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Randomly coupled Ising models
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We consider the phase diagram of two randomly coupled Ising models to mimic the successive phase
transitions in plastic crystals. Detailed mean-field calculations are performed. Depending on the
strength of the couplings, the phase diagrams display three ordered phases and some multicritical points.
A tetracritical point is found to turn bicritical as the strength of the couplings increases. The nature of
this multicritical point is then analyzed by means of a momentum-space renormalization-group calcula-
tion. Using the replica trick, we obtain an effective n-component spin Hamiltonian. The random cou-
pling is found to be relevant and shown to have drastic effects on the multicritical behavior. The lower
critical dimension is estimated to be dI =2. In the n =0 limit, to first order in the parameter @=4—d, a
system of seven recursion relations is obtained. Although there is a stable fixed point, it cannot be
reached from physically acceptable initial conditions. We give arguments to support a runaway of the
How lines associated with a fluctuation-induced first-order transition.

I. INTRODUCTION

Coupled spin models have been used to account for the
interplay of translational and rotational degrees of free-
dom in plastic crystals. Lowering the temperature from
the liquid phase, plastic crystals undergo a first-order
transition to an intermediate thermodynamically stable
plastic phase, where rotational disorder coexists with a
translationally ordered state. At lower temperatures,
there is another phase transition, usually of first order, to
the solid phase. Due to steric hindrances, the coupling
between translational and rotational degrees of freedom
is expected to play a fundamental role in the onset of
these transitions.

Bilinear coupling s between effective spin variables,
which are supposed to mimic translational and rotational
degrees of freedom, have been used to explain the ther-
modynamic behavior in the plastic phase. ' In fact, there
are earlier mean-field studies of a lattice-gas model for
the melting transition with the inclusion of extra spin
variables to represent the rotational degrees of freedom.
More recently, tetralinear translational-rotational cou-
plings have also been considered, and shown to be gen-
erated by a special kind of compressible model. Howev-
er, the dynamics of reorientations in the plastic phase is
rather complex. Besides the librations around the pre-
ferred orientations allowed by symmetry, there are also
large amplitude jumps from one orientation to another.
The long reorientation times give room to a relaxation of
the translational degrees of freedom. This process sug-
gests the existence of an "excited molecular state" sur-
rounded by a local deformation of the lattice, which
should be equivalent to the presence of a virtual impurity.

Random fields have been invoked to take into account
this mechanism. According to these arguments, Galam
has introduced a system of two Ising models, with uni-
form bilinear couplings, in the present of a random field
affecting one of the Ising variables. However, from the
requirements of symmetry, it should be more appropriate
to consider an alternative model with random strengths
of the rotational-translational bilinear couplings. On this
basis, we perform an analysis of two distinct Ising fer-
romagnetic systems in the presence of random bilinear
coupling s.

The model studied in this paper is given by the
effective spin Hamiltonian

N
H= —J) ASS —Jq g T;T —g ri S;T;,

(ij) (ij) i =1

where the Ising spin variables S;=+1 mimic the rota-
tional degrees of freedom, the extra spin variables
T; =+1 mimic the translational degrees of freedom, and
(ij ) labels a pair of nearest-neighbor sites on a hypercubic
lattice of N sites and dimension d. The independent,
identically distributed randotn variables, I g; ), are associ-
ated with an even probability distribution, p(q;), which
does not destroy the symmetry of the ordered phases.
We always assume J

&
& 0, and J2 & 0, with a ferromagnet-

ic ground state.
During the last decade, a considerable effort has been

devoted to the analysis of the phase transitions in random
and disordered systems. The interplay between theory
and experiment has been very fruitful. For example, the
previous theoretical investigations of a simple ferromag-
netic Ising model in a random field have been shown to
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be relevant to account for the behavior of disordered an-
tiferromagnetic crystals in a uniform field. The study of
disordered spin systems still presents some challenging
theoretical problems. Although we were in part motivat-
ed by the associations with the behavior of plastic crys-
tals, we have introduced a coupled spin Hamiltonian that
is simple enough to be amenable to some calculations
which provide an instrumental step towards the under-
standing of more realistic models. In the present case of
random bilinear couplings, we were able to perform de-
tailed mean-field calculations, as well as a rather com-
plete renormalization-group analysis, to display a number
of distinct phases and multicritical points.

In Sec. II, we present an exact solution of a long-range
version of the model Hamiltonian. As the problem is
self-averaging, this mean-field solution can be obtained
without using the replica trick. In Sec. III, we calculate
the main features of the T—p phase diagram, where T is
the temperature and p =J2/J„ for a double-5 distribu-
tion. For weak bilinear couplings, in addition to the sim-
ple ordered phases, (i) m, =(S)%0 and mz=(T) =0,
and (ii} m i

=0, and m z %0, there is also a mixed phase,
(iii) m i %0 and mzAO. For strong bilinear couplings,
this mixed phase is no longer present. We have per-
formed some analytical and numerical calculations to lo-
cate the phase boundaries and the rnulticritical points.
This is probably one of the simplest models to display a
tetracritical point which turns into bicritical as a function
of a parameter. On the basis of the fully understood
mean-field phase diagrams, we have performed a
renorrnalization-group calculation to analyze the mul-
ticritical behavior. Along the lines of previous work, '

for random-anisotropy spin models, we use the replica
trick to write an effective n-component Hamiltonian in
momentum space. In Sec. IV, we obtain a set of seven re-
cursion relations up to terms of order e=4—d. In the
n =0 limit, we have a rich strvcture of fixed points and

II. MEAN-FIELD SOLUTION

The long-range, Curie-Weiss, version of the model
Hamiltonian is given by

Ji N

2N

J2 N

2N
(2)

which yields the partition

ZIg; I =Trexp ~

function
2

+gPg;S;R; . ,

where p=(ksT} ', and the trace indicates a sum over
spin configurations. Using the Gaussian identity

f exp( —x +2ax )dx =~m exp(a ),
we can write

make contact with the results of an analysis of the mul-
ticritical behavior in the context of a system of six recur-
sion relations for a magnetic model with random compet-
ing anisotropies. We give some arguments to show that
the stable fixed points cannot be reached from physically
acceptable initial conditions. As in previous calculations
for spin models with random anisotropies, ' this seems
to indicate the possibility of occurrence of a Auctuation-
induced first-order transition. In Sec. V, we obtain the
crossover exponent, N=(e —4g)v, from the behavior of
the decoupled Ising models. The random couplings are
then relevant in two and three dimensions. The lower
critical dimension is found to be dI=2. Some con-
clusions are presented in Sec. VI.

N

Zfg;J =—f f dx dy exp( —x —y ) g trexp
i=1

2PJi xS+ 2pJ2

N
yT+Pg;ST

Performing the trace over the spin variables and defining the new quantities
1/2

PJiN

and

m2= 2

pJ2N

1/2

we have

ZIg; J= (JiJ2)'~ f f dmidmz exp — NPJ, m, — NPJ—2mz—
+ g ln[2e ' cosh(PJi m i +PJ2m2 )

pg,.

+2e 'cosh(PJim i
—PJ2m2) l

—Pq,.
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In the thermodynamic limit, we can use the law of large numbers to write

Z= (J)Jq) f dm, dm~ exp[ PN—g(m„mz)],PN, ~~ +~ +~

where the free-energy functional, g (m &, m z ), is given by

g(m„mz)= —,'J, m f+ —,'Jzmz — E—(l n[ 2e 'cosh(PJ&m&+PJzmz)+2e 'cos(PJ, m, —PJzmz)]], (10)

and E (
.

] indicates the expectation value with respect
to the set of independent, identically distributed random
variables, [g;]. Given the temperature, the form of the
distribution, and the parameters of the model, the ther-
modynamic solutions are determined by the minima of
g(m &, mz). In particular, the equations of state can be
written in the form

tanh(pJ, m, )+tanh(pJzm z )tanh(pg, )
m) =E

1+tanh(pJ, m, )tanh(pJzm & )tanh(pg; )

and

tanh(pJzmz)+tanh(pJ& m
&
)tanh(pq; )

1+tanh(pJ& m
&

)tanh(pJzm z )tanh(pg; )

(12)

For a symmetric probability distribution, with
E(g,"]=0 for n odd, the critical lines are given by t =1
and p = t, where we have made use of the new dimension-
less variables t =(pJ, )

' and p =Jz/J, . To investigate
the stability of these critical lines and the nature of the

(13)

III. PHASE DIAGRAMS
FOR A DOUBLE-5 DISTRIBUTION

Let us consider a double-5 distribution given by

p(g;) =
—,'5(g, —J,A, )+—,'5(q;+ J,A, ) . (14)

In this case the free-energy functional can be written as

I

multicritical point at t =p = 1, we can write the following
expansion of the free-energy functional for a symmetric
probability distribution:

1
g(m „mz) = 2t—ln2 —tE [1 n cohs(Pg; )]

1

+ (t —1)m &+~(t —p)mz2t 2t

+ (m", +p'm,')1

12t

2

+ E f [tanh(pg;)] ]m &mz+

1 1 m&
1& 2g (m, m ) = 2t ln2 ——t ln cosh —+—m + m t ln co—sh

2 ' 2

Pm2—t ln cosh
t

t 2 A, 2 ~i 2 Pm2——ln 1 —tanh —tanh tanh
2 t

(15)

from which we obtain the expansion

1 g(m„mz)= 2t ln2 —t—lncosh —+ (t —1)m, +—(t —p)mz
1

(16)

As mentioned in the previous section, the paramagnetic
critical lines are given by t=l and p=t. From an
analysis of the quartic terms, it follows that there is a
tetracritical point at t =p = 1, for A. & A,o= tanh '( I /&3) =0.658 47. . . , which becomes bicritical
for A, & A,o. In Figs. 1 —3, we show some typical phase dia-
grams for 0&A, &A,O. In Fig. 4, for A, &Xo, we indicate
that the mixed phase, m, &0 and m&+0, collapses into a
first-order boundary. For t & 1, the upper critical line in
Figs. 1 —3 is given by

m tanh2 +t=l, (17)

p m& tanh +t=p, (18)

with m, =tanh(m, /t ). Analytical expressions for these

with mz =tanh(pm&/t ). The lower critical line is given
by

2
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FIG. 1. Typical mean-free phase diagram for
0&A, &0.44774. . . (this figure was drawn for A, =0.4). The
light solid lines represent second-order phase transitions. The
heavy line is a first-order transition. We indicate a tetracritical
{T4)and a tricritical {TCP)point.

FIG. 3. Typical mean-field phase diagram for

2
&A, &0.65847. . . (this figure was drawn for A, =0.58). The

mixed phase is restricted to a small internal region of the phase
diagram. The heavy lines indicate first-order transitions. TP is
a triple point.

lines can be written in the immediate vicinity of the tetra-
critical point. Also, it is not dificult to locate the tricriti-
cal points.

From Eq. (15), we obtain some analytical results for the
phase diagram at T=0. In the A, —p space there are three
possibilities: (i) m

&

= 1, and m z
= 1, with

g/J, = —1/2 —p/2, for A, (1 and A, &p; (ii) m, =1, and
m&=0, with g/JI = —

—,
' —

A, , for A, &0; and (iii) m
&
=0,

and mz =1, with g/J, = —p/2 —A,, for A, & 0. So we can
draw the phase diagram of Fig. 5, where the solid lines
indicate 6rst-order transitions. An asymptotic calcula-
tion near t =0 and p = 1, for —,

' & A. & A,o, shows that there

1.5

c 10

0.5
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m, =o
m, =o
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FIG. 4. Typical mean-field phase diagram for
A, )0.658 47. . . . The first-order boundary between the ordered
phases ends at a bicritical point (T2). The mixed phase is no
longer present.
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FIG. 2. Typical mean-field diagram for 0.44774. . . & A, & —'.
Besides the tetracritical point, there are. also two tricritical
points. The heavy solid lines indicate first-order transitions.
This figure was drawn for A, =0.45.

0
0.5

FIG. 5. Phase diagram at the ground state (t =0). The solid
lines represent first-order transitions.
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is no mixed phase, with m, AO and m2%0, in this region
of the phase diagram.

The typical phase diagrams sketched in Figs. 1 —4 can
be drawn on the basis of the analytical results near the
multicritical point and in the vicinity of the ground state.
In Fig. 1, we show a typical phase diagram for
0&A, &0.44774. . .. The upper boundary of the mixed
phase is always of second order. The lower boundary,
however, turns into first order at a tricritical point. In
the narrow region 0.44774. . . &A. & —,', as indicated in
Fig. 2, besides the tetracritical point, there are two tri-
critical points along the boundary of the mixed phase. In
Fig. 3, for —,

' & k & 0.685 47. . ., there is also a triple point,
as the mixed phase no longer exists at low temperatures.
Finally, for A, & A,o, there is a first-order line at p =1, from
t =0 to the bicritical point at t =1. We have performed
numerical calculations to check the location of the transi-
tion lines and the multicritical points.

It is interesting to look at the phase diagram on the
t —

A, plane, for p=1, which corresponds to the sym-
metric form of the model. As shown in Fig. 6, this phase
diagram displays a multicritical point at t = 1 and
X=A,0=0.65847. . ., and a first-order transition line be-
tween the ordered phases. Due to the symmetry of the
model Hamiltonian, the phases mi%0; m2=0 and
rni =0; m2%0 are completely equivalent. In agreement

I

1.0

0

m~g

m~

0.5

m, =O m, =O

m)aQ; m~yQ

m~O; m~ 0

Xo Q.658

FIG. 6. Mean-field phase diagram for the symmetric case
(p =1). The heavy line represents a first-order transition.

with the graphs of Fig. 3, for —,
' & A, & A,o, as the tempera-

ture is raised we cross a first-order boundary to enter into
an ordered region with m i =m@%0.

IV. RENORMALIZATION-GROUP CALCULATIONS

N
+ g prl;S;T, (19)

We can use the generalized Gaussian identity,

The partition function associated with the model Ham-
iltonian 1 is given by the expression

Z I71; j =Tr exp PJ, g S,S +PJ2 g T; T
(ij) (ij)

N + 1 N

g f do; exp ——g(K ');Jo;crj+ g o;S;
i=1 l7J i=1

exp g K;1S;SJ
(ij )

where A =+MD, and D is the determinant of the matrix K, to write Eq. (19) in the form

(20)

+~ +~
ZI7) j

=—Tr g f do f dr; exp ——g(K, ') o o ——g(K ') Jrr + g (cr S+rT +P7)S T ) ~,
i=1 17J

(21)

where B =WQD, D2. Performing the trace over the discrete spin variables, we have

ZI7), j =—Q f do, f dr; exp. ——g (K, '); o, o ——g (K '),

X + 2[e 'cosh(o;+r;)+e 'cosh(cr; —r;)] .pg,. —Pq,.
(22)

Now we introduce n replicas of the model and perform an average over the I7); j configurations to obtain the expres-
sion

r

((ZITI, j)")= g g f do; f dr, exp. ——g g (K, ');,o;o gg (—K '); r;r

X ii ii 2[e ' cosh(o; +r;)+e ' cosh(o; —r';)]l,
i =1 a=1

(23)

where the averages should be taken with respect to the double-5 probability distribution given by Eq. (14). After a
straightforward expansion about the paramagnetic saddle point, we have

N N 1 Ã n

((Z[7);j) )= „gg f do;f dr;'exp ——gg(K, '), cr, o —$$. (K—'), r,.g,. +$
1 N n

+ —(tanhp7)) g g o, r,
i =1 a=1

(24)
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where

W;= —(o.; )'+ —,'(r; )'—
—,', (o; ) —

—,', (r; )

—(tanhPA. ) (o; ) (r; ) (25)

and the sum is over the first Brillouin zone. After per-
forming a low-momentum expansion and rescaling the
spin fields, we have

Ho= —— g(r, +q + . . )o. o1

2
the prefactor C depends on A., and we have kept terms up
to fourth order in the spin fields. Thus we can write the
effective Hamiltonian

1

q a
(33)

H,~=H0+H

where

(26) and

1H = ——
0

a

a a a a+ 2+q
&
+q&+q3+ —

q
&

—
q&

—
q3

and

1

2

N n

a=1 ij
(27)

a a a a
woe, o~,re3r e, —e, —e-, )

+"Xf I J oereoe+e —
~

—e (34)

H = —g g [u, (o; ) +u~(r; ) +w(o; ) (r; ) ]
i =1 a=1

where the vector arrows and the hats have been dropped
to simplify the notation, and the coefficients are given by

N n

+v g Q o;'r;
a=1

where

Ql =Q2=
)~ (29)

T2

a2 J
1

(1—2PJ, ),a' J,

1
(1—2dpJI ), (35)

(36)

and

w =(tanhPA, ) (30)
4Pd(u), uq) q (Jlu), Jquq),

a
(37)

u =—,'(tanhPA, ) (31) (w, v)= d2
J,Jz(w, u),

a
(38)

1
o =—go e'~'

N
q

(32)

where I is a vector of a hypercubic d-dimensiona1 lattice,
I

It should be noted that we can also use a Gaussian proba-
bility distribution for the set of random variables [rl; j to
obtain a similar effective Hamiltonian.

Now we introduce the Fourier representation,

where a is the lattice parameter of the d-dimensional hy-
percubic lattice. Although there are only four types of
quartic terms in Eq. (34), it is easy to see that additional
quartic terms which are associated with the full symrne-
try of the Harniltonian in the n-vector space, will be gen-
erated at the first stage of the normalization-group per-
turbation scheme. We thus work with the more general
perturbation,

[ (u, +v,—5 p)o o o~ o~ —(u~+U~5 p)r
a,P

(39)

With the new parameters, ul, u2, and w, we have seven
recursion relations for the quartic terms, instead of just
four, as using the previous form of the perturbation. A
momentum-space Hamiltonian of this form has been
mentioned, but not discussed, in the work of Mukamel
and Grinstein. With u=0, we regain a model Hamil-
tonian in a space of six parameters, which has been dis-
cussed by Fishrnan and by Tarnashiro and Salinas' in
the context of a magnetic model with random anisotro-.
pies. In this particular case, at least in a calculation up to
first order in e, the fixed points describing the multicriti-

—
—,'uw+ —„'nw + —,'ww] j,

UI =b [U) —4K [49 vI+12 ulv+l4w —Uw]j

(40)

(41)

cal behavior are not stable. Moreover, there is an addi-
tional isotropic fixed point which cannot be reached from
physically acceptable initial conditions.

Now it is not difficult to carry out a standard
renormalization-group calculation to write the following
recursion relations for the quartic terms:

u', =b'[u, —4%4[(8+n )u f +6u, v, + —,'v
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+2 b [+2 4K4[( +n )+2+ ~2u2+ gv

—
—,'uw+ ,'n—w'+ ,'w—w]],

v2 =b'1 u2 —4K4[9u~+12u~u~+ ,'w——,'u—w]],

w'=b'I w 4K—4[2w +(n+2)(u, +u2)w

+3(vi+v2)w v(Qi+iip)

+w(u, +u~)+ —,'u ]],
W =b [w 4K4[2W(01+142)+ W(ui+V2)+2w

+4ww —3vw —3v(v, +uz)]],
and

(42)

(44)

(45)

value of w vanishes, it is very unlikely that this term will
be able to balance the e6'ects of all the other terms which
are driving v to large and positive values. This discussion
also indicates that there may be a fixed point with v & 0,
which has no physical meaning and cannot be reached
from initial values with v &0.

V. RELEVANCE OF THE RANDOM COUPLINGS

At this stage it is interesting to check the
renormalization-group relevance of the random cou-
plings. For very weak random interactions, (q2) «1,
the free energy is expected to behave as

(47)

u'=b'Iu —4K~[2v(u, +uz) —u —
—,'nu +4vw+vw]],

(46)

where b is the rescaling factor and K4 is a structure con-
stant. For n =0, the set of fixed points with v*=0 has
been analyzed in great detail by Fishman and Aharony.
In this case, to order e, there is a fully isotropic fixed
point (in the space of n replicas) which is stable but can-
not be reached from physically acceptable initial condi-
tions. We then have a runaway of the flow lines, which is
usually associated with the existence of a fluctuation-
induced first-order transition. If we perform a higher-
order calculation, there is also a stable decoupled fixed
point, of order &E, which corresponds to a tetracritical
point, with independent fluctuations of the two spin
fields, and rules out the possibility of bicritical behavior.
In the present case, however, the bare Hamiltonian al-
ready involves a term with v & 0. An inspection of the re-
cursion relations, with n =0, u1=u2, and v1=vz, indi-
cates a runaway to a fixed point with v* —++ ao (we can
also have v & 0, but this fixed point does not correspond
to a physically acceptable situation). As in the case of the
random-anisotropy models of Mukamel and Grinstein,
this runaway of the flow lines seems to suggest the oc-
currence of a fluctuation-induced first-order transition.

Let us consider the zero-replica limit of the recursion
relations. First, we note that the coupling w is related to
the fourth cumulant of the distribution p(g; ). Therefore,
we can analyze the case of a Gaussian distribution for
which w=O. We also observe that the bare values of
couplings u1, u2, and w, vanish. These couplings are in
fact generated by the renormalization-group flows, but
they will be small with respect to the couplings v1, v2,
and v, which are all positive in the bare Hamiltonian. We
can now perform an analysis of the initial flow. For weak
random couplings, the symmetry between the two sys-
tems is not broken. Hence, the physically accessible fixed
points will be given by u, =u z, and v, = v 2. Under these
conditions, it is easy to see that u, =u2 and w will grow
large and negative, and there will be no finite fixed value
of v. Although rather strong, this is still a plausibility ar-
gument. Indeed, we note that the only term which may
stop the v flow to large and positive values is given by the
product vw, where w & 0 is generated by the
renormalization-group iterations. However, as the bare

n N

a,P=1i =1
(48)

Taking the derivative of the free energy with respect to
( i) ), we have

At g=O, the replicas are decoupled, and this derivative
scales as (S ) ( T ) -b T ~, where P is the critical ex-
ponent associated with the magnetization. From Eq.
(47), at g =0, we also have

(50)

which yields

4=d v —4P,
where v is the critical exponent associated with the corre-
lation length. Using a scaling relation, we can also write

4=(4—d )v —4gv, (52)

where g is the exponent associated with the decay of the
critical correlations. Therefore, the random interactions
are relevant for

(53)

which certainly holds for d just below four dimension. It
also holds at d=2 and d=3. Then, @&0 for 2~d &4,
which confirms the relevance of the random couplings.

To complete this analysis, we now use the Imry-Ma ar-
gument to estimate the lower critical dimension for the
stability of the mixed phase against fluctuations of the
random couplings. Let us start with the mixed phase,

where 4 is the crossover exponent. The random pertur-
bation is relevant, and the g=O fixed point unstable, if
@&0. To calculate this crossover exponent, let us use a
method outlined by Shapir and Aharony. " Keeping the
most relevant terms, the replicated Hamiltonian may be
written as

nH'"'=g —J QS. S —J gT T
a= 1 (ij) (ij)
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with m, &0 and m2&0. We then reverse a domain of
linear size L from m2 & 0 into m2 &0. The gain in energy
due to the fluctuations of concentration of random cou-
plings +g in the formation of the domain is of the order

E, =pm )m2L" (54)

At the same time, the formation of a domain wall costs
the typical energy

E =2Jm2L"

From these energy estimates, in the limit L ~~, and as-
suming that m „m2%0, we have E„&E for all
d & d& =2. Hence, in this range of dimension, the system
breaks into domains and the mixed phase is unstable
against weak random couplings. In other words, we say
that an ordered component produces a random field of
strength gm which couples to the other component. On
this basis, this problem is expected to have the same
lower critical dimension di =2 as the random-field Ising
model.

tetracritical point which turns into bicritical as the
strength of the couplings increases.

The phase diagram has been fully understood at the
mean-field level. A momentum-space renormalization-
group calculation was then performed to check the na-
ture of the multicritical point. We resorted to the replica
trick to write an e6'ective n-component Hamiltonian up
to quartic-order terms in the spin fields. Using the stan-
dard renormalization-group scheme, up to first order in
@=4—d, we obtained a system of seven independent re-
cursion relations to characterize the multicritical
behavior. In the n =0 limit, we give some arguments to
show that there is a runaway of the Aow lines, which indi-
cates the occurrence of a fluctuation-induced first-order
phase transition.

The spin Hamiltonian introduced in this paper is sim-
ple enough to allow the performance of detailed calcula-
tions which provide an instrumental step towards the
consideration of more realistic models. It may also be
relevant to shed some light on the understanding of the
behavior of plastic crystals.

VI. CONCLUSIONS

We have performed detailed mean-field calculations for
the phase diagram of a system of two Ising models with a
random bilinear coupling. The successive transitions
from a mixed to a simple ordered and finally to a disor-
dered phase simulate the thermal behavior of a plastic
crystal. Depending on the strength of the random cou-
plings, the phase diagram displays diFerent types of mul-
ticritical points. For a double-5 distribution, there is a
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