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Universal compressibility behavior of dense phases
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We recently proposed an isothermal equation of state that was successfully applied to study the high-
pressure behavior of molecular liquids. In this work we extend its applicability to liquid metals, poly-
mers, molten salts, and solids. The possibility of considering this equation as an alternative to long-
standing equations such as those of Tait and Birch-Murnaghan is emphasized. This suggestion is firmly

supported by comparisons with experimental data up to pressures of several GPa. A new physical inter-
pretation of the pressure coefficient of the Tait equation BT is given. It can be identified to the diver-
gence pressure along a pseudospinodal curve. We also compare the performance of our equation with
the most successful equations of state used to represent isothermal data of solids, with excellent results.
Our equation can be applied to systems with phase transitions. An interesting observation is that it
seems that the different pseudospinodal curves obtained for the different phases can be put together into
the same curve except for characteristic jumps occurring at the phase transitions.

I. BACKGROUND AND INTRODUCTION

Isothermal data at elevated pressures of liquids, poly-
mers, and molten salts are widely represented by the fol-
lowing equation

sured, only three independent coefficients describe each
isotherm.

If vp is taken to be the zero-pressure molar volume, the
equation can be expressed in terms of Bp and Bp as fol-
lows:

p(p) = Po
1 —CrlnI (p +BT) /(po+BT ) ]

p (v/vo) =(1/2)BO (Bo—7)—2(Bo —6)(vo/v)

where po is the atmospheric pressure, po is the value of
the density p measured at pp, and CT and BT are parame-
ters to be determined. Equation (1) differs from the origi-
nal equation used by Tait, which was originally derived
to represent the compressibility of water. Many authors
refer to it as the modified Tait equation but, for the sake
of brevity, we simply call it the Tait equation from now
on.

The analysis of high-pressure isothermal data of solids
is commonly made in terms of the so-called Birch-
Murnaghan equation ' which expresses the pressure p as
a function of volume U in the following form:

+(Bo—5)(vo/v ) (3)

1 —X
p =3Bo exp[(3/2)(Bo —1)(1—X)], (4)

Parsafar and Mason compared the results obtained
with their equation with those from the equation pro-
posed by Vinet et al. This second equation proved to
give the best fit of the experimental data over the full
range of cornpressions of solids experimentally available
and can be written in the following form:

p =(3/2)Bo
Uo

7/3

X '1 —(3/4)(4 BQ)—

Vp

Uo

5/3

' 2/3

—1 7 (2)

where X =(v/vo)'
We recently confirmed that the pressure behavior of

the isothermal compressibility ~T of molecular liquids
(including water) can be characterized by the following
inverse power law: '

ttT(p) =tt*(p —p, )

where up is the zero-pressure volume, Bp is the iso-
thermal bulk modulus at zero pressure, and Bp is its pres-
sure derivative.

Very recently, Parsafar and Mason derived a universal
equation of state valid for a wide variety of compressed
solids. For a given temperature, the equation depends on
four coefficients; one of them, Uo, is some standard
volume, which is often taken to be the molar volume at
p =0, as in Eq. (2), but which can be quite arbitrary.
Since the sum of the three other coefficients must be
equal to the reference pressure, po, at which up is mea- p=p, exp .

(1—y) SP

where ~* is a proportionality constant and p, is the
divergence pressure along a certain pseudospinodal curve
at the considered temperature. We found that the value
of the pseudocritical exponent y was close to 0.85 (Refs.
9—11) and this value will be used here.

The integrated equation for the density which follows
proved successful in representing isothermal data of
several liquids as well"'
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v =v, exp
K

( )(i y)
(1—y) Sp

where p, (=1/u, ) is the density (volume) of the liquid
branch of the pseudospinodal curve at that temperature.

The equivalence established between Eqs. (5) and (6)
and a universal superposition principle proposed by San-
chez, Cho, and Chen' ' for compression data of liquids,
polymers, and solutions suggested to us the possibility
that our treatment would be of general application. It is
the purpose of this work to extend the validity of the
principle in which Eqs. (5) and (6) are based on liquid
metals (mercury will be studied here), molten salts, poly-
mers, and solids.

A striking feature of Eq. (6) is that it overcomes the
well-known limitation of the Tait equation of requiring
negative volumes at sufficiently high pressure. " In ad-
dition, we shall introduce a new physical interpretation of
the pressure coefficient of the Tait equation BT, that is, to
consider it as the negative value of the divergence pres-
sure along a pseudospinodal curve p, . This equivalence
allows us to obtain two other expressions relating the
characteristic parameters of Eq. (6) to those of the Tait
equation. Numerical comparisons are presented and dis-
cussed. The possibility of using Eq. (6) instead of the Tait
equation to represent experimental data of liquids, poly-
mers, and molten salts is emphasized. In addition, the re-
sults for solids are of a quality comparable to those ob-
tained from the most successful equations recently pro-
posed in the literature.

Finally, since Eq. (6) is applicable to both liquid and
solid phases, the possibility of using a single pseudospino-
dal curve to describe high-pressure data for all condensed
phases of a given substance is outlined.

II. EQUATION (6) VS TAIT, BIRCH-MURNAGHAN,
AND OTHER EQUATIONS

The pressure parameter of the Tait equation BT has re-
ceived many theoretical and empirical interpretations,
but most of them coincide in identifying the quantity
(p+BT) as the difference between the thermal and at-
tractive pressures of a liquid. Leyendekkers' has recently
compared BT for water to the network stress or pressure
derived from the application of the scaled particle theory.

We shall use a different physical interpretation of BT
here. Let us consider the expression that is derived
from Eq. (1) for the isothermal compressibility, a.T=p '(&p/&p ),

~T(p)=cr(p/po)(p+&T) ' (7)

According to the definition of spinodal curve, ' where
the isothermal compressibility diverges [(Bp/Bp)z. =0],
BT can be considered as the negative value of the diver-
gence pressure along a spinodal curve [p, in Eqs. (1) and
(6)], so let us write,

Psp
= —BT .

Despite the simplicity of the equivalence established in
Eq. (8), which is a direct consequence of Eq. (7), to the
best of our knowledge, this explicit physical interpreta-
tion of the pressure coefficient of the Tait equation pa-
rameter is new. This prescription can be numerically
confirmed by comparing the values of BT for water given
by Leyendekkers' with those of p, reported by us in
Ref. 9 obtained from the fitting of high-pressure data of
Chen, Fine, and Millero' to Eq. (6).

From Eqs. (5) and (7) at zero pressure one obtains the
following expression which relates ~* with the parame-
ters of the Tait equation:

On the other hand, from Eqs. (1) and (6) at zero pres-
sure, the following expression relating p, and po is ob-
tained:

p =poexp I
—CT /( 1 —y ) j . (10)

A numerical confirmation of the validity of Eqs. (8) to
(10) is given in Table I where the coefficients of Eq. (6)
for carbon disulfide are compared with those calculated
from the Tait coefficients previously reported by us. '

Although the coefficient CT is usually taken as a con-
stant for a given liquid, there is evidence that for liquids
in general it is not a constant. Its value for nonassociated
liquids and polymers is commonly found to be between
0.08 and 0.10.' Values reported by Dymond and Malho-
tra for some liquids confirm these limits. Some authors
suggest to take it as a universal constant equal to
0.0894. Nevertheless, an interesting consequence of Eq.
(10) is that the ratio (p,~/po) should take a value about
0.50, which confirms the results of this quantity previous-
ly reported by us for liquids such as chloroform and n-

hexane.
Regarding Eqs. (2)—(4), as shown above, the behavior

of solids at high pressures is generally described by the
isothermal bulk modulus Bo and its pressure derivatives
Bo B0 etc. , at zero pressure. For a given substance, the
values of this parameters show considerable disagreement
among different authors partly because they depend on
the choice of the equation employed to describe the ex-
perimental data. Furthermore, the same equation usually
leads to different values of the parameters depending on
the experimental range of pressures considered.

, /mol dm ~*/MP
T/K Eq. (6) Tait Eq. (6) Tait

p,p/MPa
Eq. (6) Tait

298 ~ 13
273.22
248.07
227.60
198.77

8.651
9.014
9.340
9.328
9.330

8.471
8.725
8.974
9.174
9.443

0.0482 0.0497
0.0462 0.0483
0.0447 0.0472
0.0449 0.0460
0.0454 0.0449

—104.9
—123.2
—142.8
—175.8
—217.9

—105.6
—128.0
—149.8
—176.5
—208.2

TABLE I. Comparison of the characteristic parameters of
Eq. (6) obtained from the fit of experimental densities (Ref. 19)
with those calculated from the coe%cients of the Tait equation
reported in Ref. 19.
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From Eqs. (5) and (6), the following expressions for Bo,
Bp and up are easily obtained as well

Bo =(1/rr*)( —p,~)r,

Bo =rBo/(

vo=v»expIy/[(y —1)Bo]I .

(12)

(13)

The validity of these expressions will be shown in the
following sections.

III. COMPARISGN WITH EXPERIMENT

A. Liquid metals

0

Values of Bz- for mercury were reported by Le Neindre
and Osugi' by fitting the experimental pVT results of
Bridgman ' between 243.15 and 293.15 K to Eq. (1). We
fitted to Eq. (6) the experimental isotherms reported by
Grindley and Lind for mercury of up to 800 MPa and
found that, according to Eq. (8), the divergence pressures
obtained were in excellent agreement with the smoothed
values reported by Le Neindre and Osugi for Bz ( T).
Furthermore, Eq. (6) fits the data within 0.0003 gem
being about 0.0014 gem the estimated uncertainty re-
ported by the authors. Figure 1 shows the temperature
dependence of our divergence pressures obtained from
the fit and those BT reported by Le Neindre and Osugi.
Results of p, obtained at several temperatures from the
experimental speed of sound measurements of Davis and
Gordon up to 1.3 GPa are also included in Fig. 1. Ex-
cellent agreement is found for these values as well,
confirming an important feature of Eq. (6), namely, that,
for a given temperature, its characteristic parameters are
not too influenced either by the range of pressure con-

sidered in the correlation or by the different data sources
consulted.

B. Polymers

In a recent review, Rodgers reported the coefficients
of the Tait equation for more than 50 polymers and ex-
perimental pVT data of four polymers up to 200 MPa.
Although the values of the coefficients reported by this
author are smoothed ones, they suffice for our purposes
since we are mainly interested in evaluating the validity
of the equivalence expressed by Eq. (8) and in the ability
of Eq. (6) to represent experimental data at high pressures
for different materials. We shall show here the results ob-
tained for poly(s-caprolactone) (PCL) only. We obtained
similar results for polyprolylene, poly(vinyl chloride), and
poly(epichlorohydrin).

Thus, we fitted to Eq. (6) the specific volumes of PCL
in the liquid state along five isotherms by Axing p, to the
negative value of the smoothed values of (Bz,
MPa) = 189exp I

—0.003 931(T —273. 15 ) I reported by
Rodgers. The parameters U, and ~* obtained from the
6t are plotted in Fig. 2 as functions of the temperature.
Both quantities exhibit a simple linear dependence with
temperature is this range of temperatures, which indi-
cates that Eq. (6) would be useful to predict the high-
pressure behavior of this kind of system at higher temper-
atures. Figure 3 shows the ability of Eq. (6) to represent
the pVT of PCL using the parameters referred to above.

According to Eq. (9), our results of a* indicate that CT
should be about 0.084 rather than 0.0894 used by
Rodgers. This difference leads to systematic differences
between the corresponding parameters of Eqs. (1) and (6)
according to Eqs. (9) and (10). It can be also confirmed by
fitting the experimental data of Rodgers to Eq. (6) with
the three parameters free; one finds that ( —p, ) is always
greater than the BT of Rodgers at the same temperature
in about 20 MPa. A detailed analysis of Rodgers' results
reveals that Eq. (1) is not flexible enough to fit the whole
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FIG. 1. Test of the validity of Eq. (8) for liquid mercury. We
compare the results for the pressure parameter of the Tait equa-
tion BT reported by Le Neindre and Osugi (Ref. 1) () with our
results for the divergence pressures, p,„, obtained from the
fitting of the experimental isotherrns of Grindley and Lind (Ref.
22) (o) and Davis and Gordon (Ref. 23) ( ) to Eq. (6).

i.6s l-

370 380 390 400 410
T (K)

420 430

FIG. 2. Parameters U,„(R)and x* ( ) of Eq. (6) as functions
of the temperature for poly(E-caprolactone). Experimental
specific volume results (Fig. 3) and those of Bz(T) [equal to
—p,~( T) according to Eq. (8)] taken from Ref. 20 (see text).
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pVT data using the functions described there. An alter-
native and suitable function to represent p, ( T)," and so
BT(T), is the rl/1] Fade approximant proposed by Alba
et al. Supposing that the pseudospinodal curve in
(p, T) variables is well described by this Pade, we have re-
cently derived a complete equation of state based on Eq.
(6). The final expression represents accurately the ther-
modynamic properties of liquids up to very high pres-
sures using only seven adjustable parameters, all of them
with a clear physical meaning. Results of this section
suggest the use of this equation of state in pVT correla-
tions of polymers also.

C. Molten salts

Owens reported densities of several molten alkali ni-
trates determined by the piston-cylinder method at pres-
sures up to 9000 atm (1 atm=0. 101325 MPa). The
rough volume data were reported in the form ( v, —

U ) /vo,
UI being the volume at 1000 atm and vo the zero-pressure
volume. Figure 4 shows the test of Eq. (6) to represent
the 377 K isotherm of KNO3. The characteristic param-
eters of Eq. (6) as obtained from the fit at this tempera-
ture are v, =5.5388 cm mol ', ~*=0.009 761 atm
and p, = —9668 atm. Similar results were obtained for
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FICx. 4. Test of Eq. (6) for experimental
specific volume results of molten KNO3 at 377
K reported by Owens (Ref. 26) ( ). u& is the
volume at 1,000 atm and Uo the zero-pressure
volume.
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all the isotherms of KNO and other alkali molten salts,3

namely i 3, a 3,LiNO NaNO3, and RbNO3. In general, the re-
sults for ~T at atmospheric pressure obtained by extrapo-
lation o q. af E . (5) agree well with those determined y ul-
trasonic measurements in molten salts.

120

100

80

D. Solids

We shall now analyze the literature data of some
selected solids in order to test the prediction, representa-

of E . (6) in the studytion and extrapolation capabilities o q. in
of these materials. We shall also compare the perfor-
mance of Eq. (6) with those listed in Sec. I.

60

40

20

1. Normal hydrogen
10 15 20 25 30

Experimental data of normal hydrogen n-H2 are
available in the literature for very high compressions at
about, ' sb 5 K 27 28 so this substance provides a severe test to
any universal relation for solid .s. In this sense, Vinet
et al. analyzed the experimental data of this substance
in terms of their universal relation and found satisfactory
agreernen upt up to very high pressures using only zero-
pressure data as input. The input values they use o
determine the characteristic parameters of Eq. ( are
BO=1.7 kbar and Bo =7.0, which were taken from Ref.
27. We shall use these values here also, so according to
Eqs. (11)—(13) the characteristic parameters of Eq. 6 are
the following: v, =2.247vo; x'=0. 1539 kbar ', and

Fi ure 5 shows the comparison of the experimental rel-
ative corn ressions reported in Refs. 27 and wi

redicted from Eqs. (3), (4), and (6). As Vinet et al. al-
ready con rme, efi d the Mum aghan prediction deviates

~ ~ ~ ~

significantly at very high pressures so it is not inclu e in

1.0—

FIG. 6. Comparison of experimental bulk modulus B for nor-
mal hydrogen (0, Ref. 27) with those predicted from Eq. (6)
(continuous line).

the figure. It is observed that Eq. (6) yields the most ac-
cura ete results over the whole pressure range.

of n-HFigure 6 compares data for the bulk modulus o n- 2

reported by Anderson and Swenson to those calculated
from Eq. (5). Again, the agreement between calcu ated
and experimental results is excellent.

2. Solid argon

The volumetric properties of solid argon were mea-
sured at room temperature by Ross . p
using a iamod' ond-window high-pressure ce . e have
fitted their experimental volumes to Eq. (6). T e c arac-
teristic parameters of the fit arere the following:
USP

= cm mol '; ~ =0.1445
p p

0 28 GPa The results are plotted i' the inset o
'

set of
Fig. 7. Ross et a. repor eR l reported Monte Carlo calculations
for solid argon using an (exp-6) potential. They found a
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FIG. 5. Comparison of experimental relative compressions
(v /v0) for normal hydrogen (0, Ref. 27; ~,~ Ref. 28) with several
predictions using zero-pressure data

'
pd a as in ut (see text):———,E . (3)],(,Eq. (4)], and [,Eq. (6)]. The in-

set shows the low-pressure range with experimentaental data from
Ref. 27 only.

FIG. 7. Test of Eq. (6) for solid argon for experimental re-
sults of molar volume reported by Ross et a . e .et aI. (Ref. 29) (o) (see
inserted figure). Comparison of molar volume results extrapo-
lated with Eq. up o. (6) t 700 GPa ( ) with those reported by
Ross et aI. (Ref. 29) from Monte-Carlo calculations using an
(exp-6) potential.



51 UNIVERSAL COMPRESSIBILITY BEHAVIOR OF DENSE PHASES 33

good agreement between their calculated and experimen-
tal results up to 80 GPa and subsequently extended their
calculations up to 700 GPa in order to compare their re-
sults with those determined from shock wave measure-
ments. We have extrapolated our results using Eq. (6) up
to 700 GPa. The comparison with the results of Ross
et al. is plotted in Fig. 7. A fairly good agreement is
found between both sets of data at the highest pressures,
which confirms that, under the basis of some theoretical
models also, Eq. (6) exhibits the correct trend up to ex-
tremely high pressures.

vp /cm' mol Bp/GPa Bp y /GPa

Eq. (2) 12.32+0.04
12.4+0.2

23.4+0.5
21.7+4

4. 17+0.03
4.5+0.6

407
4.48

TABLE II. Comparison of the isothermal bulk modulus, Bp,
its pressure derivative, Bp, and the molar volume, vp, at zero
pressure, for ice VII obtained from a weighted least-squares fit
of the experimental molar volumes at 300 K: (a) up to 128 GPa
(first row of each equation, 36 experimental points) (Ref. 31) and
(b) up to 18 GPa (second row, ten experimental points) (Ref. 30).
The chi square of the fit, g, is recorded in the last column.

3. Ice VII Eq. (3) 12.54+0.05
12.4+0.2

18.9+0.6 5. 12+0.05
20. 1+4 5. 1+0.7

341
4.53

12 -', Ice VII

10

0
2
2 8

0 --.
o ri

I-).-O--- .C3 E3~ ~

This is an allotropic form of ice with a body-centered-
cubic unit cell and is the stable high-pressure phase at
room temperature above 2.3 GPa. Hemley et al. ' sug-
gested that ice VII is a nonquenchable high-pressure
phase. This issue makes ice VII a suitable phase for test-
ing the fitting and extrapolation capabilities of Eq. (6) in
solid water because of the absence of phase transitions.

Fei, Mao, and Hemley measured the volumetric
properties of ice VII up to 18 GPa using a diamond-anvil
high-pressure cell. We fitted their results to Eq. (6) and
found the following values for the characteristic con-
stants: u, =(I/p, )=43.47 cm mol ', n'=0. 1527
GPa ', and p, = —4.02 GPa. Using these parameters
we have calculated the volume of ice VII up to 130 GPa
and found excellent agreement with the experimental re-
sults of Hemley et al. ' up to 128 GPa. The comparison
is shown in Fig. 8.

We also fitted separately the experimental results of
Fei, Mao, and Hemley and Hemley et al. ' for ice VII
to Eqs. (2), (3), (4), and (6) (explicit in the pressure). The
characteristic parameters are recorded in Table II. The
results are in good agreement with those reported by

Eq. (4) 12.54+0.04
12.4+0.2

19.7+0.4
21.0+4

4.68+0.01
4.7+0.4

404
4.50

Eq. (6) 12.40+0.05
12.4+0.2

21.6+0.7 4.38+0.05
21.7+4 4.5+0.6

399
4.50

Hemley et al. ' using Eq. (2): u =(12.3+0.3)
cm mol ', Bo=(23.7+0.9) GPa, and B&=(4.15+0.07).
An important conclusion that can be extracted from
Table II is that the parameters of Eq. (6) are not
influenced too much by the range of pressures considered
in the correlation; this feature of Eq. (6), already men-
tioned, is always desirable for any universal equation of
state. It can be observed that unlike Eq. (2), Eqs. (3) and
(4) meet also this condition.

4. Solid sodium chloride: Thermal expansion
and temperature dependence of the parameters ofEq. (6)

Boehler and Kennedy reported accurate compression
data of solid NaC1 up to 3.5 GPa using a piston cylinder
apparatus in which the length change of a single crystal
of this substance is determined. We have calculated the
ratio (u/uo) from Eq. (6) using the values of Bo and Bo
obtained from ultrasonic experiments. Our computed
values are in excellent agreement with experiment as
shown in Table III.

The accuracy of the measurements of Boehler and

TABLE III. Molar volume ratio of NaC1 (v /vp) at 298.15 K
predicted by Eq. (6) using the following parameters:
~*=0.1304 GPa ' and p,~= —3.734 GPa, calculated from
the experimental values of Bp =23.5 GPa and Bp =5.35 given
in Ref. 7.

4-
0 20 40

I

60 80

p (cPa)

I

100 120 140

Flax. 8. Test of Eq. (6) for solid ice VII with experimental re-
sults of Fei, Mao, and Hemley (Ref. 30) () at room tempera-
ture. Only these results were used in the correlation ( ).
Comparison of molar volume results extrapolated with Eq. (6)
up to 130 GPa ( ———) with those experimentally determined
by Hemley et al. (Ref. 31) determined using a diamond-anvil
cell (G) at the same temperature.

p/GPa

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Expt. (Ref. 32)

1.00 000
0.98 020
0.96 268
0.94 690
0.93 248
0.91 913
0.90 667
0.89 492

Eq. (6)

1.00 000
0.98 004
0.96 234
0.94 644
0.93 202
0.91 883
0.90 667
0.89 541
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Kennedy allow them to determine, with relative accura-
cy, the pressure and temperature dependencies of the
thermal-expansion coefficient a .

We think interesting to study this property for solids
because Baonza, Caceres, and Nunez recently
confirmed that the pressure behavior of a of molecular
liquids is well represented by a power law identical in
form to that expressed for x T in Eq. (5):

a, (p) =a'(p —p„)
where o, is a proportionality constant and p, has the
same meaning as that of Eqs. (5) and (6). For molecular
liquids, the pseudocritical exponent y of Eq. (14) was
found to be close to 0.5 instead of close to 0.85 as found
for KT.

An interesting observation found for molecular liquids
was that Eqs. (5), (6), and (14) yielded the same pseudo-
spinodal curve which, in addition, was consistent with
other estimations. This feature provided an excellent
thermodynamic consistency test for these three equa-
tions. The question that arises now is whether this treat-
ment would also be applicable to solids or not.

Thus, we correlated both the compression and
thermal-expansion coefficient data of Boehler and Ken-
nedy to Eqs. (6) and (14), respectively. A test of the
fitting capabilities of Eqs. (6) and (14) is shown in Fig. 9.

The first interesting issue we found was that, unlike
liquids, a~(p) of solid NaC1 can be well represented by
Eq. (14) with a pseudocritical exponent equal to 0.85 as in
the case of ~T(p). The characteristic coefficients of Eqs.
(6) and (14) using y =0.85 are recorded in Table IV. It is
noticeable that the divergence pressures obtained for
both equations are almost identical for a given tempera-
ture. This observation indicates that the ratio (a~/a' T),
i.e., (Bp/BT)„, should be independent of the pressure at a
given temperature, feature that would be useful for extra-
polation. Experimental evidence of this observation is
supported by the data reported by Yagi for several al-
kali halides at high pressures. In fact, the assumption
(Bp /dT), =const was used by Vinet et al. 36 to obtain the
temperature dependence of the parameters of Eq. (4), and
thereafter to predict the high-temperature behavior of
Au, NaC1, and Xe, i.e., for temperatures above the Debye
temperature HD, using the following expression:

p(v, T) =p (v, T~ )+ao(Tz )80(Tz )(T—
TJt ), (15)

where Tz is a reference temperature and ao is the
thermal-expansion coefficient at p =0.

Parsafar and Mason have recently discussed Eq. (15).
They stated that examination of pVT data for Au, NaC1,
and Xe shows that (bp /hT) at constant volume is only a
weak function of T and v, and that Eq. (15) is quite suc-
cessful for these systems. This feature for NaC1 can be
confirmed with the values of (a*/~') recorded in Table
IV. However, many substances do not meet the criterion
of (Bp/BT)„=const and so would not be accurately de-
scribed by Eq. (15).

Until now, we have not made any assumption about
the temperature dependence of the characteristic parame-
ters of Eq. (6) applied to solids. We have already men-

1.05 '

1.00

0.95

773 K

0.90 373 K—
298 K

1.4

i

1.0

0 1 2 3 4

p (GPR)

FIG. 9. Test of Eqs. (6) and (14) to represent compression
and thermal expansion coefficient data of NaCl, respectively.
Equations (6) and (14) are represented by continuous lines. The
characteristic coefficients of both equations are recorded in
Table IV. The experimental results (Ref. 32) of both quantities
(0) are plotted at the following temperatures: 298, 373, 473,
573, 673, and 773 K.

tioned that the Pade approximant given in Ref. 24
represents adequately liquid-vapor pseudospinodal curves
of liquids and, as will be shown below, can be also used
for solids.

v,~ (or p,~) can be well described by any function able
to represent the liquid branch of the vapor-liquid coex-
istence curve since both curves, pseudospinodal and coex-
istence, are related approximately only by a constant, '
in agreement with Eqs. (10) and (13). Therefore, it is
necessary to study the temperature dependencies of both
cz' and x* in order to confirm that Eq. (6) can be applied
to any solid regardless of the temperature dependence of
the ratio (a'/x*). For liquids it has been shown that s*
is a smooth increasing function of temperature and that
a* is a smooth decreasing function of temperature. " Re-
sults of Table IV for NaC1 do not allow any conclusion
for solids, but is obvious that the extent in which the two
opposite behaviors are canceled clearly determines the
variation of (a*/ir*). So let us study this variation by an
indirect, but quite general, method.

According to Skripov' the spinodal curve can be con-
sidered as the envelope of the isochores of a given phase
extrapolated well into the metastable region. Thus, al-
though both ~T and a are infinity at the spinodal, their



51 UNIVERSAL COMPRESSIBILITY BEHAVIOR OF DENSE PHASES 35

TABLE IV. Characteristic coefficients of Eqs. (6) and (14) for NaCl obtained from the fit of experi-
mental densities and thermal-expansion coefficient data reported in Ref. 32. Units are v,p in cm mol
a* in GPa '; pp, in GPa; a* in K ' GPa . cr, and o are the standard deviations of the volume
and of a~ expressed in cm mol ' and in K ', respectively.

T/K
Vsp

Eq. (6)

psp 10 o., 10 u*
Eq. (14)

psp 10 o 10 n /v* —0.85BP/B0

298
373
473
573
673
773

3.2482
3.3145
3.1292
2.9736
2.9735
3.0125

0.1422
0.1442
0.1385
0.1333
0.1332
0.1346

—4.27
—4.13
—3.59
—3.11
—2.84
—2.61

4.050
3.952
3.875
3.833
3.822
3.828

—4.25
—3.86
—3.46
—3.15
—2.92
—2.72

28.5
27.4
28.0
28.8
28.7
28.4

—4.06
—3.84
—3.42
—3.09
—2.81
—2.65

(dp, /dT)=a*/a* . (17)

From Eq. (16) the only special feature expected for
those solids with (a*/Ir*) constant, or nearly constant, is
that should exhibit quite straight pseudospinodals. This
fact does not preclude the use of Eq. (6) for other solids
exhibiting a moderate or strong variation of (a*/v*)
since they will only exhibit more strongly curved pseu-
dospinodals. The problem for obtaining a universal equa-
tion applicable for all solids is translated to find a func-
tion flexible enough to represent the pseudospinodal
curve. We have found that the Fade approximant re-
ferred to above is able to capture the form of the different
pseudospinodals studied by us. We would like to mention
that the limiting equivalence expressed by Eq. (16) has
been used to develop a rather successful equation of state
for liquids and we think that is an interesting, and ther-
modynamically consistent, method to obtain a universal
equation for solids as well. Preliminary results are quite
encouraging.

Regarding the a data of solids and its representation
by Eq. (14), it is interesting to note that Fei, Mao, and
Hernley used a quite similar equation to represent their
0. data of ice VII

ratio is completely determined by the shape of the spino-
dal curve in (p, T) variables, which can be expressed in
the following limiting form:

(a~/xr), „=(dp/dT), ~=(dp, ~/dT),

which, according to Eqs. (5) and (14), can be written as

IV. APPLICATION OF KQ. (6) TO SEVERAL PHASES
OF A SINGLE SUBSTANCE

An important feature of Eq. (6) is that it can be applied
to systems with phase transitions. Thus, the study of
both liquid and solid phases of the same substance is

0— C.P. —

-2—

-4—

Chen, ' the linear modulus approximation places a
bound on the amount of isotropic tensile stress that the
material can sustain in the value (Bo/B—o ). This is the
mechanical limit for isothermal, isotropic dilation or
stretching of the liquid or solid. Allowing for a negative
curvature in the bulk modulus, which we have shown is
equivalent to Eq. (5), reduces this bound by a factor of
y, ' in agreement with Eq. (12). The validity of Eq. (12)
can be confirmed from the last column of Table IV using
the results of Bo and Bo obtained by Boehler and Ken-
nedy by fitting their experimental compression data on
NaCl to Eq. (2).

a (p ) =aol. (Bo /Bo )p + 1 ] (18)

where eo is the zero-pressure thermal-expansion
coefficient, which is usually taken to be a linear function
of the temperature, and g is an adjustable parameter,
which can be related to the so-called Anderson-
Griineisen parameter. Fei, Mao, and Hemley found g to
be 0.9 for ice VII, a result quite close to the value used
here for the pseudocritical exponent y=0. 85. Since Eqs.
(14) and (18) can be identified term by term, the expres-
sion that relates the divergence pressure with other quan-
tities is p, = —(Bo/Bo); a result which contrasts with
that given in Eq. (12), although the difference can be easi-
ly explained as follows: as already pointed out by Fei,
Mao, and Hemley, Eq. (18) has the form of the Mum-

aghan equation; according to Sanchez, Cho, and

Solid

-6—
FNS

0 50 100 150 200 250 300

T (K)

FIG. 10. Divergence pressures, p,p
of liquid and solid xenon

from Eq. (6). (C)) obtained from experimental results of the
liquid (Ref. 38). (S,A ) obtained from experimental results of
the solid (Ref. 39). (~, experimental runs L; +, experimental
runs S). The arrows indicate that divergence pressures of the
solid have been displaced accordingly to obtain a single pseu-
dospinodal curve for both phases. The continuous line
represents a simple third degree polynomial fit. C.P. denotes
the critical point.
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FIG. 11. Divergence pressures, p,~, of liquid (0), solid IV
(0), and solid I (6) phases of 2,2-dimethylbutan-l-ol obtained by
fitting the experimental results of Edelman, Bardelmeier, and
Wurflinger to Eq. (6).

V. CONCLUSIONS

We have compared the ability of Eq. (6) to represent
experimental isothermal data of several materials with
perhaps the most well-known and long-standing used
equations used to represent both liquid and solid phases,
namely those of Tait and Birch-Murnaghan, respectively.
it has been shown that Eq. (6) works equal to or better
than both equations at moderate pressures and much
better than extremely high pressures. Equation (6) has

quite interesting since it should provide us information
about the trend exhibited by the pseudospinodal curves
obtained using Eq. (6).

Accurate p VT results at high pressures are available in
the literature for both liquid and solid xenon. We
fitted the experimental isotherms of both phases to Eq.
(6); the divergence pressures are plotted together in Fig.
10. Notice that both liquid-vapor and solid-liquid pseu-
dospinodals exhibit similar curvature, so it seems that
both pseudospinodals can be put together into the same
curve except for the jump occurring at the normal melt-
ing temperature.

Because the pressure ranges of liquid and solid densi-
ties found in the literature for Xe differ in two orders of
magnitude, it is necessary to test that the jurnp in the
value of the divergence pressures is independent of the
pressure range considered in the correlation. Thus, we
have fitted to Eq. (6) several isotherms of the liquid and
the solid phases I and IV of 2,2-dimethylbutan-l-ol (Ref.
41) up to 300 Mpa. The pseudospinodal curves obtained
from the fit are plotted in Fig. 11. It seems that, as in the
previous case, the different pseudospinodals follow simi-
lar trends but a characteristic jump in the divergence
pressure is associated with each phase transition. Indeed,
this is only an empirical observation and, at present, we
are unable to relate these characteristic jumps to other
characteristic quantities associated to the phase transi-
tion.

been also compared to the most successful expressions
available from literature, which have been analyzed here.
The prediction and extrapolation capabilities of Eq. (6)
have been also tested for several materials.

Although many alternative expressions to the Tait
equation have been published in past years, none of them
have succeeded in their challenge. Furthermore, many
authors have pointed out that the simplicity and accura-
cy in reproducing experimental densities of the modified
Tait equation will ensure its continued use well into the
future. Our own belief is that an utmost reason why the
Tait equation is so well-established in the scientific com-
munity is that Tait coefficients are very frequently used in
databases and reviews to represent experimental data for
most materials. Maybe the possibility of obtaining the
characteristic parameters of Eq. (6) through Eqs.
(8)—(10) directly from Tait coefficients might ensure the
use of Eq. (6) to represent the pVT surface of liquids, po-
lymers, etc. In fact, if Eq. (8) is valid, Eqs. (9) and (10)
are the simplest forms that can be obtained. Because of
the different pressure dependence of Eqs. (1) and (6),
slightly different values of the density are expected at
high pressures. We have found that, if p, and ~* are cal-
culated from Eqs. (9) and (10), Eq. (6) yield lower values
of the volume than Eq. (1) in about 0.5% at about 100
MPa. In practice, any value of the reference pressure can
be chosen and, although escapes a bit from the scope of
this work, we have found that experimental values are ac-
curately reproduced using a reference pressure about
1.5 —1.8 times Br to calculate ir*, so Eqs. (9) and (10)
change a bit. Nevertheless, the important finding of the
present work is that the procedure given here would
definitively solve the problem of substituting the Tait
equation from data correlation at high pressures.

Parsafar and Mason at the time of introducing the
derivation of their universal equation for solids recovered
the following statement of Macdonald: "It is extremely
unlikely that there exists a universal equation of state, of
useful degree of simplicity, best for all condensed materi-
als. " Equation (6) is applicable to liquids, polymers, mol-
ten salts, and solids, and represents experimental pVT
data with a quality comparable to the most widely used
equations of state. It remains to be seen if Eq. (6) will be
accepted by other scientists and researchers.

As a final comment, we would like to mention that
while the liquid-vapor pseudospinodal curve obtained
from the fit of experimental data of liquids to Eq. (6) lie
very close to that calculated from a (p) measurements,
that predicted from some equations of state and that
obtained from maximum superheat measurements in the
metastable liquid region, it remains to be confirmed that
the divergence pressures obtained through Eq. (6) from
p VT data of the solid correspond to divergence pressures
of a certain solid-liquid pseudospinodal curve obtained
from other estimations.
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