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Temperature dependence of magnetic anisotropy and magnetostriction
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The first nonvanishing magnetic anisotropy coefficient is calculated as a function of temperature for any
spin quantum number and all temperatures below the Curie temperature for the case of face-centered
cubic symmetry within the random-phase approximation {RPA). A detailed and instructive comparison
between the mean-field and the RPA predictions is carried out. The RPA magnetization curves are also
given for spins S & —,. Most of the theoretical considerations are quite general as regards lattice type and

even decoupling scheme and can thus be applied straightforwardly to other cases of interest. The pro-
gress reported here has been attained with the help of a simpli6ed and improved parametric approach
and of a recent calculation of the average occupation number of quasiparticle excitations within the
RPA. In particular, this approach makes unnecessary. the solving of integral equations so that the pro-
posed procedure is especially simple and practically versatile in applications to any particular anisotrop-
ic material.

I. INTRODUCTION

Very recently, the Callen and Callen theory of magnet-
ic anisotropy and magnetostriction of single-ion origin'
was extended to the quantum case of finite spin number S
of the localized magnetic moments. Besides, the theory
was cast into the framework of the insightful theorem of
Callen and Shtrikman and was thus potentially related
not only to experiment via the eventual insertion at the
final, phenomenological stage of the experimental temper-
ature dependence of the magnetization in the system un-
der consideration, ' but also to the general class of
theories defined by Callen and Shtrikman. The expecta-
tion values (moments) of the type M„—= ((S'.)"), which
are needed in the fundamental theory of Callen and Cal-
len, can all be expressed within this framework as func-
tions of the first moment M, or, equivalently, of the re-
duced magnetization m =M, /S, the functional depen-
dence M„=M„(M, ) itself being model-independent for
this class which encompasses the most important renor-
malized quasi-independent collective-excitation theories
including the spin-wave theory, the random-phase ap-
proximation (RPA'), some improved decoupling schemes
in the Green's-function approach, ' and the mean-field
(MF) theory.

It was shown that the quantum (finite-S) curves
M„(Mi ) are only seemingly close to each other and to the
classical (infinite-S) curves this apparency has led until
recently ' to utilizing the classical curves M„(M, ) only.
The proof of this observation was given by generating the
MF temperature dependences of the first anisotropy
coefficient F2. for any reasonable finite S, F2(T) was
demonstrated to be substantially different, both qualita-
tively and quantitatively, from the predicted linear classi-
cal temperature dependence.

It is the purpose of this paper to extend the study of

the temperature dependence of anisotropy and magneto-
striction by calculating explicitly tc~(T) within the RPA
to the Green's-function approach to ferromagnetism for
any S and for all T~ T„ thus providing for an untrivial
theoretical prediction for the temperature dependence of
the fundamentally and technologically important anisot-
ropy characteristics. While most of the statements and
results are quite general as regards the lattice type and
even the decoupling:. scheme, in order to remain within
tolerable limits of space we discuss in full detail only the
face-centered-cubic (fcc) lattice case. In fact, the fcc case
is more difficult than the simple-cubic (sc) and the body-
centered (bcc) cases, so that we are tackling the trickiest
case in cubic geometry. Besides, the extension to lower-
symmetry lattices is quite straightforward. Furthermore,
the calculation of the temperature dependence of the an-
isotropy coeScients is not the only important achieve-
ment reported below. It necessitates, and has forced us,
to (i) calculate the required Bose-Einstein lattice sums for
the average number of quasiparticle excitations (mag-
nons) o (ii) simplify and extend the parametric approach
of Refs. 3 and 11; (iii) obtain, with the help of (ii), the
magnetization curves m (T) for any spin S within the
RPA over the entire temperature range below the Curie
temperature T, . The significance of the last item should
not be overlooked: to our knowledge, the only m ( T)
curves for all T ~ Tc within any of the established
Green's-functions techniques are those for the lowest spin
value of S=—,', although it is exactly this case where the
predictions of these theories have been recognized as un-
satisfactory at very low temperatures. ' ' It seems that
the reason for remaining low in spin" is the fact that the
case S=

—,
' has the exceptional feature of providing a sim-

ple dependence between the average occupation number
of quasiparticles N and the magnetization m, ' ' ' ' and
this has been decisive for the numerical computation of
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m(T) which involves the solution of an integral self-
consistent expression. ' To put it plain, the simplified
and extended parametric approach we introduce here
renders unnecessary the solving of integral equations,
thus making the proposed procedure especially simple,
attractive, and versatile in practical applications for any
particular anisotropic material.

II. THE THEORETICAL FRAMEWORK:
ITS "UNIVERSAL" PART

The developments we suggest will now be introduced
in the following natural way: One starts with the expres-
sions for the magnetic anisotropy coe+cients xz and ~4 as
functions of the moments Mz and M4 and goes ahead
step by step until, finally, the dependence on the tempera-
ture is calculated.

The discussion of the theoretical framework is quite
naturally divided into a "universal" part (which is de-
scribed in this section) and a "particular" part (to which
the next section is devoted). The universal part goes as
far as the determination of the anisotropy coefficients as
functions of magnetization: these functions are identical
for the whole class of theories which share the common
probability density described in Ref. 4. Correspondingly,
the curves ~2(m) and v~(m) are common to the whole
class and have already been given for finite S in Ref. 3.
The particular part, described in the next section, refers
to the temperature dependence of the first nonvanishing
anisotropy coeKcient ~4 in cubic materials (only the fcc
case will be discussed below).

In this part of the theoretical description, the individu-
ality of the member theories of the class shows up via the
specific dependence of magnetization on temperature and
it is this dependence which has to be inserted into the
universal results to bring the whole calculation to the
desired end.

Before plunging into the discussion, the following gen-
eral remarks have to be made: (i) the widely used anisot-
ropy constants K& and X2 are simple linear combinations
of the coe+cients ~i, ' ' (ii) in materials of cubic symme-
try, x2 does not contribute; (iii) the magnetostriction
coefficients are calculated within the prescriptions of the
well-established theory of the Callens' and are given by
linear combinations involving the averages of the mo-
ments M„.

A. The anisotroyy coefticients as functions
of the moments M„

The anisotropy coefficients KI are defined as the nor-
malized averages of the tensor operators Tq."

&T2&
K2—,K4= (1)

& T2 &~T=o
'

& T4 &~T=O

Starting with a general Hamiltonian

H =8,„+8,+8„
with the first two terms representing the isotropic ex-
change between the spins and the usual Zeeman term, re-

spectively, and the last term being the single-ion anisotro-
py term, one assumes that 8,r «A, „and treats the an-

isotropy as a small perturbation on the dominant ex-
change interaction. To first order of the thermodynamic
perturbation theory, one obtains for the free energy

r=r, +&8„& . (3)

With the assumption for the single-ion character of the
anisotropy and on using well-known relations between
the components of the vector spin operators, ' the prob-
lem is reduced to the calculation of the expectation
values &(S~')"& of the z component only. To avoid un-
necessary complications, we discuss only crystalline ma-
terials, or a particular sublattice, with spins sitting on
equivalent sites and, hence, we drop the site index j.

The first two anisotropy coefficients which are, with
the exception of hexagonal symmetry, the only relevant
ones are given by'

& T', & 3M, —S(S+1)
o

& S(2S 1)

K4-
&T4& T=o

35M4 —5(6S +6S—5)M2+ 3(S +2)(S + 1)S(S —1)
8S (S—

—,
' )(S —1)(S——', )

(4)

(S ~ 2), (5)

where the restrictions for the values of S re6ect the un-
derlying quantum-mechanical property of the combina-
tions of powers of spin operators in the definitions of the
K's. The restrictions do not imply that materials with
sufficiently low values of S cannot exhibit magnetic an-
isotropy: it is the single-ion contribution that vanishes,
while pair-interaction contributions might still be
present.

B. The moments M„as functions
of the generalized effective field x

One of the crucial points in the anisotropy theory of
Callen and Callen' is the elucidation of the fact that the
higher moments M„can all be expressed as functions of
the reduced magnetization m =M, /S, whereby the tem-
perature T and the magnetic field H enter indirectly via
m =m(T, H) The latter . dependence could then be taken
from experiment and inserted into the theoretically calcu-
lated M„'s with n ) 1. In many cases this procedure
avoids disastrous discrepancies with experiment which
occur when one persists to carry out the calculation self-
consistently in the mean-field approximation and to insert
the mean-field result for m = m ( T,H), which is known to
be unsatisfactory except in some particular cases. A re-
markable generalizing insight was provided by Callen and
Shtrikman who revealed that the source of the success of
the semiphenomenological approach stems from the fact
that the functional dependence M„=M„(Mi ) is model
independent in all renormalized quasi-independent
collective-excitation theories including the spin-wave
theory, the RPA, the improved interpolation decoupling
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schemes in the Green's-functions approach, and the MF
theory itself. It was shown that for all these theories the
relevant information can be presented most compactly by
considering the moments' generating function

Qz(a, x)= (exp(aS, ) )o

sinh[ —,
' (2S+ 1 )(a +x ) ]

sinh[ —,
' (a +x ) ]

sinh[ —,
' (2S+ 1 )x ]

sinh(x /2)

and the equation for the first moment M, (M,
==(S') =mS):

M, (x ) =SBs(xS),

where

(7)

Bs(y ) =a coth(a y) —P coth(P y)

2S+1 1

2S ' 2$

is the Brillouin function, while x is the generalized
effective field given by

1x =ln 1+— (9)

with the average occupation number of quasiparticles 4
defined as usual by

1 1C=—gN exp(ezlk~ T) 1—(10)

1

exp(x) —1

e is the energy spectrum of the excitations as a function
of the momenta p.

Bringing the self-consistent equation for M, into the
form (7) was an untrivial step based on the ingenious sub-
stitution

C. The anisotropy coefficients as functions of magnetization

For the inversion of the Brillouin function [Eqs. (13)
and (14)], an analytical method for S up to —,', ' ' and a
parametric solution '" for arbitrary spin has been invent-
ed. This parametric approach is as explicit and analytic
as possible, i.e., it gives explicit expressions at the inter-
mediate stages of the calculation. This notwithstanding,
at the end one still has to use a purely numerical pro-
cedure. So, from the point of view of getting the final re-
sult in a tabular or graphical form, the intermediate stage
is redundant. This point has already been commented
upon. The most straightforward and effective way is to
use as a parameter the generalized effective Jinxed x itself.
It is so much the better that this parameter has a clear
physical meaning, thus resembling the entropy difference
parametrization of Lekner in a parametrical solution
relevant to the critical point of a liquid. In fact, the
only knowledge about the generalized effective field x
which is required to carry out the computations, is that x
sweeps between 0 and infinity, the left limit being at-
tained for T~T& in zero external field, while the right
limit corresponds to zero temperature and arbitrary (in-
cluding zero) external field. Besides, the variation of x
with temperature is monotonic, provided the external
field is held fixed numerically and experimentally. It can,
of course, be absent. Summarizing all these considera-
tions, the simplified parametric method we now suggest
amounts to the following formal procedure: Let x sweep
between 0 and oo, compute M, (x) [i.e., m (x)] from Eq.
(7), compute ~4 from Eq. (5) by using Mz(x) and M4(x)
from Eq. (12). Finally, collect pairs of computed points,
corresponding to the same value of x, to plot or tabulate
l~~ as a function of magnetization. The curves x4(m) ob-
tained in this way for different values of S are universal
for the whole class of theories as defined in Ref. 4.

Thus the general part of the analysis is now complete.
At the same time, this section presented a concise ac-
count of the relevant notions and results which are pre-
liminary to the new developments with which we now go
ahead.

gn
M„(x)= n, (a,x)(. o. =Ba"

(12)

The Callen and Shtrikman program is formally accom-
plished by examining together M, (x) and M„(x), where-

by

x = B(m)—1

S
and, consequently,

(13)

(14)

[cf. Eq. (9)] and on knowledge of the algebraic connection
between M& and N for all values of S which has been
shown to be independent of the specific type of decou-
pling. ' ' Now then, any moment is calculated from
the generating function by simple differentiation:

III. THE THEORETICAL FRAMEWORK:
ITS PARTICULAR PART

The discussion is no longer valid for the whole class of
Ref. 1 when one attempts to determine the temperature
dependence of the anisotropy coefficients. One generic
possibility which was put forward already in the pioneer-
ing paper by Wolf is semiempirical and, in fact, sample
specific. Namely, one inserts the dependence m(T) as
measured in experiment on the same sample and deter-
mines x&(T). The other option is multifold and challeng-
ing: m ( T) has to be calculated within some theory from
among the class of collective-excitations theories.

A. The MF temperature dependence of anisotropy

In the context of the outlined parametric approach, it
is possible to determine quite easily the temperature
dependence of the required quantities whenever the "tem-
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t=t(x)= ~
3 m(x)

(16)

and the computation proceeds as before with x sweeping
between [0, ~ ). Now one may collect pairs of points cor-
responding to the same value of x to get m (t), Mz(t),
M4(t), K2(t) K4(t) or whatever other dependence
parametrized by x which might be interesting. This
straightforward procedure was tested and found compu-
tationally superior both close to T=O and to T=TC
when compared with the parametrization used in Refs. 3
and 11. This observation rejects back to those problems
whose treatment was suggested in the last two papers.
Note that as long as one works in the MF approximation
the parametric solution for the temperature dependence
of anisotropy has an explicit, analytic alternative for
values of S ~ —,

' in lattice symmetry lower than cubic.

perature part" in the generalized effective field x can be
separated (factorized out) from the rest, i.e., from the
magnetization and external field dependence. ' Not
unexpectedly, this separation is straightforward only for
the MF theory of ferromagnetism which also belongs to
the Callen and Shtrikman class. There,

3 m

S+1 t

where t =—T/T, and T, is the MF Curie temperature.
Hence,

cause of the renormalization of the quasiparticle energy
spectrum [Eqs. (17) and (27)]. The situation is much
more complicated than in the MF case where the self-
consistent equation is just a usual transcendental one.
Note that it is not only the temperature dependence of
anisotropy within the RPA which is entirely new: to our
knowledge, the temperature dependence of the magneti-
zation itself has not been reported for values of S& —,',
where the relation between N and m is nontrivial in con-
trast to the case with S=

—,'.
The second, even more important ingredient is the cal-

culation of the average occupation number of quasiparti-
cle excitations @ within the RPA. A method for the cal-
culation of 4 valid for any type of lattice was proposed
very recently. ' The method is based on the recognition
of the connection of the problem with lattice Green's
functions and generalized Watson integrals, on one hand,
and on a very simple differentiation technique. The re-
sults have been specified completely for the three cubic
cases. While a comparison between the different cubic
cases might be rewarding as regards the tracing down of
subtle geometric effects, we postpone this issue for fur-
ther investigation and concentrate on the fcc case. It is
the most difficult of the three and thus provides for a
kind of an upper bound for the amount of labor involved
in cubic symmetry at least.

Starting with the definition (10), one introduces the
above-mentioned parameter Q as

B. The RPA temperature dependence of anisotropy
for the fcc lattice

Q: e(k)/k~ T=2Q(1 —y„) (0 Q ~ ),
where the dispersion is determined by

(17)

The intriguing point in the problem with the tempera-
ture dependence of anisotropy and magnetostriction is
how to get the temperature dependence in a nontriUial
theory from among the discussed class of quasiparticle-
excitations theories. We now turn to this problem
within the more elaborate scheme of the Green's-
functions approach. ' ' Note that the geometry of the
surroundings of a given spin is only very roughly ac-
counted for in the MF approximation: in fact, it enters
the theory only as the number of nearest neighbors to
which the MF Curie temperature is proportional. This
is quite unlike the RPA treatment where the energy spec-
trum of the quasiparticles is strongly dependent on the
precise geometrical ordering [see Eqs. (17)—(19) below].

The scheme of reasoning will be to express all relevant
quantities as explicit functions of a parameter Q which
plays the same part in the calculation of the temperature
dependence of the anisotropy coefficients as that played
by the generalized effective field x in the calculation of
the dependence of anisotropy on magnetization (see previ-
ous subsection).

The proposed parametric approach is certainly one of
two new ingredients whose implementation makes possi-
ble the breakthrough beyond the MF temperature depen-
dence of magnetic anisotropy. It will be seen in the fol-
lowing that this method makes it possible to circumvent
solving the self-consistent Eq. (7) for the magnetization.
In the RPA theory, this equation involves the triple sum
@ from Eq. (20) which depends on the magnetization be-

and

yg=&(k)/&(0),

J(k)= g J(R)exp(ik. R) (19)

is the Fourier transform of the nearest-neighbor fer-
romagnetic exchange coupling between moments sitting
on sites f and g (R„„=f—g). The sum to be calculated
is now cast as

1 1
@(Q)=-

N z exp[2Q(1 —yz)] —1
(20)

gk
@(Q)~t„=@0+—g (

—1)"Ak „(cothg ),
k=1 dgk

where

1@0=
exp(2Q) —1

(21)

(22)

and the coefficients Ak are defined via the triple tri-
gonometric integrals

and the summation is over all reciprocal-lattice vectors k
in the first Brillouin zone of the crystal with X sites. As
the calculation has already been presented in sufficient de-
tail, ' here we give only the relevant final results. One
finds that
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1 1 'lr

~k(«c)=
3 „f f f «,«,«3

X ( cosx i cosx 2 +cosx 2 cosx 3

+COSX 3 COSX i )
k (23)

k

Ak —g Ck Cq
q=0

(24)

with the c„'s calculated from the three-position recursion
relation

c„+,= [(4n+l)c„+(2n —1)c„,] .
6(n +1) (25)

The required sum @(Q) is thus completely specified by
the convergent expansion (21) supplemented with Eqs.
(24) and (25) for the Ak's. Remarkably, C&o(Q) corre-
sponds precisely to the MF approximation and this is so
much the more evident if one considers the insightful
analogy between the MF theory of ferromagnetism and
the Einstein (degenerate-spectrum) phonon theory. Fur-
thermore, the same argument allows to interpret physi-
cally the parameter Q (0 ~ Q ~ ~ ). Namely, on compar-
ing the expression

1

exp(x) —1
(26)

which follows from Eq. (9) with 4o from Eq. (22), one im-
mediately identifies Q =x/2. Therefore, Q is simply pro-
portional to the generalized effective field x in the MF ap-
proximation which emerges as the zeroth term in the sys-
tematic expansion (21) of the average occupation number
of magnons. This proportionality does not hold beyond
the MF level (see Fig. 1).

Note, however, that the discussion up to this stage is
still fairly general. In fact, it is still valid for all but the
trivial (MF) member of the class under consideration.
The reason is that we introduced, intentionally, the flow-
ing parameter Q quite formally by Eq. (17). It is also ob-

A special procedure was developed for the calculation of
the A k 's. ' They can be found from

3P (1)
2S(S+1)

&s'& 3P(1) m

2(S+1) t
(27)

where m and t are, as above, the reduced magnetization
and temperature and P(1)=1.34466 is the Watson in-
tegral for the fcc lattice. The appearance of the pecu-
liar numerical factor of P (1) is due to the fact that in the
RPA the critical temperature coincides with that for the
spherical model of ferromagnetism' ' and is P(1) times
lower than the respective MF critical temperature. Solv-
ing Eq. (27) for t, one gets

3P(1) m (Q)
2(S+1) Q

(28)

The last equation completes the scheme for the im-
plementation of the parametric method described in the
previous subsection, the computations now being run
with the flowing parameter Q.

To summarize the salient features of the procedure, we
forget for a while how the things were effected and em-
phasize what are the relevant results. Thus, sticking to
the general notion of the functional connection, what we
calculated explicitly was

4=@(g),
M„=M„[x{N(Q) }]=M„(Q),

&l =&I [M. I x{~'(Q»]]=&I(g»

t=t(m(Q), Q)=t(g) .

(29)

(30)

(31)

(32)

The temperature dependences @(t), m(t), M„(t), a&(t)
within the RPA and without an ext ]-;.al magnetic field
are now simply generated in a graphical or tabular form
by collecting pairs of points corresponding to the same
value of the parametrizing quantity Q. Note, once again,
that the specific decoupling scheme enters the last rela-
tion only. Besides, now that everything which is physi-
cally meaningful in the problem has been parametrized,
one can generate any other mutual dependence as, e.g. ,
@(m) or vice versa, @(t),etc.

vious that Q will depend on the particular renormaliza-
tion of the quasiparticle excitation spectrum and it is, of
course, sensitive to the adopted decoupling scheme. We
proceed with the RPA theory, postponing for a further
investigation the treatment within some more involved
decoupling scheme.

Comparing our formal definition of Q [Eq. (17)] with
the renormalized energy spectrum in the RPA approxi-
mation, ' ' we find

IV. RESULTS AND DISCUSSION

0
0

FICx. 1. Connection between the generalized effective field x
and the flowing parameter Q. The dependence is linear only in
the MF regime near the origin (small Q, T~ Tc), where x =2Q
(see text).

It should have become evident from the above that not
only is the problem with the temperature dependence of
the anisotropy coefficients within the RPA and in a fcc
lattice solved, but also other important and unreported
information can be deduced without much effort. Here
we report only the most significant results leaving aside
for the time being other possible applications of the
method. It should also be made clear that one must
specify the order in k in Eq. (21), up to which the summa-
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tion for @(Q) has been carried out. Below, we report re-
sults up to and including k =6. There is no problem in
carrying out the numerical computations to any k, be-
cause all quantities are easily calculable following work
by Millev and Fahnle' [the only problem which
remained unexplained so far is whether there exists an ex-
pression for the derivatives of coth(x) which would allow
a straightforward algorithmization; such an expression is
provided, for instance, in Ref. 25]. The sum for 4(Q) is
convergent fast enough except at very low temperatures
(large Q). Working up to k =6 gives for sufficiently low
temperatures (Q =5) average number of magnons of the
order of 10, which is the order of magnitude found in
the asymptotically exact theory (to leading order in
t =TiTc, both the RPA and Dyson's theory give the
famous Bloch T ~ law. ) We thus conclude that for any
practical purposes the order in k we considered provides
for sufficient accuracy at all temperatures below T, .

First, in Fig. 2 we give the temperature dependence, in
reduced units, of the magnetization m ( T) in the RPA for
all S between —,

' and —,'. Any other S can be just as easily
calculated. We believe that already these results are not
known for S)—,'. One is, of course, interested to compare
the RPA with the MF prediction for m ( T). More than
this can be seen in Fig. 3, where m (T) is given as calcu-
lated to different orders in k; only the even k's up to 6 for
the representative value of S= 1 have been displayed to
make the plots discernible. The extreme plots (k =6 and
k =0, resp. ) correspond to the RPA to this high order in
k and to the MF result. While it can be argued that the
difference is not very large in reduced units, the RPA
magnetization is systematically smaller. Since the mag-
netization curves for diferent values of spin in both the
MF and RPA are monotonically arranged (the smaller
the spin, the higher the curve), it might be remarked that
working in the cruder (MF) approximation for a given
spin is effectively equivalent to working in the finer
(RPA) theory with some smaller spin, if such is allowed.

The central group of results, however, concerns the
temperature dependence of the anisotropy coefficient K4

1.0

1.0

0.8-

0.2-

0
0.2 0.4 0.6 0.8 1.0

T/7,

FIG. 3. The efFect of orders in k on the temperature depen-
dence of magnetization: curves from below correspond to k =6,
4, 2, and 0, resp. The highest curve is the MF prediction.

which is the erst nonvanishing coefficient in cubic (here:
fcc) symmetry. We give first the MF anisotropy curves
for S=2, —'„3, —', (Fig. 4), which are results in themselves.
Next, we give the temperature dependence of anisotropy
in the RPA for the same values of spin (Fig. 5). To com-
pare more clearly the predictions of both approximations,
in Fig. 6 we present the anisotropy coefficient ~4 for a
given value of S, S=—', . Some features of this comparison
are common for all values of spin. Firstly, the MF result
overestimates the anisotropy, and especially so at low
temperatures. There, the RPA result is practically exact
and rejects the correct account for the spin waves at low
temperatures. Secondly, both theories give asymptotical-
ly identical results for T~Tc which is not unexpected
since the underlying asymptotic temperature depen-
dences of the magnetization as T~Tc are identical and
exhibit the MF critical exponent P= —,'. Finally, the
higher the spin, the smaller the difference between both
approximations.

It is certainly interesting that, within the very general
theory we exploit, the temperature dependence of anisot-

0.8—
1.0

0.6-
0.8—

0.6—

0.2—

0
0 0.2 0.4 0.6 0.8 1.0

7/7,

FIG. 2. Temperature dependence of the magnetization
m (T) in the RPA. The curves from above correspond to spins

z
—2. The curves for S &

~
are reported for the first time. Note

that our method does not evoke solution of integral expressions.

0.2—

'0 0.2 0.6 0.8 1.0

Tl Tc

FIG. 4. MF temperature dependence of the first nonvanish-
ing anisotropy coeKcient sc4(T) curves from above correspond
to S=2, 2, 3, and 2, resp.
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1.0 1.0

0.8— 0.8—

0.6— 0.6—

0.4—

0.2— 0.2—

0
0 0.2 0.4 0.6 0.8 1.0

Tt Tc

0—
0 0.2 0.6 0.8 1.0

Tt Tc

FIG. 5. RPA prediction for ~4(T). The curves are arranged
as in Fig. 4. Note the bell shape and the fact that anisotropy
curves even for neighboring spin values lie quite distinctly apart
despite the proximity of the corresponding magnetization
curves m ( T) (see Fig. 2).

ropy in cubic materials has the peculiar bell shape, the
bells being pronouncedly "slimmer" in the RPA as ex-
plained above. More precisely, in contrast to the first
nontrivial anisotropy coefficient ~z in noncubic crystalline
materials whose temperature dependence has been shown
to be convex upwards for all T below Tc, in cubic ma-
terials the respective curves for the first nontrivial anisot-
ropy coef5cient ~4 do have an inflexion point approxi-
mately half way down from the Curie temperature.
Strictly speaking, the last statement concerning cubic
symmetry is proved here for all types of cubic lattice
within the MF theory which is insensitive to fine
structural details (cf. the first paragraph of Sec. III B and
Fig. 4) and for the fcc lattice in the RPA. It seems
reasonable to expect that the bell-shape feature persists in
sc and bcc lattices as well.

Because the anisotropy coefficient ~4 enters the leading
anisotropy constant EC& in cubic materials, an inAexion
point in tt4(T) is consistent with an inflexion point in
K i ( T). It must be noted that qualitatively similar depen-

FIG. 6. Comparison of ~4(T) within MF and RPA: S=—'.
MF overestimates the anisotropy, and especially so at low tern-
peratures. Both approximations converge for T~ T&.

dences for the anisotropy constants have recently been
measured in novel hard magnetic materials like
8.2Fe,7N and Sm2Fe, 7C3 &, though in symmetry lower
than cubic. The underlying reason for this similari-
ty might be quite general and, possibly, independent of
the type (soft or hard) of the magnetic material. In the
above materials the first nonvanishing anisotropy
coefficients entering the anisotropy constants are tt2(T)
and tt4(T). Although tt2(T) is convex upwards for all T
(see above), a bell shape of K, ( T) may arise from the tem-
perature dependence of tt~(T). This is presently being in-
vestigated within the framework of the mean-field ap-
proach.
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