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Ising ferromagnet on a fractal family: Thermodynamical functions and scaling laws
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The Ising model with external magnetic field on infinitely ramified fractal lattices is studied. We
derive exact expressions for the specific heat, spontaneous magnetization, and susceptibility. The critical
exponents a, P, and y corresponding to these respective thermal functions (at zero field) as well as the
correlation length critical exponent v are obtained. The hyperscaling law extended to fractals and the
Rushbrooke scaling law are verified for these fractals.

I. INTRODUCTION

After the work of Gefen, Mandelbrot, and Aharony'
about criticality of the Ising model on several fractal lat-
tices, there has been a lot of interest in the study of spin
models on fractals and, in particular, on hierarchical lat-
tices (HL) (see, for example, Ref. 2, and references
therein}. Many classical spin models, such as the Ising
and Potts models, defined on HL constitute a class of ex-
actly solvable models which can provide simple examples
of interesting behaviors, like continuously varying critical
exponents, phase transitions without true long-range or-
der, etc. , whose study in exactly solvable models on Bra-
vais lattices has usually demanded quite a lot of effort and
mathematical skill. Furthermore, a subclass of these
models on HL can be considered approximations for the
same models on Bravais lattices (see, e.g. , Ref. 3).

The exactly solvable models with finite and short-range
interactions defined on fractals which exhibit phase tran-
sitions at non-null temperature occur solely in bond HL's,
i.e., two-rooted HL's, except the one introduced in Ref. 2,
which refers to a three-rooted HL. In this cited paper
there were proposed families of deterministic fractals,
namely the m-sheet Sierpinski gaskets with side b [noted
(mSG)i, ], which have different fractal dimensions df '

and on which the q-state Potts model can be exactly
solved. In particular, concerning the Ising ferromagnet
on the (mSG)2, they obtained the exact critical tempera-
ture T, (m) showing that it becomes zero only in the
finitely ramified case, i.e., in the standard Sierpinski
gasket (m =1}.However, the calculation of other physi-
cal quantities in this family of systems, such as the
specific heat, magnetization, and susceptibility has not, in
our knowledge, been done. Herein we derive exact ex-
pressions for these thermodynamical functions and we
calculate their corresponding critical exponents a, P, and

y, as well as the correlation-length critical exponent v.
The evaluation of these critical exponents allows us to
test the hyperscaling law extended to fractals (i.e.,
df v =2 —a ) and the Rushbrooke scaling law
(a+2P+ y =2). The former one has been numerically
verified in a number of HL (Refs. 4—6) and has been
proved analytically for the three-state antiferromagnetic
Potts model on a diamond-type HL family. Concerning

the Rushbrooke scaling law, there is much less evidence
in favor of its validity on fractal systems. It has been test-
ed in the Potts ferromagnet on the Wheatstone-bridge
HL using approximate methods in the derivation of P
and y; a slight violation of it for all values of the number
of states q has been found, except for the Ising case
(q =2). As far as we know, there is neither proof nor any
reliable verification (in the sense of deriving exponents
from exact expressions, at least, for their corresponding
thermal functions) of the mentioned scaling law for spin
models on fractals —a fact which could shed some light
on the question of universality (see, for example, Refs. 9
and 10) in these systems. Herein, we verify this scaling
law, as well as the hyperscaling law, for the Ising fer-
romagnet on the (mSG)z fractal family. Furthermore, we
calculate in an exact way the order parameter associated
with three-spin interactions (on alternate triangles only)
and its corresponding susceptibility, and we verify that
their critical exponents are equal to P and y, respectively.

The outline of the paper is as follows. In Sec. II we
define the Ising model on the (mSG)2 lattice and derive
recursive equations for the renormalization-group (RG)
variables. In Sec. III we obtain the exact expressions for
the following thermodynamical functions: specific heat,
magnetization, susceptibility, the three-spin interaction
order parameter, and its susceptibility. In Sec. IV we cal-
culate their respective critical exponents and test the va-
lidity of the hyperscaling law and of the Rushbrooke scal-
ing law. Finally the conclusions are given in Sec. V.

II. MODEL, RG EQUATIONS,
AND CRITICAL FRONTIER

The (mSG)b (Ref. 2} is a generalization of the two-
dimensional case of the SG family of Hilfer and Blu-
men. "Herein we will be interested only in the case b =2
of the (mSG)b, which we shall refer to as simply mSG.
This is constructed as follows for a fixed m: one starts
with a triangle (level n =0) which is replaced by a basic
cell (or generator) constituted of m triangular sheets con-
nected only at the external vertices A, B, and C, each of
which contains three smaller upward oriented triangles.
The n level is obtained from the previous one by replac-
ing each upward oriented triangle by the basic cell. This
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recursive procedure is illustrated in Fig. 1 for m =2.
In the n —+ ~ limit one obtains a lattice with fractal di-

mension

( ) 1n(3m)
ln2

which has, unlike the finitely ramified SG(m =1), an
infinite order of ramification. Notice that different
values of m correspond to different fractals and we shall
suppose, hereafter, that all the following calculations are
done for a fixed m.

At each vertex of the mSG let us associate an Ising
spin variable, o; =+1, and consider the following model
described by the dimensionless Hamiltonian:

where P= 1lkii T, Kz =—PJz, K3 =—PJ3, and h =13H; J—z is
the coupling constant between nearest-neighbor pairs, J3
is the three-body coupling among the spins at the vertices
of an upward oriented triangle, and H is the external
magnetic field. The three above respective sums are over
all the first neighbors (ij ), over the upward triangles E,
and over all the sites i of the mSG lattice; z; stands for
the coordination number of the site i.

This Hainiltonian is closed (no more couplings among
the spins are generated) and form-invariant under our
renormalization-group transformations. The three-body
term is naturally generated by the one-body term after

one renormalization step. The presence of the coordina-
tion number z,. in the field term asserts the Hamiltonian
form invariance. ' ' Notice also that the Hamiltonian
(2} is invariant under spin reversal and change of sign of
the odd terms, namely,

%(Io; j,Kz, K3,h) =&(I—o; j,K2, —K3, —h ) . (3)

W,„+,=(W,„+3W,„W,„+3W,„Wd„+Wd„)

W,„+i=(W,„W,„+W,„+2W,„W,„Wd„+2W,„Wd„(5)
+ Wb„W,„+Wb„Wd„)

The procedure adopted herein for deriving the free en-
ergy follows along the lines of the one used by Bleher and
Zalys' for the Ising model on diamond-type hierarchical
lattices. We start, thus, defining the constrained partition
functions at the n level by

W„(sz, ski sc)=Tr'exp I
—P~„j (sz, s~, sc =+1),

where Tr' stands for the trace over all configurations of
the internal spins with the three rooted ones, o.~, o~,
and o c (see Fig. 1), fixed at the states s„, ski, and sc, re-
spectively. Hereafter we will use the abbreviated nota-
tion W,„=W„(1,1, 1), Wb„= W„(—1, —1, —1), W,„= W„(1,1, —1},and Wd„= W„(—1, —1, 1).

The recursive procedure of the mSG construction leads
to recurrent equations relating the restricted partition
functions at different levels, namely

A

which reduce, for m =1, to Eqs. (11) of Liu. ' Since our
RG preserves the Hamiltonian syminetry (3), the equa-
tions for 8'b„+, and 8'd„+& can be obtained from the
above ones by spin reversal, i.e., interchanging a and b, as
well as c and d. The initial conditions for these equations
corresponding to the Boltzmann weights of the triangle
(n =0 in Fig. 1) are given by

3K2 +K3 +6h K2 K'3 +2h
o e ~,o e

while those for 8'bo and 8'do can be obtained through the
invariance of the Hamiltonian [Eq. (3)].

Introducing the relative variables

A Pn=
1/2

~dn ~bn

' 1/2
W~n 8dn

~an ~bn

1/2
bn

8,„

one can derive, from (5), recurrent equations for p„, y„,
and t„(whose expressions we shall omit since they are
quite long), which define our RG transformation
Q..Ip„,y„,t„j~ Ip„+i,y„+ i, t„+i j. The corresponding
initial conditions for our RG variables are

FIG. 1. The three first steps of construction of the two-sheet
mSG fractal lattice. For better visualization, we have represent-
ed the second sheet of the n =2 level connected to the external
sites A, B, and C by just a single dashed curve.

—6h —K3 —4K2

Successive iterations of % subjected to the above initial
conditions lead to critical frontiers and phase attractors
in the (p,y, t) space. We shall restrict ourselves to the
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case of positive E2, E3, and h, which implies that each of
the RG variables is confined to the interval [0,1]. This re-
striction is due to the fact that there is no preservation of
the antiferromagnetic ground state in our RG when Ez is
negative. The axes ( l,y, 1) and (1,1,t), as well as the line
(p,p ~, 1), are invariant under the RG transformation A.

In the m =1 case the line (p,p, 1), corresponding to
the noninteracting spins subjected to a magnetic field, re-
sults, as an artifact of the decimation, in a line of fixed
points. ' For the m ) 1 case, all the points in this line,
with exception of the fixed point (1, 1, 1), are successively
renormalized towards the (0, 0, 1) attractor.

In the (1, l, t) axis, which corresponds to the usual Is-
ing model with J3 =K=0, our RG transformation
reduces to

t„(1+3t„)
tn+ j

1 —tn+4tn

which agrees with Eq. (22) of Ref. 2 and recovers, for
m =1, Eq. (1) of Ref. 1. Equation (9) (with m ) 1) has
three fixed points in the 0 ~ t ~ 1 interval, namely the two
attractors t =0 and f =1, corresponding to the ferromag-
netic (T=0) and paramagnetic ( T= 00 ) phases, respec-
tively, and the unstable critical point t,' ' separating these
two phases. Typical values of t,' ' are t,'"=0,
t,' '=0 309. . ., t,' '=0.433. . . , and t,' '=0.513. . . . In
Fig. 2 we show the plot of kz T, /J2 as a function of the
fractal dimension df (upper curve). The plot starts with
infinite derivative at df =ln(3)/2 (m =1) and behaves
asymptotically as 2 for df ~DO, similar to the case of
the Potts ferromagnet on d-dimensional Migdal-Kadanoff
HL types' (where df =d). This exponential behavior is
in contrast to the behavior k~T, /Jz-2d found for the
Ising ferromagnet on large d-dimensional hypercubical
lattices. '

In the (l,y, 1) axis, which corresponds to the Ising

model with solely three-spin interactions on upward tri-
angles (Jz =H =0), the RG transformation becomes

yn+t
Q(3+4)'m/2

1+3yn
(10)

which reduces, for m =1, to Eq. (2.35) of Ref. 16. In the
case m ) 1, Eq. (10) presents three fixed points: the two
attractors y =0 (at T=O) and y =1 (at T= oo ) corre-
sponding, respectively, to the ordered and the paramag-
netic phases, and the unstable one y,' ' separating these
two basins of attraction. Typical values of y,' ' are
y~~~=Q y~2~=0. 346. . ., y~ ~=0.485. . ., and y~ ~

=0.557. . . , and ki) T, /J3 as function of df is shown in
Fig. 2 (lower curve) exhibiting an asymptotic behavior as

df /2
2 for large df.

We have verified that, for any value of m ) 1, apart
from the axis ( l,y, 1) and (1, l, t), all points in the con-
sidered cube are successively renormalized into the (0,0, 1)
attractor corresponding to the paramagnetic phase (with
h~ao). Therefore, the magnetic field as well as the
three-spin interactions destroy the para-ferromagnetic
transition of the usual Ising model on the mSG (m ) 1).

III. THERMODYNAMICAI. FUNCTIONS

Z„=W,„+Wb„+ 3 W,„+3Wd„= W,„g„,

In this section we calculate the exact expressions for
the specific heat, magnetization, susceptibility, the three-
spin interaction order parameter, and its corresponding
susceptibility, of the Ising model on the mSG. For this,
we shall first derive the free energy in terms of the set of
RG variables (p,y, t)

The partition function of the model at the n level is
given by

20
where

2t
g =1+y +3 +3pntn .

Pn
(12)

Qn the other hand, W,„satisfies [see Eq. (5)j the follow-
ing recursive relation:

~3m m
~~ an ~~ an —ion —1

where

yntnU„=1+3
Pn

4t3
+3 +(p„t„)

Pn

(13)

(14)

Successive iterations of Eq. (13) combined with Eq. (I])
leads to

1
] 3 2

(m)

n —1

Z W(3m)" rT Um(3m)"
n ao gn Jg Ui

i=0
(15)

FIG. 2. The critical temperature T, as a function of the frac-
tal dimension df™.In the upper (lower) curve we show the crit-
ical points of the Ising model E3 =h =0 (K2 =h =0).

Taking into account that the function gn is bounded in
the case of finite h (p„+0), the dimensionless free energy
per site f,„at the n level (n » 1) is given by
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n n

(1—3m)
3ln

n —1

3IC2+6h +E3+—p (3m) 'lnU,
3 ' 0

where the number of sites N,„at the n level is

N,„=3m +3 .
(3m)"—1

3m 1

(16)

(17)

exponents (their explicit values will be given in the next
section) similar to the results found for the usual Ising
model on a variety of bond hierarchical lattices. ' ' ' The
m =2 case has a cusplike behavior with a finite peak at
x,' '. The other cases with m &2 present rounded peaks
localized below the critical points x,' ', similar to the
behavior found in some systems with infinitely degenerate
ground states (see Ref. 7 and references therein).

Due to the introduction of the coordination number z,
in the field term of the Hamiltonian we shall define the
magnetization M at the n level by

The dimensionless internal energy Un of the usual Ising
model (H =J3 =0) at the n level (n » 1) can be obtained
by

Mn =
( ) N,„

Bf,„
h=K, =O ' (19)

J,N.. h=K =0
3

where the sums are over all the sites of the mSG at the n
level, and where we introduced N,„—=g,.z,'"' in order to
normalize the magnetization M„at T=O.

From Eqs. (16) and (19) we obtain that

h =K3 =0

(1—3m) 4
3 — tp g—(3m)

3m 3

6t,. + 12t,2

1+3t. +4t.

M„=1+D„({t, ], [a,. ], [b, j), .

with

(20)

Xgr, t,. [2(l+t, )a; b,]-
(3m) '

~

1+3t +4t,
(21)

where the symbol ( ) stands for the thermal average on
the mSG at the n level, and where r = (Bt +, /Bt—)~, .

J
The dimensionless specific heat per site C„at the n level
can be calculated through derivation of U„, namely
C„=BU„/B(1/X2). In Fig. 3 we show the specific heats
for the cases m = 1 (the SG), 2, 3, and 4. Note that in the
horizontal axis we used, for ease of representation, the—

4K2 /m
variable x =—e ' . None of them diverges at the criti-
cal temperature indicating, thus, negative values for the a

1.4

where we have defined a; =—(By; /Bh )
~ g —x. —p and

3

b;—:(Bp;/Bh)~i, x p. In this calculation we have taken3—
into account that, for any value j,

at =0,
Bh a=a, =p (22)

which one can derive as a consequence of the Hamiltoni-
an symmetry [Eq. (3)].

The functions a; and b, introduced in (21) obey the fol-
lowing recurrent equations:

3(1 t,)—.

2 ai
1 —t, +4t,2

0.7

6t;
+m b;,

(1 t, +4t,. )(z1+ t, )—.

4(1+ t, —t,
' —t,')

2 ai
(1 t, +4t,')(1—+3t, )

1 —2t,. +13t, +4t;
(1 t, +4t,~)(1+3t; )—.

(23)

0.0
0 (2) (3) (4)

FICx. 3. The dimensionless specific heats per site as functions—4', /m
of the variable x =e for the cases m = 1„2,3, and 4 at the
n =30 level. The tick marks labeled (2), (3), and (4) correspond
to the critical temperatures t,' ', t,' ', and t,' ', respectively.

with the initial conditions ao= —6 and ho= —8. The
plots of magnetization for the cases m =2, 3, and 4 are
shown in Fig. 4 by solid lines.

As we have seen in the previous section, J3 plays the
same role as 0 in what concerns the para-ferromagnetic
transition of the usual Ising model, i.e., both destroy this
transition. We can, thus, introduce the following order
parameter M~ conjugated to the three-spin coupling J3.
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with M at the n level being given bn y

g&o;o o„&

M~. (25)

where the sum is over all the X u w

gles at th 1a e n evel mSG. X was
e ~„upward-oriented trian-

1'normahze M~ at T=0.
was introduced in order to

M~„can be calculated from f,„[Eq.(16)] through

Bf,„
N~„M3 a=a =o

3

(26)

and we have obtained a functional func ional form similar to that of J2x. =— N,„Bf,„
2N,„Bh h =&,=o (2g)

three-spin interaction J3 to the two-s in
'

3 0 e two-spin interaction Ising
e rea s t e same symmetry [i.e., the Z(2) one .

similar fact occurred in th I
ree-spin interactions th e

in e sing model with s
'
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p

a ices. ese sublatti
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The zero-field susceptibility g =—(BM /8n n H) h=K =Oat
the n level is linked to f,„ through

3

(27)M~„=1+6D„([t, j, [ 3, j, [B;j )

where A—:( 8y; &~&3 ) lh =K =0

3 h —+ —
Q satisfy the same recurr tecurrent equations as
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= —1 and B0=0).
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IV. CRITICAL EXPONENTS AND SCALING LAWS
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'

n engt, specific heat
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' '
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the hyperscaling as well as of the Rushbrooke scaling
law.

Linearization of (9) in the neighborhood of the critical
point t,' ' leads to

( rn) ln2
lnp( )

C

(29)

where r,' '= (Bt„+—, /Bt„)i, ~ I, which gives the exact re-

sults for the correlation length critical exponents
v' '=0.928. . . , v' '=0.850. . ., v' '=0.840. . . , etc. (see
Fig. 6 for v as function of the fractal dimension d& '}.

The plots shown in Figs. (3), (4), and (5) of the thermal
quantities were calculated for the mSG with n set to 30,
which correspond to approximately N,'„'=(3m) spins
(N,'„"=10', N,'„'=10 ). The analysis of the conver-
gence of these functions with increasing n shows that this
size provides numerical values for C„,M„, M~„, g„, and
g~„(with exception for y„and y~„ in the neighborhood
of t,' '},which do not vary up to the 16th decimal place if
we increase n. We shall, therefore, consider that C3Q,
M3Q M+3Q +3Q and p+3Q are very good approximations
for their corresponding quantities in the thermodynami-
cal limit.

Using the exact expression of C„derived from (18) we
obtained from a log-log plot of C3o(t) —C30(t,' ') versus
( t —t,' ') the following values for the specific-heat
exponents a' ': a' '= —0.401, a' '= —0.696, a' '

= —1.012, etc. . . (see the plot of a versus d&™in Fig. 6).
The log-log plots of M30(t) versus (r —r,' ') led to the

following values for the magnetization exponents
P ': P' '=0.247, P '=0.441, P' '=0.582, etc. . . (see
its variation with d&

' in Fig 6). U. sing a similar pro-
cedure we verified that the function M~„vanishes in the

same critical temperature t™with the same exponent
P i calculated for the magnetizations M„.

In the case of the critical exponents y' ' we shall cal-
culate them through finite size scaling (FSS) (see, for ex-
ample, Ref. 20), since the susceptibilities y' ' vary in a
very steep way with small deviations of t,' ' generating,
thus, large numerical errors in the determination of y'
through a log-log plot of g' ' versus (t —t,™).For a
given m and increasing values of n, we observe that the
maximum of g'„' increases with n tending to diverge in
the thermodynamical limit. This peak occurs at the pseu-
docritical temperature t', „' which converges, as n in-
creases, to the critical temperature t,' ' as

it,', „' t,' '—i-I.„' ' (n»1), (30)

where I.„ is the linear size of the n-level mSG (L„=2")
and 0' '=0.928, g' '=0. 850, 9' '=0.839, etc. . . . These
values of 0' ' coincide with the exact ones of the critical
exponents v' ' with excellent agreement (with relative er-
rors of order O. l%%uo), which corroborate the fact that the
equality 8=v seems to be usually true within the FSS
theory.

The scaling for the susceptibility at finite levels (n » 1)
of the mSCx is given, according to the FSS theory, by

(n»1), (31)

which led to the upper curve shown in Fig. 6, in particu-
lar, y' '=1.904, y' '=1.814, y' '=1.847, etc. . . . The
values of y' ' obtained directly from a log-log plot of +3p
versus (t —t,' ') agree with these one up to the second de-
cimal place. Applying a similar procedure for the suscep-
tibility y~„we obtained the same set of y' ' exponents
corresponding to the susceptibilities y„.

The hyperscaling extended to fractal systems, namely

tv= 2 cx

although has not been proved in general, has been exactly
verified in a number of systems defined on several frac-
tals. Here, using the exact v exponent derived from
Eq. (29), the mSG fractal dimension given by (1), and the
above approximate n™exponents, we obtained that
d' 'v' '+a' '=1.998, 2.001 (for m =3), 1.999 (for m =4),
etc. . . .

Concerning the test of the Rushbrooke scaling law, we
obtained that a' '+2p' '+y' '=1.997, 2.000, and 1.999
for m =2, 3, and 4, respectively. This law has also been
checked for the Ising ferromagnet on the Wheatstone-
bridge hierarchical lattice using approximate methods in
the determination of the thermal quantities and their
respective critical exponents.

—2
2.5 4.0

I

4.5

FICz. 6. The critical exponents v, a, and y of the zero-field Is-
ing model on the mSG as functions of the fractal dimension
d(m)f e

V. CONCLUSIONS

We have presented an exactly solvable model on a fam-
ily of deterministic fractals, the ferromagnetic Ising mod-
el with external field and three-spin interactions on the
m-sheet Sierpinski gasket fractals. The exact expressions
for thermal physical quantities as functions of tempera-
ture in the case of the two-spin interaction Ising model



2936 JOSE ARNALDO REDINZ AND AGLAE C. N. de MAGALHAES 51

were obtained for different values of m and they present a
very good convergence with increasing hierarchical level
n.

We have verified that the function M~ defined in Eq.
(24) can be used as an alternative order parameter in this
plain Ising ferromagnet, since (i) it vanishes at the same
critical temperature with the same critical exponent P as
does the magnetization M; (ii) the application of its con-
jugated field (i.e., the three-spin interaction J3 ), no
matter how small it may be, destroys the para-
ferromagnetic transition; (ii) its corresponding suscepti-
bility g~ diverges at the critical temperature with the
same exponent y as the susceptibility y.

With the computed critical exponents v, a, P, and y,
we tested the validity of the hyperscaling law and of the
Rushbrooke scaling law. Despite the errors implicit in
the numerical evaluations of the critical exponents (with

exception of v, which was calculated exactly), the values
obtained herein give very good evidence in support of the
validity of these laws for the Ising ferromagnet on the
ISG fractal lattice family. In our knowledge, there has
been no report in the literature concerning any proof or
verification (without using approximate analytical expres-
sions for the corresponding therrnodynamical functions)
of the Rushbrooke law on any fractal system.
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