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Temperature dependence of phonon lifetimes in dielectric crystals
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We present calculations of the temperature dependence of the lifetime of phonons due to anharmonic
interactions. The contributions to the lifetime arising from phonon decay and phonon-phonon collisions
are considered separately and, in addition, the relative strength of normal and umklapp processes is
determined. The calculations are performed for an fcc lattice with nearest-neighbor central forces.

I. INTRODUCTION

Phonon scattering in crystalline dielectrics can arise
from both extrinsic and intrinsic mechanisms. ' The
extrinsic processes include scattering of phonons at dislo-
cations, point defects, grain boundaries, and the exterior
surfaces of the sample. In addition, mass-defect scatter-
ing occurs in most crystals because of the variation of
mass between the different stable isotopes of the elements
involved. In the absence of these extrinsic processes pho-
non lifetimes are determined by the rate at which anhar-
monic processes occur. In the lowest order of perturba-
tion theory these are three-phonon processes which can
be divided into collision (two phonons collide to produce
a third) and decay (one phonon decays into two) process-
es. The events can be further subdivided into normal
processes (N) in which crystal momentum is conserved
and umklapp processes (U) in which the momentum
changes by a reciprocal-lattice vector.

These processes have traditionally been studied
through thermal conductivity measurements. The kinetic
formula

sc= —,'Cv ~

relates the thermal conductivity ~ to the specific heat per
unit volume C, the average phonon group velocity U, and
the average phonon scattering time ~. Thus, assuming an
appropriate value of U one can estimate ~ from the mea-
sured value of rc. The ~ determined in this way includes
only the effect of "resistive processes, " i.e., those that do
not conserve momentum. More recently a variety of new
techniques have been invented to investigate phonon
scattering. However, many of these techniques (e.g.,
tunnel junction studies) are only applicable to low-
frequency phonons (co((QD, AD is the Debye frequen-
cy), or to low temperatures, and therefore quantitative re-
sults for phonon interaction rates as a function of temper-
ature, phonon wave vector k and polarization j are not
available.

In this paper we present calculations of the rates of
phonon-phonon interactions via anharmonic processes
for a simple model of a dielectric crystal. The aim is to

obtain quantitative results that can be used to provide at
least a rough estimate of phonon lifetimes in real crystals.
In addition, we are able to compare the relative strengths
of normal and umklapp processes, and to study how the
lifetime varies with k and j.
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where we have used the relation y=a8/C. The lattice
parameter can be related to the density p by
ao=(4M/p)' . The phonon-dispersion curves based on
this model are shown in Fig. 1. The maximum phonon
frequency co,„ is (8$"/M)', and the low-temperature
limiting value of the Debye temperature is
SD =2 965(R/ktt . )(P"/M)'i . ' For any material one
can use Eqs. (2) and (3) to choose the values of P" and P"'
to correspond to the experimental values of B and o.. For
crystals with more than one atom in the unit cell the

II. MODEL

As a simple model we consider an fcc lattice of atoms,
each of mass M, which interact via nearest-neighbor cen-
tral forces. We have previously used this model to calcu-
late the rate of spontaneous decay of phonons at T=O
K, and other aspects of anharmonicity within this model
have been studied by Maradudin and co-workers. ' In
addition, Maradudin, Fein, and Vineyard have used this
model to estimate the lifetimes of longitudinal and trans-
verse phonons propagating in the [100] direction of lead
at one particular temperature (425 K). As far as the
three-phonon process is concerned the model is complete-
ly specified by the values of the atomic mass, the lattice
parameter ao, and the second and third derivatives P"
and P'" of the interatomic potential evaluated at the
nearest-neighbor distance. These parameters can be re-
lated to the bulk modulus B, the volume thermal-
expansion coefficient a, and the Gruneisen parameter y
b 6
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FIG. 1. Frequency as a function of wave vector for phonons
propagating in the principal crystallographic directions of the
fcc lattice. The maximum phonon frequency ~ „ is
(8P"/M)'~ . The frequencies co, and co& have the values

co,„/&2 and co,„/2, respectively.

mass M can be chosen as the total mass per unit cell, but
of course the model completely fails to include the optical
models for such crystals.

III. CALCULATION OF INTERACTION RATES

General expressions for the interaction rate of a pho-
non of wave vector k and polarization j as determined by
the three-phonon process have been given by Maradudin
and Fein. " The total rate can be divided into two parts

& I& «j;ktjt 2

4NcO 12

(n, n2)—
X b,(k+ kt —k2)

C01C02

X5(cu+cu~ f02)

y
is the rate at which the phonon kj decays into two

lower energy phonons and I „&& is the rate at which the
phonon collides with other phonons to produce a third
phonon. In these equations co is the frequency of the pho-
non kj, the summations are over the wave vectors k1 and
k2 and polarizations j, and j2 of phonons 1 and 2, and
~&, co2, and n„n2 are the frequencies and occupation
numbers for phonons 1 and 2, respectively. The function
A(K) is unity if K is a reciprocal-lattice vector or zero,
and is zero otherwise. The 4 parameters can be regarded
as Fourier transforms of the cubic anharmonic part of
the interatomic potential. For the fcc lattice that we are
considering the explicit form of 4 is

Itt iao
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and

I d„,„(kj)=I OGd„,„(kj,TiO~ ),

where n is a vector with integer components whose sum
is even, and the sum over n is restricted to those vectors
such that —,'aon is one of the vectors going from an atom
in the fcc lattice to its 12 nearest neighbors.

From these results it is straightforward to show that
the interaction rates I d„, and I „~& can be written in the
forms TABLE I. The values of the decay rate parameter I o for

several crystals as calculated from Eq. (9).

Crystal
Io

10' sec

tors, for example), the polarization, and temperature.
Values of the coem. cient I o calculated for several crystals
are listed in Table I.

In the calculation of the interaction rates from Eqs. (4)

-n( j)= o ..n( j ~o'a»

where

2 2/3
I

(8)

and Gd„,~ and G„&& are dimensionless functions of the
wave vector (expressed in terms of reciprocal-lattice vec-

Ne
Ar
Kr
Xe
LiF
NaF

Si
Ge

0.29
0.10
0.044
0.024
0.097
0.040
0.0032
0.0018
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gf (k,j, )5(co—0, ),
1

(10)

where Q, —:+co, +coz. The function f varies smoothly as
k& is varied. Equation (10) has the same general form as
the expression for the one-phonon density of states. An
accurate and rapid method for the evaluation of this type
of sum has been found by Gilat and Raubenheimer. '

With some modification we have applied their sophisti-
cated method of Brillouin-zone integration to the deter-
rnination of I d„,~ and I „&&. Briefly, the approach is the
following. The first Brillouin zone is divided into small
cubic cells with sides of length m lnao where n is an in-
teger. One then finds those cubic cells within which there
is a section of the surface on which the quantity co —0,
vanishes. The area of this section, assumed to be a plane,
is calculated using the dispersion relation for the fcc
model that we are using. f (k&j, ) is taken to be a con-
stant throughout the cell. In the present calculation we
have chosen values of n between 30 and 40, and have
checked that the results are essentially unchanged if the
cell size is made smaller. It was possible to make some
reduction in the required computation time through the
use of symmetry. Thus, for example, for k along the
[100] direction it was only necessary to sum k& or kz over
one-eighth of the Brillouin zone. When the magnitude
of k was small it was necessary to use a finer mesh of
points to obtain accurate results. The time to calculate
the interaction rates for a single wave vector k and polar-
ization j and for a given choice of j &

and j2 was typically
at 15 sec on a HITAC S-820 supercomputer.

and (5) the sum over the wave vector of either phonon 1

or 2 can be performed trivially because of the presence of
the b, ( . ) factor. This factor fixes the value of kz for a
given ki. The result for the sum then has the general
form

I. Decays

100 (a) k/k, „=1.0

O

0.1

0.01

10-
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(1) At T=O the decay rate increases rapidly with in-
creasing wave number. For very small k the decay rate
of L phonons is known to vary as k . This strong depen-
dence on k arises because both the matrix element and
the region of phase space into which decay can occur in-
crease.

(2) Regardless of the magnitude of the wave vector, the
temperature dependence of the decay rate is similar [see
Fig. 3(a)]. At low T, Gd„,„ is independent of T and at
high T there is a linear temperature dependence. This
behavior follows directly from consideration of the tem-
perature dependence of the phonon occupation numbers
in Eq. (4). The increase in occupation numbers for the
phonon states into which decay can occur increases the
probability of decay. The range in which the tempera-
ture dependence is linear begins when the temperature is
high enough that most of the phonon states into which
the phonon can decay begin to be thermally occupied.

IV. NUMERICAL RESULTS

For definiteness we assign "polarizations" to the three
phonon modes with a given wave vector according to
their frequency. In order of increasing frequency we la-
bel the modes slow transverse (ST), fast transverse (FT),
and longitudinal (L). For low frequencies, L phonons
have polarization vectors approximately parallel to the
wave vector, and FT and ST are approximately trans-
versely polarized. However, for high-frequency phonons
in some parts of the Brillouin zone the polarization vec-
tors are unrelated to the label that is assigned in this way
so, for example, the mode L does not necessarily have a
polarization vector even approximately parallel to the
wave vector.

A. Longitudinal phonons
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In Fig. 2 we show the total interaction rates 6„„&for L
phonons propagating in the three principal directions.
For phonons propagating in the [100] direction the rate is
shown divided into contributions from decay and col-
lision processes in Fig. 3. We note the following features
of these results.

FICz. 2. Total interaction rate G, „& for L phonons propaga-
ting in principal directions as a function of wave number and
temperature T. The curves are labeled by the wave number k
divided by the wave number k,„at the zone boundary in the
same direction.
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From Fig. 3(a) it is seen that this transition occurs at
around k~ T =Ace/5.

2. Collisions
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The behavior of the collision contribution to the in-
teraction rate is considerably more complex.

(3) At high temperatures ( T=SD ) the rate varies
linearly with temperature because the phonon occupation
numbers in Eq. (5) have this temperature dependence.
The collision rate increases with increasing wave number
in the range up to about 0.2k „where k,„ is the wave
number at the zone boundary, but decreases rapidly as k
approaches k,„. The reasons for this are as follows. At
high temperatures most of the thermal phonons with
which a phonon k can collide have high frequency. An L
phonon with k near to the zone boundary has a frequency
close to the maximum frequency in the lattice, and thus
cannot collide with a typical thermal phonon because this
would lead to the production of a phonon that would lie
outside the range of lattice frequencies. Hence, the col-
lision rate decreases as the wave vector increases, and
must vanish for a phonon that has a frequency equal to

co,„. At low temperatures the average frequency of the
thermal phonons is small and so this suppression does not
occur until co is very close to corn».

(4) For sufficiently small temperature the frequency of
the typical thermal phonon (co&-k~ T/R) becomes much
less than the frequency co of the phonon k. In a collision
process the conditions of conservation of energy and
momentum are

CO+ CO]
—CO2,

k+ki=k2 . (12)

L +ST—+L, L +FT~L . (13)

If k is not too large the group velocity of the phonon k
will be greater than the velocity of transverse phonons
and these collision processes can occur. This gives a col-
lision rate varying as T . This type of behavior can be
seen in Fig. 3(b) for k =0.2k,„and k =0.4k,„. It fol-
lows from the results of Herring' that in this range of k
the interaction rate varies approximately as k . For
larger k the increasing effect of phonon dispersion has the
consequence that the group velocity of phonon k de-
creases to a value below the transverse velocity and the
interaction rate decreases dramatically, implying that de-
cay processes dominate the collisions.

(5) In an important paper Herring' has investigated
the collision rate of low frequency -longitudinal phonons,
and argued that these phonons may play a special role in
heat conduction in crystals. He showed that the interac-
tion rate for these L phonons is dominated by collisions
of type

Thus, the phonon 2 that is produced must have nearly
the same frequency and momentum as the phonon k. It
follows that since k is an L phonon, the phonon 2 must
also be an L phonon. In addition, one can show from
Eqs. (11) and (12) that the collision can take place only if
the phase velocity of phonon 1 is less than the group ve-
locity of the phonon k. Hence, possible processes are

I +ST~FT, (14)
10

10

0.01
2 3 456

0.1

T/OD

2 3 456

FICz. 3. Interaction rates for L phonons propagating in the
[100] direction as a function of wave number and temperature
T. The rates are separated into (a) decay Gd,„and (b) collision
processes G„». The curves are labeled by the wave number k
divided by the wave number k,„at the zone boundary in the
same direction. Note that G„»=0 for k/k, „=l. The small
vertical lines in part (a) show the temperatures corresponding to
k~ T =fuu/5.

where the ST and FT phonons have wave vectors that lie
close to points, lines, or surfaces of degeneracy in the
Brillouin zone. For the cubic crystal that we have con-
sidered here, Herring's results imply that the collision
rate should vary as cu . As Herring emphasizes, his
analysis is limited to consideration of what happens for
longitudinal phonons of frequency much less than the fre-
quency of the phonons with which they collide (co ((co&).
In a particular case that he analyzes in detail he finds that
the proportionality to cu should hold fairly well when
co &0.05co&, where B& is the average frequency of the ST
thermal phonons, but should deviate rapidly from an co

law at higher frequencies. Our results confirm these ear-
lier conclusions of Herring. In Fig. 4 we show the total
interaction rate of low-energy longitudinal phonons prop-
agating in the [100] direction as a function of tempera-
ture and frequency. Investigation of the contributions to
the interaction rate from the different possible processes
reveals that the rate is dominated by the L+ST~FT
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FIG. 4. Total interaction rate 6„„&for low-frequency longi-
tudinal phonons propagating in the [100]direction as a function
of temperature T and wave number k divided by the wave num-

ber k,„at the zone boundary. The dashed curves show the
contributions from the process L+ST~FT. The curves are la-

beled by the temperature T divided by the Debye temperature
Q~

FIG. 5. Total interaction rate 6„„&for fast transverse (FT)
phonons propagating in the [110] direction as a function of
wave number and temperature T. The different curves are la-
beled by the wave number k divided by the wave number k,„
at the zone boundary in the [110]direction.

found in the [111)direction but with a diff'erent value of
k, . In the [110]direction k, is zero, i.e., no ST phonons
can decay.

process, provided that the frequency is sufficiently low.
When T =OD one finds that the interaction rate varies as
co (or k ) for frequencies below about 0.05 of the max-
imum lattice frequency (or k ~ 0.03k,„). At lower tem-
peratures the upper frequency limit of the co regime for
the 1.+ST~FT process occurs at a lower frequency.
This is to be expected on the basis of Herring's ideas be-
cause co& decreases as the temperature is lowered.

C. Umklapp processes

10 I 1 I I I I I

10

The collision and decay processes can be divided into
normal (X) and umklapp (U) processes. For the um-

B. Transverse phonons

(6) The total interaction rates (including decay and col-
lision) for FT phonons propagating in the [110]direction
are shown in Fig. 5. These results are qualitatively simi-
lar to the corresponding results for L phonons (Fig. 2).
However, it is important to note that generally the mag-
nitude of the scattering rate for the FT phonons is
significantly less than the rate for I phonons.

(7) The interaction rates for ST phonons propagating in
the [100]direction are shown in Fig. 6. ' The behavior at
low temperatures is quite different from that seen for I.
and FT phonons. In the [100] direction ST phonons can
decay only if they have a wave number less than a critical
value k, which is approximately 0.55k,„,where k,„ is
the wave number at the zone boundary in this direction.
This follows from the conditions of conservation of ener-
gy and momentum. Thus, for k & k, the total interac-
tion rate vanishes as T~0, whereas for k (k, the rate
tends to a constant in this limit. A similar behavior is

10

10

10

10
0.01

4 6 8 2
O. iI /OD

4 6 8

FIG. 6. Total interaction rate 6„„&for slow transverse pho-
nons propagating in the [100] direction as a function of wave
number and temperature T. The different curves are labeled by
the wave number k divided by the wave number k,„at the
zone boundary in the [100] direction.
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k+k) =kq+ g

for collisions, and

k=k)+k2+g

(15)

(16)

for decay processes, where g must be a non zero
reciprocal-lattice vector. The results shown in Figs. 1 —6
are the sum of the rates at which normal and umklapp
processes take place, i.e., plots of 6„„&=6,",t',

&

"
+6"t,t,"&""~. In Fig. 7 we show for selected phonons the
fraction fU of the total rate that comes from umklapp
processes. The relative strength of umklapp processes de-
pends in a complex way on the phonon wave vector and
on the temperature.
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FICs. 7. Fraction fU of interaction rate that arises from um-
klapp processes as a function of the wave number and the tem-
perature T (a) Longitudinal pho.nons propagating in the [100]
direction, (b) fast transverse phonons in the [110]directions, and
(c) slow transverse phonons in the [100] direction. k is the pho-
non wave number, and k,„ is the wave number at the zone
boundary in the given direction.

klapp processes the condition of conservation of crystal
momentum is

1. I.phonons

In Fig. 7(a) we show fU as a function of temperature
for L phonons propagating along [100]. We find qualita-
tively the same temperature dependence in the [110] and
[111]directions. fU has the value —,

' when the wave vec-
tor lies on the zone boundary at the X point (and also at
the L point). These phonons have frequency equal to the
highest frequency of any phonon in the lattice, and thus
cannot collide with another phonon but can only decay
into lower-frequency phonons. To understand why fU is
equal to —,

' for the L phonon at the X point, consider a
particular X-process decay mode into phonons with wave
vectors k, and kz having components (k,„,k,~, k „)and
(kz„,k2~, k2, ). Since at the X point the wave vector is
(2~/ao)(1, 0,0) where ao is the lattice parameter, we must
have k„+k2 =2m. /ac. The L phonon at the X point
can also decay via a U process into phonons k& and kz
with components (

—k, , k, , k„) and ( kz„kz—, k2, ).
The frequencies of these two phonons are the same as the
frequencies of the phonon produced in the N-process de-
cay and the magnitude of the matrix element for the
event is also the same. Thus, for every X-process decay
mode there is a matching U-process decay mode which
occurs at the same rate. A similar argument can be used
to explain why fU is —,

' at the L point.
As the wave vector is reduced, the value of

fU
=G "t,t

k&""~ /G „„&decreases rapidly and for k /k, „of
0.4 and 0.6, fU=O. These phonons have momenta too
far from the surface of the Brillouin zone for them to be
able to decay via a U process. In addition, they are also
unable to undergo U-process collisions. To see this let us
consider as a specific case the collisions that can occur
when k/k „=0.4. It is clear that the conditions of con-
servation of energy and momentum make it impossible
for the L phonon to collide with another L phonon. The
allowed processes thus involve collisions with ST or FT
phonons. The longitudinal phonon with k/k, „=0.4
has a frequency co,„sin(0.4'/2)=0. 59',„. Thus, the
highest frequency transverse phonon with which this
phonon can collide has frequency co&=0.41' ~ The
magnitude of the wave vector of such a transverse pho-
non depends on the propagation direction (in the [100]
direction it is approximately 0.4k,„),but it is always too
small to enable an umklapp process to occur.

When the wave vector is reduced further, U processes
again become possible [see curve for k/k, „=0.2 in Fig.
7(a)]. The frequency co is now small enough that co, ap-
proaches the upper limiting frequency for transverse pho-
nons. Thus, the phonon 1 can have a wave vector close
to the zone boundary and umklapp processes are again
possible. The rate at which this process occurs is propor-
tional to the number of phonons 1 which have sufficiently
large wave vector to produce an umklapp process. This
number decreases rapidly as the temperature is lowered
giving the temperature dependence shown in Fig. 7(a).

2. I'Tphonons

Results of calculations for the [110] direction are
shown in Fig. 7(b). Note that according to the definition
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we have adopted, the FT mode for any wave vector is al-
ways the mode of second highest frequency. Thus, in the
[110] direction the dispersion relation (Fig. 1) for this
mode is complicated, and has a discontinuous change in
slope at the wave number k,' =8k,„/9, where k,„ is the
zone boundary wave number in this direction. For
k =km, „ the umklapp fraction is 0.37 when T =OD. At
this temperature these phonons have comparable rates
for collision and decay. Both collision and decay can give
an umklapp process, but the fraction of umklapp process-
es is larger for collision events than for decay processes.
As the temperature is lowered the rate of collisions de-
creases more rapidly than the number of decays, and
hence there is a decrease in the fraction of the total num-
ber of interactions which are umklapp. On the other
hand for k =0.8k,„,which is below k,', the decay rate
at all temperatures is greater than the collision rate by at
least a factor of 6. Thus, the overlap umklapp fraction is
effectively determined by the umklapp fraction for the de-
cay rate, which is nearly independent of temperature.
For k=0.2, 0.4, and 0.6k,„, the only umklapp processes
come from the collision contribution. Thus, the fraction
decreases rapidly at low temperatures because there are
very few thermal phonons of large enough momentum to
combine with the FT phonon to produce a phonon out-
side the Brillouin zone.

collisions. When k =k,„ fU is equal to —,
' regardless of

the temperature, and this can be understood by the same
type of reasoning as was used above to explain the results
for L, phonons with this wave vector. Note that although
the fraction of U processes is constant, the actual rate be-
comes zero as T~O K. For smaller wave vectors the
umklapp fraction is approximately constant at high tern-
peratures, but then decreases rapidly below a characteris-
tic temperature T, (k). This decrease occurs because of
the decrease in the population of thermal phonons with
high momentum (see comments in FT phonon section
above). The temperature T, (k) is smallest for large k be-
cause then a collision with a thermal phonon having even
a small wave number is sufhcient to produce an umklapp
collision.

V. SUMMARY

In this paper we have presented the Srst detailed calcu-
lations of the rates of phonon collision and decay as a
function of wave vector and temperature. The calcula-
tions are performed for a simpli6ed model of a monatom-
ic fcc crystal, and include the effects of phonon dispersion
and anisotropy. By appropriate scaling one can use these
results to make rough estimates of the interaction rates
for real crystals.

3. STphonons in the I100Jdirection (Ref i4).
R.esults are shown in Fig. 7(c). For these phonons the

decay process can only occur for k less than the critical
wave number k, =0.55k,„,and all of these decays are N
processes. Thus, for k )k, all interactions come from
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