked for a class of solutions start-
ing &om the same ansatz for the stereographic variable
(, involved in the Hirota representation. We have found
exact configurations for the two models under consider-
ation both in the compact and in the noncompact cases.
For the IM, these are static and time-dependent solu-
tions connected with certain particular forms of the third
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Painleve transcendent and a class of time-dependent so-
lutions whose asympotic behavior allows an energy den-
sity of the Yukawa type. For the MIM, we have obtained
a class of static solutions expressed in terms of elliptic
functions and time-dependent configurations related to a
particular form of the double sine-Gordon and the double
sinh-Gordon equations with variable coeKcients.

On the basis of these results, it turns out that the IM
and the MIM may describe quite diferent physical situa-
tions. This emerges in part from the comparison of Eqs.
(2.4), (2.5), (2.10), and (2.11) with Eqs. (3.3), (3.4),
(3.36), and (3.37). Ihnthermore, while the IM possesses
vortex configurations labeled by an integer topological
charge, ' the MIM has meronlike solutions which can
be interpreted as vortices characterized by a &actional
topological charge. We remark also that for the MIM,
which can be regarded as a constrained Hamiltonian sys-

I

tern, via (3.14) one can determine explicitly (for cr2 = 1)
the velocity of the allowed excitations.

Finally, we notice that recently the continuous 2D
Heisenberg model has been analyzed within the anyon
theory. It has been shown that static magnetic vor-
tices correspond to the self-dual Chem-Simons solitons
described by the Liouville equation. The related mag-
netic topological charge is associated with the electric
charge of anyons. This result is a challenge for scruti-
nizing, in this direction, both the Ishimori model and its
modified version.

APPENDIX

Using the operators 8 =
2 (8 —i8„) and 8,. =

2 (8 +
i8„), Eq. (1.5a) and the compatibility condition P „=

[see (1.6)] can be written, respectively as

(IfI' —~'Ig I') (&(ft'g —f 'gt) —2(1+~') (gf:. + f*g- —f:g" —f:.g. )

—(I —~') [g(f:.+ f:...) + f'(g- + g"")—2f:g- —2f:.g"])

f*g&i—[ff' —f'ft —~'(gg' —g'gt)] —2(1+ ~') [ff:. + f'f-. —f:f" —f.*.f.

~'(gg.'.. + g'g-. g.*g" —g—.*.g. )] —(1 —~') [f(f:.+ f:...) —2f:f. —2f,*.f.~ + f'(f..+ f.~.~ )

—& (gg +gg ~ ~ —2g g —2g'. g ~ +g g. +g'g ~ .)]) = o (AI)

2(~ + P )(A(ff,*,. + e gg', . —c.c.) —[(ff; + r. gg,')(ff;. + K'gg,'. ) —c.c.])

—(o. —P )([f(f;,+ f;...) + Ic g(g,*, + g,'...) —c.c.]b, + [(f'f, + K, g'g, ) + (f'f, ~ + r g'g, *) —c.c.]) = 0,

(A2)

with

& = (Ifl'+ ~'lgl').
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