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Semiclassical calculations of the anisotropic magnetoresistance
of NiFe-based thin films, wires, and multilayers
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The anisotropic magnetoresistance (AMR) at low temperatures is theoretically studied for low-
dimensional NiFe-based systems in various geometries by solving the Boltzmann transport equation.
The AMR is treated by introducing spin-dependent anisotropic mean free paths, making use of
anisotropic-scattering parameters that are extracted from experimental spin-resolved resistivity data for
bulk dilute NiFe alloys. A first set of calculations comprises the AMR in NiFe thin films and cylindrical
wires, as a function of the layer thickness and wire diameter, respectively. For the thin film case we have
considered rotation of the magnetization vector within the film plane as well as out of the film plane.
For the latter the highest AMR ratio is found, which even slightly exceeds the bulk value. For wires the
dependence of the AMR on the dimensions is qualitatively different as compared to the film case due to
the relatively enhanced importance of boundary scattering. Finally, the validity of a description of the
combined effect of AMR and the giant magnetoresistance in terms of a simple summation of the two
effects is studied by performing model calculations for NiFe/Cu/NiFe trilayers.

I. INTRODUCTION

In 1857 Thomson discovered that the resistivity of a
ferromagnetic metal may depend on the angle between
the current and magnetization direction. ' A century later
the first systematic investigations on the origin of this so-
called anisotropic magnetoresistance eff'ect (AMR) were
carried out. Theoretical investigations, by Smit,
Berger, and Potter, showed that the effect arises from
anisotropic scattering due to spin-orbit interaction. Ex-
perirnental work was carried out by Smit, van Elst,
McGuire and Potter, Dorleijn and co-workers, ' and
Jaoul, Campbell, and Fert. It was found that a number
of alloys, based on iron, cobalt, or nickel, exhibit a rather
large AMR efFect, which proves to be of technical in-
terest in the field of magnetic recording. ' "

A measure for the size of this effect is the AMR ratio,
defined as (p~~

—pi)/pi, in which
p~~

and pi are the resis-
tivities with the magnetization parallel and perpendicular
to the current direction, respectively. Whereas for
transition-metal alloys the largest effect is found for
Ni7oCo3o, viz. , 26.7% at 4.2 K and 6.6% at room temper-
ature, alloys with compositions close to Ni8oFezo (per-
malloy) have been found to be most suitable for sensor
applications because of their high permeability and low

magnetostriction. Thin permalloy films (thickness
300—500 A) show an AMR ratio of about 2% at room
temperature. This value is much smaller than the AMR
ratio in bulk samples, which amounts to 4% at room
temperature. There are two effects that may contribute
to this difference. First, the thin films studied may be
structurally less well defined than bulk specimen, leading
to additional electron scattering at grain boundaries and
other defects. ' Second, difFusive scattering at the outer
boundaries of the film may affect the AMR ratio. The
latter dimensionality effect will be the subject of this pa-
per.

Our approach is basically very similar to the Fuchs-
Sondheimer theory' ' for the resistivity of nonferromag-
netic thin films, which involves the solution of the
Boltzmann transport equation in linear response for a
free electron gas in the relaxation-time approximation,
with the assumption of diffusive scattering at the outer
boundaries of the film. Our crucial additional assump-
tions are that (i) the resistivity of a ferromagnetic alloy
(near T=O K) is well described by the two-current mod-
el, within which the total current is given by independent
contributions from majority spin and minority spin elec-
trons (no spin-fiip scattering), and that (ii) the mean free
path of an electron depends on its spin and, in order to
treat the AMR effect, on the angle between its velocity
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vector v and the magnetization vector M. The two-
current model has been proposed by Mott' and its validi-
ty is supported strongly by experimental evidence, e.g.,
from studies of dilute binary and ternary alloy systems. '

Our second assumption has been put forward earlier by
Smit, Berger, and Potter. Here we will not discuss the
microscopic origin of the spin and angular dependence of
the electron mean free path. Instead we make use of a
parametrization scheme which consistently describes the
AMR effect of bulk alloys, and the separate contributions
from majority and minority spin electrons. To be
specific, our numerical examples have been given for di-
lute NiFe alloys. However, our method can be applied
more generally to other alloys for which su%cient experi-
mental information on the AMR effect is available. '

The model enables us to predict the magnetoresistance
effects for various geometries. In Sec. II we present the
general model, the application to bulk ferromagnetic al-
loy systems and to single layers, cylindrical wires and tri-
layers of the type F/NM/F, where F and NM are fer-
romagnetic and nonmagnetic layers, respectively. Such
trilayers show, in addition to the AMR effect, the giant
magnetoresistance effect (GMR): the resistivity decreases
upon the orientation of the magnetization directions of
the I' layers from antiparallel to parallel. ' ' Our method
allows a complete calculation of the resistance as a func-
tion of both magnetization directions. One of the impor-
tant questions then is to what extent the AMR and GMR
effects can simply be superimposed, in order to obtain the
total magnetoresistance effect. We have already briefly
addressed this question in an earlier paper, ' and we will
more extensively discuss this topic here. In Sec. III nu-
merical results for NiFe-based systems are presented and
discussed. Section IV contains the conclusions.

II. THEORETICAL DESCRIPTION

A. General model

path. The Fermi velocity UF is assumed to be equal for
both spins. The current density for majority and minori-
ty spins follows from integrating the solution of the
Boltzmann equation over the velocity space according to

3

Jt(L)(r)—
h

Jd vvg"' '(v, r),

A,
t' '(8) =A, t(~'(1 —a t'~'cos 8 b t'—"'cos ') . (4)

The parameters a ~' ~' and b ~' ~' are a measure for the an-
isotropy of the scattering. Higher-order terms are
neglected, as suggested by a microscopic treatment of the
AMR effect based on sd scattering. Note that in our
model, apart from the spin- and angular-dependent mean
free path [Eq. (4)], electrons of both spins have identical
properties such as mass, Fermi velocity, and density of
states. The model can easily be extended to a more realis-
tic electronic structure, and this might be necessary to
obtain quantitative agreement with future experiments.
However, we feel that our simple model already contains
the key ingredients to describe at least qualitatively the
size effects related to the system dimensions, in the con-
ductance of low-dimensional systems and might give
directions for novel experiments.

B.Bulk materials

For bulk materials the nonequilibrium distribution g is
independent of r. The solution of the Boltzmann equa-
tion [Eq. (2)] is then given by

in which h is Planck's constant.
In order to treat the AMR, we assume a dependence of

the mean free path on the angle 8 between the electron
velocity v and the magnetization M. This intrinsically
anisotropic mean free path for majority and minority
spin electrons is given by

The electrons involved in transport are regarded as a
free-electron gas with a spherical Fermi surface. Our
model calculations of the resistivity are based on the
Boltzmann transport equation in linear response: the
electron distribution function, at position r and with ve-
locity v, is written in the form

f t(L)(v r) fat(L)(e)+g T(L—)(v r)

Here fot' ) (e) is the Fermi-Dirac equilibrium distribution
at energy e= —,

' mv and g t(~'(v, r) is the deviation from
equilibrium in the presence of an electric field E, for ma-
jority (f) and minority ($) spin electrons. The linear
response Boltzmann transport equation in the
relaxation-time approximation is given by

gt ~ (v, r) Qf t(L)(e) t $
( )

V —eE-v (2)
Br ~1'(J )

in which e and m are the electronic charge and mass, re-
spectively, and ~~' ~ ' is the spin-dependent relaxation
time. At low temperatures only electrons at the Fermi
energy are to be considered. We therefore write
7 ~' ~ ' =X~' ~ '/UF, in which A,

~' ~ ' is the electron mean free

~fo(e)
g t' '(v) =eEu A, t'"(8)

BE,

where E is directed along the x axis and U„is the x com-
ponent of unit vector v—=v/v~. Substitution of Eq. (5)
into Eq. (3) yields the spin current density Jt(~) and thus
the conductivity per spin o. ~' ~ '

~ T(l)—JT(L)

E fd~2/t(L)(y)
2mU~ 4~

Evaluation of Eq. (6) yields the well-known Drude result
if the mean free path is isotropic. In the case of aniso-
tropic mean free paths, as given by Eq. (4), the conduc-
tivity per spin is a function of the angle 0 between M and
E.

where n is the total (majority and minority spin) conduc-
tion electron density, given by

3
8m ~UF

3 h
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~ (Q) = got ~ [1 —a t ~
( 1+2 cos2P~)

2mvF

'b—'~'(I+4cos 8)j,
gt(l)[ I ) a t(l) 3 b T(l)

2mv F

( a t l + nb t(l))cosz@)
5 35

2a 7(l)+ 12b T(l)
5 35

j 1a T(l) 3 b T(l)
5 35Pll

It thus follows that, even if the microscopic scattering
mechanism leads to a mean free path that contains a
fourth power term in cos8, the conductivity only con-
tains the second power cosO term. The separate contri-
butions of majority and minority spin electrons to the
AMR effect are given by

T( l) 1'( l)

g t'~'(v, 0)=0, if v, )0,
gt' '(v, t)=0, if v, (0.

(1 la)

(1 lb)

The solution g of Eq. (2) has now a spatial dependence on
the z coordinate, and can be put into the form' ' '

g t'~'(v, z) =eEu„ &f0(e)
BE

AeIr (v, z ) (12)

The effective mean free path A, tIt '(v, z) includes bulk
scattering as well as scattering at the film boundaries:

A. t('t '(v, z) =A, "'~'(8) 1 —exp
gt(L)(y)g

if v, &0,

(13a)

electric field E is directed along the x axis. We assume
that the scattering at the outer boundaries of the film is
purely diffusive, which implies

For the total AMR effect we find

Pll Px

A, tIt~'(v, z)=A, ' '(8) 1 —exp
A,

t( t)(8)u
if v, &0.

Oy

A,(~)(1 ——,'a —'b t )+A.(~)(—1 —
—,'a t —,', b ~)—

(10)

Information on the parameters A,o'~', a ~'~', and b ~'~' can
be obtained from the analysis of spin- and angular-
resolved resistivity data, as we will show in Sec. III.

(13b)

Note that this form of A, t((t~)(v, z },combined with Eq. (12),
indeed obeys the boundary conditions of Eq. (11). The
conductivity per spin as a function of the angle between
M and E follows from integrating g ' '(v, z ), as given by
Eq. (12), combined with Eqs. (4) and (13) over a unit
sphere in velocity space, using Eq. (3), and averaging the
resulting current density over the film thickness, yielding

C. Thin films

We now study electron transport through a film of
thickness t, with outer boundaries at z =0 and z = t. The

I

2 —f 'dz f d vv„'X,'~( '(v, z) .
2m VF t a 4m.

Carrying out the integration over z, we obtain

(14)

2
T(~) = ~e 3 d3uu ~k, t' l'(8) 1—

2mvF 2' vz + 0

A, t(~)(8)v, t—
1 exp

t g (P)v
(15)

It is clear that our result is a straightforward extension of
the Fuchs-Sondheimer theory. ' ' assuming that electrons arriving at ro scatter diffusely, it

is easily shown that' '

D. Cylindrical wires

In the case of a cylindrical wire with diameter 2R and
the electric field applied along the wire (x ) axis (Fig. 1},
we use an equivalent approach as for the thin film. Again
we assume diffusive boundary scattering, and similar
boundary conditions as in Eq. (11) can be formulated.
A ff '( v, r) is the mean distance traveled by an electron,
with normalized velocity v, passing through a point r in
the direction ro —r, with ro on the wire boundary. When

A,,('rt'(v, r) =A.t'~'(8) 1 —exp gt(t)(y) (16)

In this expression (ro —r ) and v have equal directions.
The conductivity per spin as a function of the an~le be-

tween M and E now follows from integrating g t( '(v, r )

combined with Eqs. (4) and (16) over velocity space and
averaging the resulting current density over the cross-
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ing to the appropriate boundary conditions. For the case
of purely diffusive scattering of electrons at the outer
boundaries, complete transmission at the interfaces, and
a change of the quantization axis at the NM/F interface
at z =a +b, the boundary and interfacial conditions are

FIG. 1. Geometry of a cylindrical wire with radius R. The
electric field vector E is directed along the wire axis.

g~t'~'(v, o) =0, if u, )0,
gt(L)(v a) —

g T(L)(v a) if u )0
g 'i'(v, a)=gt(i)(v, a), if u, &0,

(18a)

(18b)

sectional area S=mR of the wire, yielding

2
d'r d~uu'X""(v r )

2mU~ S s 4m

gct(v, a+b ) = Tt tgiI(v, a+b )+ Ti tg~~(v, a+b ),
if v, )0,

g~~(v, a+b ) = Ti "gi~i(v, a+b )+T""g~~(v,a+b ),
E. Trilayers if u, )0,

C

z = a+b+c
z=a+b
z=a zz=o

v'

FIG. 2. Geometry of a magnetic trilayer consisting of mag-
netic layers 2 and C separated by nonmagnetic layer B.

We also study trilayer films of the type F/NM/F,
where F and XM are ferromagnetic and nonmagnetic lay-
ers, respectively. Such trilayers show, in addition to the
AMR effect, the spin valve or giant magnetoresistance
(GMR) effect: the resistance depends on the angle be-
tween the magnetization vectors of the F layers. In ex-
perimental studies of such systems, the magnetization
direction of one of the F layers is often fixed due to ex-
change interaction with a high coercivity ferromagnet, or
with an antiferromagnetic layer ("exchange biasing").
Alternatively, it is possible to study systems for which
both layers can rotate freely. In our theoretical study we
concentrate on the exchange biased-type trilayer. ' In or-
der to calculate the combined AMR and GMR effect of
trilayers with a ferromagnetic alloy, we have extended
the semiclassical Boltzmann transport theory for the
GMR effect, proposed by Camley and Barnas, to in-
clude anisotropic spin-dependent scattering within the
ferromagnetic layers. In the present model we neglect
scattering at the F/NM interfaces. Refraction effects, re-
lated to potential steps at the interfaces, are not included,
so m and U~ are constant throughout the system. A de-
tailed theoretical study of the transport properties of
magnetic multilayers, with or without these effects, has
been done by Hood and Falicov and Dieny, respec-
tively, however without taking the AMR effect into ac-
count.

Figure 2 shows the trilayer geometry with the rnagnet-
ic layers A and C separated by the nonmagnetic layer 8
of thicknesses a, c, and b, respectively. For each indivi-
dual layer solutions g~t(~~)c(v, z) of the form of Eq. (12)
are valid, which consequently should be matched accord-

(18c)

g Ii(v, a+b)=Tt gtc(tv, a+b)+Titgci(v, a+b),

if U, &0,
ga~(v, a+b) = Thigh(v, a+b)+ T t(gct(v, a+b),

gt(i)(v, a+b+c)=0, if u, &0.
if U, &0,

(18d)

2
(19a)

Tt i = T~t =sin
2

(19b)

where g is the angle between both magnetizations. For
example, in the case of an antiparallel arrangement of the
magnetizations (g=m), Tt"=T'ai=0 and Tt~=Ti"=1.
This means that a majority spin electron in one magnetic
layer becomes a minority spin electron in the other mag-
netic layer, after traversing the nonmagnetic interlayer.

The conductivity of trilayer films, as a function of the
orientation of the magnetization vectors, is calculated
similar to the thin film case [Eq. (14)], but now averaging
over the total thickness of the trilayer, in each region of
the trilayer using the appropriate expressions for
g

1'( ( )(~v z )

III. RESULTS AND DISCUSSION

A. Parameter values

We apply the model, described in Sec. II, to NiFe thin
films and cylindrical wires, and to NiFe/Cu/NiFe tri-
layers. For polycrystalline dilute bulk NiFe alloys at 4.2
K it was found by Dorleijn and co-workers that

The transmission coeKcients T~~, T~~, T~~ and 7 ~~

determine the probability for a majority spin electron in
one magnetic layer to continue as a majority spin or
minority spin electron in the other magnetic layer, and
are given by
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Pll Pj. =14 o,
P~~ Px

Pll
(20)

p

p
=0.92,

where
p~~

is the resistivity for MIIE and p~ is the resistivity
for MlE, o. is the conductivity due to majority spin elec-
trons, and cr=o. ~+0.~ is the total conductivity. These
data were determined by the analysis of the spin- and
angular-resolved resistivities of ternary Ni, „(Fe~X, ~ ),
alloys (x «1,0&y & 1,X is a metal). ' ' From these
data it follows that, at least in the dilute limit (x « 1),
the conductivity of Ni& „Fe alloys is mainly due to ma-

jority spin electrons and the AMR effect is governed by
the anisotropic scattering of majority spin electrons.

It is apparent from Eq. (9) that Dorleijn's spin-resolved
AMR data are not sufficient to determine both anisotrop-
ic scattering parameters, a ~'~' and b '~', separately. In
one extremal case, when the b '~' terms are set to zero, it
follows that a t =0.327, a = —0.0556, and A, ot/A, o =14.8.
On the other hand, when the a ~' ~' terms are set to zero it
follows that bt =0.395, b = —0.0645, and A,ot/Ao =14.2.
As a result of our calculations, we find that the AMR ra-
tio for films, wires, and multilayers is only very weakly
dependent on the ratio of the cos 8 to the cos 8 contribu-
tion to the angular dependence of the mean free path [Eq.
(4)]. An explicit example will be given for the case of a
thin film. Our other examples are based on the first pa-
rameter set, neglecting the cos 6 term. We are confident
that from these examples, in spite of this restriction, a
very good picture if offered on dimensionality effects in
the AMR effect. For future reference, in Table I values
of a t, a ~, A,o/A, ot, and hp/p are listed for a number of di-

lute nickel alloys, based on the experimental data of Dor-

leijn, and again assuming that b~'~'=0. These data are
independent of the impurity concentration. It is interest-
ing to note that the impurity scattering (parametrized by
a t't'), which gives rise to the AMR effect, is much more
anisotropic than the resistance itself.

In the numerical calculations we use for NiFe the
values A,0~=120 A and A,o~=8 A, their ratio complying
with the value given above, and the a ~'~' given above.
We note that the actual choice of A, o~ and ko~, given a cer-
tain ratio between these quantities, only affects the thick-
ness scale below which dimensionality effects become siz-
able, and not the general behavior. In the dilute limit,
with impurity scattering only, thickness scales are in-
versely proportional to the impurity concentration. The
present values of A,o and A,o are expected to correspond to
impurity concentrations of about 20% Fe. This follows
from an order-of-magnitude calculation using the experi-
mental residual resistance of majority spin electrons in
NiFe systems (pt =0.44 X 10 Qm/at. %), ' and using
the simple expression pt =mvz/n te A,

t with values of U~

and n ~ as appropriate for Cu, m being the free-electron
mass. Using similar values of X t and A,

~ for bulk
scattering in permalloy (NisoFe2O), Dieny was able
to quantitatively analyze the GMR effect of
NisoFe20/Cu/NisoFe20/Fe~oMn5o "spin valve" multilay-
ers. However, we note that in this study no intrinsic an-
isotropic scattering was taken into account. We will re-
turn to this issue later. For the Cu layer we assume iso-

0
tropic spin-independent scattering, with A,o~ =A, o~ =135 A,
inspired again by the analysis of "spin valve" multilay-
ers. We note that this value of A,(Cu) is much smaller
than the intrinsic mean free path of a pure copper crystal
at 4.2 K, and should therefore be regarded as the result of
scattering due to growing imperfections and grain boun-
daries, which are present in thin films.

B. Numencal results

TABLE I. Anisotropic scattering parameters, spin depen-
dence of the scattering, and AMR ratio for bulk dilute nickel al-

loys, based on spin-resolved resistivity data of Dorleijn and co-
workers (Refs. 7 and 8) (4.2 K).

In Fig. 3 the calculated AMR ratio for a NiFe film is
given, which shows a monotonic decrease with decreasing

Solute
element

Co
Fe
Mn
Au
Cu
Zn
Al
Sn
Si
T1
V
Re
Rh
Ir
Pt
Cr
Ru

0.336
0.327
0.229
0.195
0.231
0.188
0.176
0.153
0.150
0.103
0.190
0.157
0.188

—0.0633
0.141
0.141
0.183

—0.0378
—0.0556
—0.0839
—0.0556
—0.0531
—0.0736
—0.0582
—0.0684
—0.0813
—0.0813
—0.0787
—0.0607
—0.0582
—0.0352
—0.0201
—0.0429
—0.0277

17.0
14.8
7.45
7.19
3.41
2.75
1.97
1.87
1.47
1.07
0.531
0.361
0.348
0.231
0.259
0.230
0.080

~P ~PII
(%)

13.5
12.9
7.8
7.5
6.8
4.6
3.8
2.9
2.1

0.55
0.15

—0.50
0.05

—1.48
0.40

—0.35
—0.60

~o 10

CL

O
I I I I I IIII I I I I I IIII I I I I IIIII

10 10 10 10
Film thickness

I I I I IIII I I I I I III

10 10
(A)

FIG. 3. AMR ratio as a function of the film thickness with
the magnetization rotating in the film plane. For the solid line
the a ~'~' parameters are used (b ~'~'=0), for the dashed line the
b ~'~' parameters (a ~'~'=0). The small dashed line represents
the bulk value.
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film thickness, deviating significantly from the bulk value
for thicknesses below a few hundreds of A. The solid
curve gives the result based on the set of a ~' ~' parameters
discussed above (taking b t' '=0), and the dashed curve
gives the result based on the set of b t' ' parameters (tak-
ing a t'i'=0). It can be seen that the predictions, based
on these rather extremal cases, are very similar. As dis-
cussed above, this has motivated us to neglect in further
discussions the possible presence of a cos 8 term in the
expression of the anisotropic mean free path [Eq. (4)].

The calculated normalized resistivity of a thin film of
200 A NiFe as a function of the angle 0 between M and
E is shown in Fig. 4. The resistivity was calculated with
the magnetization rotating in the film (xy ) plane (solid
line) and rotating in the xz plane (dashed line), perpendic-
ular to the film plane. For both cases the angular varia-
tion is found to be described approximately, but not pre-
cisely, by a cos 0 function. The amplitude of the effect is
larger in the out-of-plane case, as compared to the in-
plane case. Figures 5(a) and 5(b) show the AMR ratio as
a function of film thickness, the out-of-plane AMR ratio
being even slightly larger than the bulk value for
thicknesses above 200 A. For the case of a wire Fig. 5(c)
shows a monotonic decrease of the AMR ratio with de-
creasing wire diameter 2R, which is even steeper than for
the in-plane AMR effect in a film.

As the basis of a more detailed discussion on the origin
of these results, the variation with thickness of the nor-
malized resistivity change Ap/bp„=(pi~i —pi)/(pii —pi)
and of the normalized resistivity for M~~E, pii/pii are
given in Figs. 6 and 7, respectively. 4p and

p~~
are

the bulk values. Figure 6 shows that the resistivity
change Ap for the thin-film case is nearly independent of
the film thickness for films thicker than about 100 A [in-
plane case, (a)] or about 500 A [out-of-plane case, (b)].
For thinner films hp/hp increases. The effects shown
in Figs. 4—7 can be understood when considering only
majority spin electrons, as (i) they carry the major part of
the current, and (ii) dimensionality effects due to minority
spin electrons are very small because of their small mean

~o 10

8

CC

4

III

10 10 10 10 10 10
Film thickness/wire diameter (A)

FIG. 5. AMR ratio as a function of film thickness or wire di-
ameter (a) for a thin film with the magnetization rotating in the
film plane, (b) for a thin film with the magnetization rotating out
of the film plane, and (c) for a cylindrical wire. The small
dashed line represents the bulk value.

free path. It follows from Eq. (4), with the values for a f

and a ~ given above, that majority spin electrons with a
large velocity component collinear to the magnetization
direction experience the strongest scattering. Thus, as is
illustrated in Fig. 4, the highest resistivity is found when
the magnetization is collinear to the electric field and the
resistivity drops when the magnetization vector is orient-
ed perpendicular to the electric field. When the film
thickness decreases, diffusive scattering at the film. boun-
daries leads to an increase in resistivity, as shown in Fig.
7. Curves (a) and (b) in Fig. 6 show that this increase de-
pends on the orientation of the magnetization. This can
be explained by the fact that the contribution to the
current of electrons with a velocity vector that deviates
from E is larger in the case that M

~ ~

E than in the case
that MIE, so that diffusive boundary scattering
influences

p~~
more than pz. However, the stronger in-

crease in resistivity with decreasing film thickness leads
to a decreasing AMR ratio as the net effect.

0.96

Q:~ Q.92
CL

8

C)

CI

' -- out-of-plane

0.84 I I I I I I t I

0.2 0.4 Q.6 0.8
0 (units of vr)

FIG. 4. Calculated normalized resistivity as a function of the
angle 0 between M and E of a 200 A NiFe thin film, with the
magnetization rotating in the film (xy) plane (solid), and rotat-
ing in the xy plane (dashed), perpendicular to the film plane.

C

I I I ~ I lll I I I I I ~ I , , . . . II I I I I I I ~ I

1Q 10 10 10 10 10
Film thickness/wire diameter (A)

FIG. 6. Normalized resistivity change Ap/Ap as a function
of film thickness or wire diameter (a) for a thin film with the
magnetization rotating in the film plane, {b) for a thin film with
the magnetization rotating out of the film plane, and (c) for a cy-
lindrical wire. hp„is the bulk resistivity change.
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FIG. 7. Normalized resisitivity as a function of film thickness
(solid) or wire diameter (chain dashed), in the case of MIIE. p„
is the bulk resistivity.

FIG. 8. AMR ratio (%) of a NiFe/Cu/NiFe trilayer film, as
a function of the NiFe and Cu layer thickness, with parallel
magnetizations.

Due to the fact that p~ (M in plane) increases more
strongly with decreasing film thickness than p~ (M out of
plane), the AMR ratio for thin films is smaller when the
magnetization rotates in the film plane than when the
magnetization rotates from in plane (MIIE) to perpendic-
ular to the film plane (MIE). In the out-of-plane case the
inQuence of diffusive scattering at the film boundaries is
reduced because the anisotropic scattering limits the
mean free path of electrons with a large velocity com-
ponent perpendicular to the film plane.

In order to understand the results for cylindrical wires,
we are forced to reconsider the point of view that the ma-
jority spin electrons determine the AMR in all cases. Fig-
ure 6 [curve (c)] shows that Ap ultimately decreases for
small wire diameters, in contrast to the case of thin films.
In a cylindrical wire, the outer boundaries have a strong
infiuence on the resistivity [curve (c) in Fig. 7]. The con-
tribution to the current of majority spin electrons, that
have a relatively large mean free path, depends more
strongly on the wire diameter than the contribution of
the minority spin electrons. For a very small wire diame-
ter the majority spin electrons experience a strong
diffusive scattering at the outer boundaries, leading to a
relatively large contribution of the minority spin elec-
trons to the total current and to the AMR. As the con-
tribution to the AMR ratio due to minority spin electrons
is negative in NiFe [see Eq. (20) or, equivalently, a is
negative], the total resistivity change bp decreases with
decreasing wire diameter.

The results of the calculations on NiFe/Cu/NiFe tri-
layers are summarized in Figs. 8 and 9.' The magnetiza-
tion of one of the NiFe layers is fixed, the magnetization
of the other NiFe layer can be freely rotated. Figure 8

shows the calculated values of the AMR ratio as a func-

tion of the Cu-layer thickness tc„and the NiFe-layer
thickness tN;„„definedas

p(P MIIE) p(P MJ-E)
p(P, MIIE)

(21)

the magnetizations being mutually parallel (P ). In Fig. 8
it can clearly be noticed that shunting by the Cu inter-
layer gives a considerable reduction of the AMR ratio.
For tN;„,=200 A and tc„=0A the bulk value of 12.9%%uo

for the AMR ratio is almost reached. Figure 9 shows the
calculated GMR ratio as a function of tc„and tN;F„
defined as

GMR MIIE
—p( &»MIIE) —p(»MIIE)

p(P, MIIE)
(22)

The magnetizations, in a parallel (P) or antiparallel ( AP)
arrangement, are collinear to the electric field E. From
Fig. 9 we can see that the maximum in GMR ratio is
achieved at very low thickness, for tc„~0A and

tN;„,=20 A. For a finite tc„the GMR ratio is reduced
because of shunting and a decreasing probability for elec-
trons to cross the Cu interlayer without scattering. For
large tN;„,it is also shunting that causes the reduction in
GMR ratio. For very small tN;„, diffusive scattering of
the majority spin electrons at the outer boundaries
reduces the difference in the scattering of spin-up and
spin-down electrons and increases the resistivity. There-
fore the GMR ratio decreases. The dashed line in Fig. 9
marks the tN;„,with the highest GMR, as a function of
tc„.It shows that, in order to maximize the GMR, tN;F,
must be enlarged with increasing tc„,thereby preventing
the current from running mainly through the Cu layer.

In Fig. 10 the quantity A&MR, which is defined as

[p( AP, MIIE) —p(P, MIIE)]—[p( AP, MlE) —p(P, MLE) ]
p(P, MIIE)

(23)
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FIG. 9. GMR ratio (~o) of a NiFe/Cu/NiFe trilayer film, as

a function of the NiFe and Cu layer thickness, with the magne-
tizations parallel to the direction of the electric field. The
dashed line connects points, for each Cu thickness, of optimal
NiFe thickness.

is plotted as a function of tNjpg and tc„.AGMR represents
the inAuence of anisotropic scattering on the GMR ratio.
Comparison of Figs. 9 and 10 shows that
hoMR/GMR(M~~E) can reach at least 10 to 20% in
areas where GMR is very small and A&MR is large

0

enough, e.g., for tc„=10A and tN;„,very small. Trends
in Fig. 10 can be understood when taking the following
three points into account. (i) According to Eq. (4) the
average value of A,

t (NiFe) for electrons is smallest in the
case of M~~E. The spin dependence of the scattering is
therefore smaller than in the case of MlE. This effect
gives a negative contribution to A&MR and becomes more
important for decreasing NiFe layer thickness. In the
case of thin NiFe layers most of the current is carried by

I

0 50
t,„(A)

100

FIG. 10. 6&MR, that represents the influence of anisotropic
scattering on the GMR, as a function of the NiFe and Cu layer
thickness.

electrons with a velocity vector close the current direc-
tion, due to the diffusive scattering at the boundaries. (ii)
As mentioned before in the case of M~~E, the enhanced
scattering of spin-up electrons parallel to the current
direction results in a relatively larger contribution to the
current from electrons with a large velocity component
perpendicular to the plane of the layers. This is most im-
portant for large NiFe thickness and results in a positive
contribution to AGMR. In this case diffusive scattering at
the boundaries does not severely limit the contribution to
the current of electrons with a large perpendicular veloci-
ty component. (iii) When the GMR decreases, the abso-
lute value of 5&MR decreases.

The dependence of the AMR ratio on the mutual align-
ment of the magnetic layers follows from the quantity
A~MR, which is defined as

[p(P, M[(E)—p(P, M LE)]—[p( AP, M[(E)—p( AP, M LE)]
p(P, MifE)

(24)

From comparison of Eqs. (23) and (24) it follows that
b,&MR= —5&MR. The conditions where the GMR ratio is
relatively sensitive to the current direction therefore pre-
cisely coincide with the conditions where the AMR ratio
is relatively sensitive to the mutual alignment of the I'
layers. For the usual layer thicknesses in spin-valve
structures ' these cross effects are very small.

Our predictions of the AMR effect in thin films can
easily be checked by performing resistivity measurements
at helium temperature on a ferromagnetic alloy for vary-
ing film thickness, by rotating the sample in a saturating
field. In-plane measurements of the AMR effect have al-
ready been carried out by McGuire and Potter in per-
malloy thin films. The results of these measurements, al-
though they were carried out at room temperature,
roughly support our predictions. The out-of-plane mea-
surements will require fairly high fields, because of
demagnetization effects. According to our predictions
the cylindrical wire case seems to be very suitable for
determining the minority spin contribution to the AMR
effect. However, the AMR effect in the wire case will be

I

very complicated to check experimentally, mainly be-
cause of the difhculties of preparing cylindrical samples
with a diameter small enough to measure size effects.

In polycrystalline samples, apart from intrinsically an-
isotropic scattering processes also extrinsically anisotrop-
ic scattering processes can play an important role, as was
shown by Dieny, who was able to quantitatively analyze
the GMR effect in NisoFezo/Cu/NisoFe2O/Fe50Mn~o mul-
tilayers by taking grain boundary scattering into account.
In a forthcoming paper we will present the results of an
analysis of the resistivity of ferromagnetic thin films and
M/Cu/M/Fe50Mn5o "spin-valve" multilayers (M is a fer-
romagnetic metal) by taking intrinsically anisotropic
scattering as well as scattering at grain boundaries into
account.

IV. CONCLUSIONS
We have carried out model calculations of the resistivi-

ty by solving the Boltzmann transport equation in linear
response for a free-electron gas in the relaxation-time ap-
proximation. Our most crucial additional assumption, in
order to treat the anisotropic magnetoresistance effect, is
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that the electron mean free path depends on the angle be-
tween the electron velocity vector and the magnetization
vector.

We have applied this model to bulk ferromagnetic sys-
tems, thin films, cylindrical wires, and trilayers of the
type F/NM/F, where F and NM are ferromagnetic and
nonmagnetic layers, respectively. Numerical examples
have been given for dilute NiFe alloys. For a thin film,
the AMR ratio in the case where M rotates out of the
film plane is predicted to be considerably higher than in
the case where M rotates in the film plane. Although the
AMR ratio decreases with decreasing film thickness, the
resistivity change hp increases. This is due to the fact
that inhuence of diffusive scattering of electrons at the
film boundaries depends on the magnetization orienta-
tion. The AMR ratio for a cylindrical wire decreases
rapidly if the wire diameter becomes smaller than the
relevant mean free path, and even Ap decreases for
sufficiently low diameters. This is due to the contribution

of the minority spin electrons, which cannot be neglected
when the diameter becomes much smaller than the mean
free path of the majority spin electrons.

Our calculations of F/NM/F trilayers have revealed
to what extent AMR and GMR can be treated as two su-
perimposed effects. In a limit range of F-layer and XM-
layer thickness, the difference in GMR ratio in the case
of M~~E and MLE can be larger than 10%%uo. However,
treating the combined effect of AMR and GMR in terms
of a simple summation of both phenomena is, in almost
the entire thickness region studied, precise within a few
tenths of a percent.

ACKNOWLEDGMENT

This research is part of the European Community
ESPRIT3 Basic Research Project, "Study of Magnetic
Multilayers for Magnetoresistive Sensors" (SmMmS), and
was supported by the Technology Foundation (STW).

W. Thomson, Proc. R. Soc. 8, 546 (1857).
J. Smit, Physica 16, 612 (1951).
L. Berger, Physica 30, 1141 (1964).

4R. I. Potter, Phys. Rev. 8 10, 4626 (1974).
5H. C. van Elst, Physica 25, 708 (1959).
T. R. McGuire and R. I. Potter, IEEE Trans. MAG-j. 1, 1018

(1975).
7J. W. F. Dorleijn and A. R. Miedema, J. Phys. F 5, 1543

(1975).
~J. W. F. Dorleijn, Philips Res. Rep. 31, 287 (1976).
O. Jaoul, I. A. Campbell, and J. Fert, J. Magn. Magn. Mater.

5, 23 (1977).
F. W. Gorter, J. A. L. Potgiesser, and D. L. A. Tjaden, IEEE
Trans. MAG-10, 899 (1974).
D. A. Thompson, L. T. Romankiw, and A. F. Mayadas, IEEE
Trans. MAG-11, 1039 (1975).
A. F. Mayadas, J. F. Janak, and A. Gangulee, J. Appl. Phys.
45, 2780 (1974).
K. Fuchs, Proc. Cambridge Philos. Soc. 34, 100 (1938).

i4E. H. Sondheimer, Philos. Mag. Suppl. 1, No. 1, p. 1 (1952).

N. F. Mott, Proc. R. Soc. 153, 699 (1936).
M. N. Baibich, J. Broto, A. Fert, F. Nguyen Van Dau, F.
Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chaze-
las, Phys. Rev. Lett. 61, 2472 (1988).
G. Binasch, P. Griinberg, F. Saurenbach, and W. Zinn, Phys.
Rev. B 39, 4828 (1989).
Th. G. S. M. Rijks, R. Coehoorn, and W. J. M. de Jonge, in
Magnetic Ultrathin Films, edited by B. T. Jonker, MRS Sym-
posia Proceedings No. 313 (Materials Research Society, Pitts-
burgh, 1993),p. 283.

9R. G. Chambers, Proc. R. Soc. A 202, 378 (1950).
R. B.Dingle, Proc. R. Soc. A 201, 545 (1950).
B. Dieny, V. S. Speriosu, S. Metin, S. S. P. Parkin, B. A. Gur-
ney, P. Baumgart, and D. R. Wilhoit, J. Appl. Phys. 69,
4774 (1991).
R. E. Camley and J. Barnas, Phys. Rev. Lett. 63, 664 (1989).

~3R. Q. Hood and L. M. Falicov, Phys. Rev. B 46, 8287 (1992).
~4B. Dieny, J. Phys. Condens. Matter 4, 8009 (1992).
2~A. Fert and I. A. Campbell, J. Phys. F 6, 849 (1976).

B.Dieny, Europhys. Lett. 17, 261 (1992).


