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Nonuniversality in random-matrix ensembles with soft level confinement
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Two families of strongly non-Gaussian random-matrix ensembles (RME’s) are considered. They
are statistically equivalent to a one-dimensional plasma of particles interacting logarithmically and
confined by the potential that has the long-range behavior V(€) ~ |¢|* (0 < & < 1), or V(€) ~ In? |¢].
The direct Monte Carlo simulations on the effective plasma model show that the spacing distribution
function (SDF) in such RME’s can deviate from that of the classical Gaussian ensembles. For power-
law potentials, this deviation is seen only near the origin € ~ 0, while for the double-logarithmic
potential the SDF shows the crossover from the Wigner-Dyson to Poisson behavior in the bulk of

the spectrum.

The classical theory of random matrices (RMT) devel-
oped by Wigner, Dyson, and Mehta! provides a statisti-
cal description of the energy levels in a variety of quan-
tum chaotic systems. In this way, one of the simplest
statistical characteristics is the probability distribution
P(s) of the spacing between nearest-neighbor eigenval-
ues. In the framework of the classical RMT, the spacing
distribution function (SDF) follows very closely a uni-
versal curve known as the Wigner surmise.! Its most im-
portant characteristic is the vanishing of P(s) at s = 0,
which demonstrates level repulsion. In contrast, for clas-
sically nonchaotic systems, the random energy levels are
described by another universal distribution, the Poisson
statistics, which assumes all levels to be uncorrelated.

Both universal statistics are realized in a disordered
system of noninteracting electrons. The metal phase that
exists for relatively weak disorder, was proved? to be de-
scribed by the Wigner-Dyson statistics, while the level
statistics in the insulator phase is close to the Poisson
distribution.

The transition between these two phases, known as the
Anderson transition, has much in common with the criti-
cal phenomena in second-order phase transitions and can
be described by the scaling approach.?® Using scaling ar-
guments, one can show that in the critical region near the
Anderson transition there should exist a third universal
statistics.? The detailed scaling analysis done recently®
showed this statistics to be drastically different from both
the Wigner-Dyson and the Poisson statistics, the corre-
sponding spectral correlation functions being character-
ized by nontrivial exponents related to the correlation
length exponent v.

It is of great interest to see if a description of the criti-
cal statistics in terms of random matrices is still possible.
Clearly, if this is the case, the corresponding matrix en-
sembles must be of a completely different kind from the
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ones belonging to the Wigner-Dyson universality class
or from those leading to the Poisson statistics. Our in-
terest in this direction was prompted by another recent
discovery® of a new family of random matrices, a one-
parameter solvable model, that displays a crossover in
the spacing distribution from a highly correlated Wigner-
Dyson distribution to a completely uncorrelated Poisson
distribution when the parameter is varied.

In this paper we have tried to establish whether the
nonclassical behavior of level correlations is a generic fea-
ture shared a by broader class of random matrix models.
We will consider two strongly non-Gaussian ensembles of
random matrices. We will show that the first one breaks
the Wigner-Dyson universality only locally, in the center
of the spectrum. It will nevertheless allow us to under-
stand better the second class of models, which is similar
to the exactly solvable model studied in Ref. 6. Here
we will show that this class of random matrices indeed
breaks the Wigner-Dyson universality globally and dis-
plays a crossover to a Poisson-like distribution.

Let us consider a physical system described by an
N x N random matrix H whose eigenvalues {e,},n =
1,...,N will also be randomly distributed. Within the
maximum entropy ansatz”-® for describing the eigenvalue
distribution at a given mean level density p(€), we can use
the effective plasma model introduced by Dyson,! where
the joint probability density function P({e}) is mapped
onto the Gibbs distribution of a classical one-dimensional
plasma of fictitious particles with a pairwise logarithmic
repulsion — In |e, — €,,| and a one-particle potential V (€)
to keep the system confined:

P({e}) = 27" exp[-BH({ea})], (1)
H({en}) = =D Inlei — 5| + Y V(e). (@)
i< :
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Here Z is the partition function and B, which plays the
role of an inverse temperature in the corresponding Gibbs
ensemble, is related to the symmetry of the original ran-
dom matrix ensemble and is equal to 1, 2, or 4 for orthog-
onal, unitary, and symplectic ensembles, respectively.!

When the confining potential is quadratic, the model
is the Gaussian ensemble studied by Wigner, Dyson, and
Mehta and the corresponding SDF is very close to the
Wigner surmise. The inclusion of higher powers of €2 was
shown® to have no effect on the SDF in the limit N — oo.
Until very recently the confining potential was believed to
be irrelevant for level correlations in the thermodynamic
limit N — oo.

However, a recent work® has demonstrated that this is
not the case. For some specific one-parameter family of
confining potentials V,(€), the exact solution in terms of
the non-classical g-orthogonal polynomials was found. It
showed the level correlations to deviate from the conven-
tional Wigner-Dyson form as the parameter p increases,
the SDF approaching the Poisson distribution for large
values of p. This was associated with the asymptotics of
the confining potential V,(e) ~ In®|e| for || > 1 that
is an extremely “soft” confinement as compared to the
Gaussian confining potential V (€) = €2.

In this paper two main questions will be addressed.
The first one is how soft should the confining potential
be in order to see deviations from the classical Wigner
surmise. The second question is whether the exact solu-
tion found in Ref. 6 represents the generic features of all
models with the double-logarithmic long-range behavior
of the confining potential.

In order to answer the first of these questions, we con-
sider a family of power-law potentials:1®

V(e) = Sl (3)

where A > 0 and a > 0 are two constant parameters. For
a = 2, Eq. (3) reduces to the Gaussian quadratic confine-
ment, while in the limit & — 0 the combination of such
power-law potentials reproduces the double-logarithmic
potential

V() = In? ¢ = lim[a~2(¢[* — 1)?] (3)

We will see that the level statistics exhibits two sharp
transitions when the parameter o decreases. The first one
occurs at & = 1, and it is connected with the breakdown
of translational invariance in the eigenvalue space that
is present for @ > 1 in the limit N — oo. For a < 1,
the SDF shows a nonclassical, a-dependent behavior only
near the center of the spectrum € = 0. The second critical
value is @ = 0. For confining potentials that increase
only logarithmically, the SDF turns out to deviate from
the Wigner-Dyson form everywhere in the bulk of the
spectrum.

The first transition is seen already within the mean-
field (MF) approximation suggested by Dyson.! Let us
define p(e) = 3, 6(e—¢;). By substituting this definition
into Eq. (2), one obtains the continuous version of the
energy functional #[p] in terms of p(e). The extremum

C. M. CANALI, MATS WALLIN, AND V. E. KRAVTSOV 51

of this functional corresponds to an equilibrium of the
effective plasma expressed by the equation

/ de'(p()) Ine — €| = V(€) + ¢, (4)

where (p(€)) is the mean density, and the Lagrange mul-
tiple c is to be found from the normalization condition
J{p(e)yde=N.

The solution pmr(€) to the MF, Eq. (4), confined to
the region —D < € < D, can be found using the Cauchy
method!! and is given by

1
pmr(e) = F\/ D? — e2Re

D avyde £de 5)
o VDZ—g2 € -’

where €, = € + ¢0 and the band edge D is to be found
from the normalization condition.

For a > 1 (strong confinement) the main contribution
to the integral in Eq. (5) is made by the region £ ~ D. In
the thermodynamic limit N — oo the band edge is also
divergent, D — oo. Therefore, for any fixed |¢| <« D,
one can neglect the e dependence in the integrand of Eq.
(5). Then the mean level density tends to a constant
p ~ N1~1/« gignaling the translational invariance in the
€ space.

However, for a < 1 (weak confinement), the integral
in Eq. (5) is convergent even in the limit D — oo. The
corresponding limiting function pgp(€) o |€/*~! can be
easily found as the limit z = ¢/D — 0 of the exact solu-
tion pmr(€) to Eq. (5):

— 52
V1—2z F 1,1+a;§;1_z2 . (6)
2m|e|t— 2° 2 "2

az —a P .
Here C, = ra/:)r(f+a L F(a,b;c;z) is a hypergeo-

metric functio/n, and the band edge is given by D =
2 l/ax
2 (M)

Thus for @ < 1 the mean density, Eq. (6), shows the
lack of translational invariance in the large-N limit and
is singular at € = 0.

This singularity, however, appears only in the MF ap-
proximation. An exact treatment for 8 = 2, which is
based on the representation in terms of orthogonal poly-
nomials, shows the value {p(0)) to be finite:!2

pmr (€) = ACq

(A/m)Ve [T +1/2)1%°
(2/a)r(1/a)§[r<i+1)] Y

Thus, in the case of weak confinement the MF approxi-
mation fails to describe the mean level density near the
origin. It is natural to suppose that all the level corre-
lation functions will also have a nonclassical form in this
region.

In order to study the correlation functions and, in
particular, the SDF, we have exploited the Coulomb
plasma analogy and carried out systematic Monte Carlo
(MC) simulations on the one-dimensional classical sys-
tem whose probability distribution is given by Egs. (1)

(p(0)) =
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FIG. 1. Particle density for power-law potential with

a = 0.5: The Monte Carlo results for 8 = 1,2,4 are plot-
ted vs the MF density.

and (2). As a check that this method works and is nu-
merically accurate, we have first studied the three Gaus-
sian ensembles whose density, two-point correlation func-
tions, and spacing distribution are exactly known.! For
these systems the MC simulations turned out to work ex-
tremely well for each of these quantities. For the power-
law potential, Eq. (3), for o < 1, we have carried out
simulations of systems up to N = 200 particles. The
simulations are very stable even for smaller N, and we
have typically worked with N = 100. The evaluation of
the mean density is straightforward. In Fig. 1 we plot this
quantity for « = 0.5 and 3 = 1,2,4. The Monte Carlo
result agrees very well with pmr found from Eq. (6)
except around the origin, where the simulation is more
accurate and correctly gives a finite density at € = 0. For
B = 2 the Monte Carlo value coincides with that found
from Eq. (7). The simulations with different numbers
of particles illustrate another important property of the
particle-density for weak confinement (o < 1), that is
the “incompressibility” of the core of the particle-density
distribution. In contrast to the o > 1 case, for a < 1
the confining potential is so weak that it does not “com-
press” particles in the core region near the origin. On
adding more particles to the system, these get positioned
about the wings of the distribution, rather than dis-
tribute themselves homogeneously throughout the spec-
trum, as in the case of strong confinement (o > 1). The
particle density p(€) in the core region is almost inde-
pendent of the number of particles but depends on the
inverse temperature .

The latter dependence is also a characteristic feature
of the weak confinement. For strong confinement, the
(B dependence is present only in 1/N corrections to the
mean density and thus is negligible. It leads, in partic-
ular, to the independence of the mean level density of
the symmetry of the Hamiltonian. For random matrix
ensembles with weak confinement considered here, all of
the 8 dependence is “accumulated” in the core region
near the origin that contains a few levels on the average.

The MC ‘evaluation of the SDF is, in principle, also
straightforward. However, in order to compare it with
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the Wigner surmise we need to rescale the particle posi-
tions € so that the average spacing between two adjacent
particles is one. This is known as an “unfolding pro-
cedure” and is always used in numerical calculations of
spectral correlations.!3 It consists in introducing the new
variable o instead of € according to a map:

7@ = [ e ae. (8)

The mean density is trivially unity as a function of this
variable.

In order to study the SDF in the bulk, we use the
MF solution Eq. (6) for unfolding according to Eq. (8).
We checked that the obtained unfolded mean density is
consistently equal to one, except close to the origin and
the band edge. The unfolded spacing P(o) turned out,
within our numerical accuracy, identical to the Wigner
surmise for any a. Therefore, in the bulk of the spectrum,
the Wigner-Dyson universality holds for the power-law
weakly confining potentials.

However, this universality is broken around the origin.
To show this, we consider a reference particle fixed at
the origin. The unfolded spacing must be evaluated in a
different way here, since the MF density is not accurate.
Therefore, we perform the unfolding by computing

ro-lf8], o

where the function (o) is obtained by numerically invert-
ing Eq. (8) and using for p(c) the density evaluated by
MC simulations. The result is shown in Fig. 2, where we
plot the unfolded SDF for few values of < 1and 8 =1
in comparison with the classical spacing of the Gaussian
ensemble. We can clearly see that P(co) for small o does
not follow the Wigner-Dyson universal behavior o and
starts out roughly like 0%/, If we assume that the new
variable o is proportional to €*, as obtained from Eq.
(8) using p(€) ox €71, this behavior would correspond to
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FIG. 2. Nearest-neighbor spacing distribution in the mid-
dle of the spectrum for 8 = 1 and different values of a. The
a = 2 case corresponds to the Gaussian orthogonal ensemble.
Similar results are obtained for 8 = 2,4
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FIG. 3. Nearest-neighbor spacing distribution for the loga-
rithmic confining potential, measured in the bulk of the spec-
trum at B = 1. By decreasing the parameter A, the spacing
deviates from the universal Wigner-Dyson distribution ap-
proaching the Poisson distribution (both also plotted).

P(e)/p(€) ox 8. Notice also that the decay of the SDF
for s > 1 depends on « and is slower than that for the
Wigner-Dyson distribution. We conclude that for the
power-law weak confining potential, the Wigner-Dyson
universality is broken only locally around € ~ 0. This
conclusion is also reached for 8 = 2, using the indepen-
dent method of orthogonal polynomials.'2

Now we consider the second class of random matrices,
with the confining potential that behaves asymptotically
like V(€) o In? |¢|. Since our goal is to study the eigen-
value correlations in the bulk of the spectrum, we choose
for numerical simulations the regularized confining po-
tential that is equal to zero at the origin:

V(e) = £ (1 + Ble), (10)
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where A and B are parameters of order 1.

In Fig. 3 we show the bulk SDF for A = 1,0.5,0.2,0.1,
for the orthogonal symmetry (8 = 1), together with
the spacing distribution of the corresponding Gaussian
ensemble for comparison. We can clearly see that for
small enough A the spacing distribution departs from
the Wigner distribution and shows an incipient tendency
to become more Poisson-like when A is further reduced.
Similar deviations from the Gaussian ensemble occur also
for the unitary and symplectic case (8 = 2,4).

This is very similar to the crossover found analyti-
cally in Ref. 6 for the exactly solvable model with the
double-logarithmic long-range behavior of the confining
potential. We can conclude, therefore, that the crossover
is indeed not an exclusive property of the exactly solv-
able model and is more likely a generic feature shared
by all the random matrix ensembles with the double-
logarithmic asymptotics of the confining potential.

Moreover, the crossover in the spacing distribution dis-
played by this family of random matrices is remarkably
similar to the transition observed for # = 1 in exact
numerical calculations®!%415 on disordered tight-binding
models going through the Anderson transition. Upon in-
creasing disorder, the function P(s) moves away from the
Wigner surmise, yet displays a remarkable fixed point at
o = 2, where all curves meet. This property is clearly
obeyed also by the family P(o, A) of this random matrix
model. Thus it is really possible that random matrix the-
ory is able to describe the energy level statistics at the
Anderson transition.
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