
PHYSICAL REVIEW B VOLUME 51, NUMBER 5 1 FEBRUARY 1995-I

Quadrupolar random-field model for orientational glasses
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We give a microscopic description of the local potential felt by an orientable molecule whose
neighboring atoms are randomly substituted. Since the potential can be interpreted in terms of
ferromagnetic or antiferromagnetic quadrupolar 6elds, we propose a random-6eld model for crystals
with substitutional disorder. In the mean —6eld limit our model shows difFerent types of planar
ordering and discontinuous Qops from (100& to (111)uniaxial order. Apart from the case of
purely ferromagnetic fields, long-ranged order is stabilized even if the random fields are large. We
also discuss a coupling between orientational and elastic degrees of freedom. Depending on the
values of the model parameters, we find low-temperature phases with tetragonal, rhombohedral,
orthorhombic, or monoclinic symmetry.

In the last decade much experimental and theoretical
work has been devoted to the understanding of crys-
talline systems with orientable molecules and substitu-
tional disorder. At high temperature these crystals ex-
hibit a plastic-crystal phase with the molecules rotating
more or less &eely, whereas their low-temperature behav-
ior depends significantly on the degree of randomness in
the chemical constitution: For small defect concentra-
tions one usually finds a transition to a long-ranged. ori-
entationally ordered phase, but in a broad concentration
range a glassy state is observed, in which the molecular
orientations are &ozen into random directions. Due to
a coupling between the orientational and elastic degrees
of &eedom, orientational ordering leads to macroscopic
lattice distortions, while in the glassy phase the global
symmetry of the crystal remains unchanged. Usually the
phase transition is accompanied by a pronounced soft-
ening of the elastic constants and the appearance of a
central peak in inelastic neutron-scattering experiments.

It is essential to distinguish between two types of
substitutional disorder: If the sublattice of orientable
molecules is diluted with spherical atoms (typical ex-
perimental realizations are (KBr) i (KCN) or mixtures
of ortho-H2 and para-H2), the situation is quite simi-
lar to magnetic spin glasses. The effective interaction
between two CN ions, for example, depends on the dis-
tance and the orientation of the quadrupoles relative to
their connecting bond so that in a diluted system ran-
dorn interactions should play an important role. If, on
the other hand, the sublattice of orientable molecules re-
mains unchanged, but their surrounding spherical ions
are randomly substituted by ions of different size [as is
the case in (NaCN)i (KCN) ], then the physical prop-
erties of the system are expected to be dominated by
random (strain) fields. Moreover, experiments with pure
cyanides and alkali halides with CN defects indicate
that additional stochastic anisotropies should be present
in the mixed crystals.

Several publications have been concerned with ran-
dom interactions in quadrupolar glasses, whereas Michel
and co-workers have proposed a microscopic random
strain model for mixed alkali halide —alkali cyanide crys-

tais. Our model building is based on a detailed investi-
gation of the local potential of a single quadrupole, which
is surrounded by cations of difFerent sizes, as for example
the CN molecule in (NaCN)i (KCN) . We find that
the eKect of substitutional disorder in these crystals can
be described in terms of random fields either favoring
(ferromagnetic fields) or disfavoring (antiferromagnetic
fields) a certain axis at each site. Therefore we concen-
trate in this paper on the inHuence of random fields on
orientational ordering. Possible random contributions to
the quadrupole-quadrupole interaction are assumed to be
small, and a uniform ferromagnetic interaction is consid-
ered.

In Sec. I we analyze the local orientational potential of
a single qudrupole in a substitutionally disordered crys-
tal. Our random-field model is proposed in Sec. II. Dis-
cussing its mean-field theory in the following section, we
find that stochastic fields can lead to new types of orien-
tational order: We observe planar ordering and a spin-
flop behavior similar to the findings in anisotropic Heisen-
berg models with uniaxial random fields. Strong ferro-
magnetic random fields can suppress the phase transition,
whereas antiferromagnetic fields stabilize long-ranged or-
dered ground states. Following the lines of Ref. 9, Sec. IV
briefly investigates the consequences of a bilinear cou-
pling between orientational and elastic degrees of &ee-
dom. In particular, our model predicts a variety of lat-
tice symmetries in the low-temperature phases. In the
last section we give a summary and discussion of our
main results.

I. ORIENTATIONAL POTENTIAL
OF A SINGLE QUADRUPOLE

In the following we consider a substitutionally disor-
dered crystal such as (NaCN) i (KCN) in its cubic high-
temperature phase. The linear CN ions occupy the sites
of a fcc sublattice and are surrounded by octahedral cages
of cations. The exact nature of the crystal field felt by
the CN molecule in the center depends not only on the
number of Na+ and K+ ions in the cage, but also on the
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symmetry of the cation configuration. (See Table I for
a complete classification. ) Following Ref. 12, we idealize
the CN quadrupole as a dumbbell, whose ends interact
with the surrounding alkali ions. In the center-of-mass
system of the dumbbell, its ends are located at +d, and
the positions of the cations will be denoted by

a, =ae, , i =1,2, 3,

i+3 &i )

where the e, are Cartesian unit vectors. We assume a
Born-Mayer-type interaction (attractive or repulsive) be-
tween the cations and the ends of the dumbbell,

(2)

ions act as attractive and repulsive centers, respectively.
Hence, we expect

o'K) PK, Piv~ & 0, but nÃ~ & 0

Expanding V; (d) to fourth order and neglecting con-
stant terms, one has

v,.'*'(d) = a,e ~' (x(p ) (a" d)*+ s(p;) (a; d)'

yo((d/a) )}

with A(P;), B(P;) & 0 in leading order. The resulting
orientational potential for a given cation configuration

but our main results are valid for any other inter-
action, which depends only on the distance of the
atoms. Experiments ' and computer simulations on
(NaCN)i (KCN) give evidence that the Na+ and K+

V(d) = ) -V,'l(d)
i=i

is shown in Table I, where we have introduced the con-
stants

TABLE I. Possible cation cages in (NaCN)i (KCN) and the resulting orientational potentials
felt by the CN ion in the center. Open circles denote K+and solid circles Na+ ions, respectively.
All other configurations can be obtained by cubic-symmetry transformations.

Na. :K Coafigura. tion Multiplicity Orientational potential V(d) =.. .

06 + «(di + d2+ d')

-(C. + D.)( '4 D4di4+ E4(d~4+ d,')

2:4a. -2(C2+ Dg)(ei dg C4di + E4(dq y d )

2-4b 12 (C2+ D2)(es dg + D4(di + d~) + E4ds

3:3a D(d +d +d)

3:3b 12 —2C2di + (D2 —C2) dq + 2Dtda — C4di + D4d~ + E4d3

4:2a. c rc' 2(Cg + Dz) (ei - d) E,d4 —C, (d4+ d4)

4:2b -(C. + D.)( '4 D, (d; ~ d4) —C.d4

51 «+ D.)(-'d)' D4d4i —C4(dg + d3)

6:0 C,(d;+ d4+ d4)
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o—tv e " &(tv~)a',
D~:= cx~e ~" A(P~)a
C4.— n~—~e ~. 2B(P~ )a',
D4 .——(ciiv e B(Q ) + o~e B(pg)) a

&4 '= owe " 2B(Pz)a

It should be stressed that terms proportional to (e; d)
have to be interpreted as local quadruJiolar fields, since
they can be rewritten in the form Hf~ (e, )f„(s) (cf.
next section). Using the terminology of magnetic systems
we call fields with negative H ferromagnetic and those
with positive H antiferromagnetic. Fourth-order terms
in the expansion of V(d) represent stochastic anisotropies
for the quadrupoles: The quartic potential

~int + ~rf (12)

—
2~ ):&u-(x)4-J~-(x')

( ')

D) —((z) s(z) n(z)

The case J = J corresponds to a fully isotropic inter-
action, whereas for J&J (100 ) ordering and for J& 1
(111) ordering is favored. If the atoms are substituted
independently at each site, every cation configuration in
Table I will have a finite probability. We expect the
quadratic terms in V(d) to play the dominant role and
approximate the results of Sec. I by

(d) = id, + cpd, + c,d,

has its minimum along a (100) axis, if at least one co-
eKcient c; is negative. If all coefFicients are equal and
positive, all (111) axes are favored equally.

Here D & 0 is an averaged field strength, and both ( (x)
and the unit vector n (x) are independent and identically
distributed random variables with ( (x) taking on only
the values 1, 0, —1 and

II. MODEL BUILDING
1'-

p(n) = —) b(n —e;) .

Using the results of the preceding section we now
construct a model Hamiltonian for crystals with sub-
stitutional disorder. Consider a fcc lattice of uniaxial
quadrupoles

where s(x) = d(x)/d is a three-dimensional unit vector
denoting the orientation of a CN molecule at site x. In
a realistic description, substitutional disorder will give
random contributions to the quadrupole-quadrupole in-
teraction, even if the sublattice of orientable molecules
is undiluted. However, these are small eH'ects as com-
pared to the deformation of the local orientational po-
tential described above. (Other possible sources of frus-
tration are discussed in the last section. ) Therefore we
consider a bilinear ferromagnetic interaction between the
quadrupoles:

J'I ~(x) JI ~I ~ I'u~(x') .
( ')

p(&) = q~(& —1) + (1 —q)~(&+1) (14)

where q has to be determined &om the proportion be-
tween real lattice sites with negative and with positive
quadratic potential. Certainly this simplification is jus-
tified only at intermediate defect concentrations. Since
the probability of a given cation cage to consist of m
Na+and (6 —m) K+ ions is simply ( )(1 —x) x
our model parameters are connected with the real KCN
concentration x via

Sites with ( (z) = —1 correspond to 2:4b, 4:2a, and 5:]
configurations, whereas ( (x) = 0 and ( (x) = +1 can
be identified with 0:6, 3:3a, 6:0 and 1:5, 2:4a, 4:2b,
3:3b cages, respectively. At this point we have approx-
imated the quadratic potential of the 3:3b configura-
tions (see Table I) by a ferromagnetic term of the form
—2(Cq+Dq)(ei d) . Since our main concern is the ef-
fect of random fields on orientational ordering, we neglect
sites with ( (x) = 0 in the following and instead consider
a probability density

Demanding cubic symmetry for the coupling tensor and
using the important property

D(x) = 2d (Cg+Dg) 5x2 + 4x3 + 3x4 6x5 + 2x6 '

(»)

we obtain

4x2 y2x3 + y3x4
q(x) =

2x —5x2 + 4x3+ 3x4 —6x5+ 2x6 (16)

&'"' = —
2~ ) . J'~-(z)4-&~-(z')

( ')

J„„=Jh„+ J(1 —8„„), J, J &0.

as the interaction part of the Hamiltonian, where

(10)
(see Fig. 1 for a plot). It should be noted that there is a
certain asymmetry, well known, e.g. , from the isotropic
quadrupolar glass, in our Hamiltonian: At sites with fer-
romagnetic local fields only the axis +n (x) is preferred,
whereas antiferromagnetic fields favor an entire plane,
thus giving rise to more complex forms of orientational
ordering.
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FIG. 2. Ground states of the continuous model for q = 1.
The quadrupole-Bop line is drawn thick.

FIG. 1. The model parameters D and q as functions of the
KCN concentration 2:. D is measured in units of 2d (C2+D2).

III. MODEL WITH INFINITE-RANGED
INTERACTIONS

A. Ground states

We now consider the Hamiltonian defined by (12) in
the limit of infinite interaction range. As a first step,
an investigation of the system at T = 0 can elucidate
how orientational ordering is affected by the quadrupo-
lar fields. Since the random-field axes are chosen &om
a discrete set of vectors, calculating the ground states
is simply a minimization problem in a 12-dimensional
configuration space: Due to the infinite-ranged interac-
tion, all quadrupoles with the same values of the local
random variables are subject to the same molecular field
and, consequently, behave identically. We thus divide the
quadrupoles into six groups:

s(z) = s ('P, O ) for all x with n(z) = n

((*) =(-1) (-= 1, , 6),
(17)

where n =n =ei, n =n =e2, etc. , and V', 0 denote
azimuthal and polar angles, respectively. Setting J = 1
as a reference energy and defining

q
2

(1 —q)'
q(1 —q)

a and 6 even
G and 6 odd
else,

q a even

q —1 G odd

(18)

we obtain the total energy per site

6

E/lV = ——) G., ()(s . s') + (X—
&) (s„)'(s,') )

a, 6=1
(19)

g g 2——) g(s n)

which has to be minimized numerically with respect to
(V., o.).

We now concentrate on two limiting cases: the model
with purely ferromagnetic (q = 1) and purely antiferro-
magnetic (q = 0) fields. Although both cases are not
realized in (NaCN)i (KCN), they clarify the different
effects of either type of disorder.

Figure 2 presents the ground-state diagram in the case
of purely ferromagnetic quadrupolar fields. In this in-
stance the orientational ordering conserves uniaxial sym-
metry, that is

[f„(s)]™f) (eM), (20)

where [
. ] denotes the configurational average and eM

is a unit vector characterizing the symmetry axis. As
can be seen &om the case of a totally isotropic inter-
action (J = 1), the random fields give rise to a hidden
anisotropy in the system: Even small fields break the
rotational invariance of the interaction and favor (111)
ordering (with eM being a body diagonal). Finally, at a
critical value D =D, long-ranged order is suppressed and
an independent quadrupole (IQ) phase becomes globally
stable. In this phase all quadrupoles align along their
local preferential axes and the macroscopic quadrupole
moment vanishes. For J & 1, however, the quadrupolar
interaction favors (100) ordering, and the competing in-
fluence of the random fields can lead to a "quadrupole-
flop" at D = D' (D &om axial to bodydiagonal order
(thick line in Fig. 2). This behavior is quite similar to
the "spin flops" &om longitudinal to transversal order
observed in disordered anisotropic Heisenberg models.

In contrast, the situation becomes more complex if one
sets q = 0 (purely antiferromagnetic fields). The corre-
sponding phase diagram (see Fig. 3) can be considered as
the continuation of Fig. 2 to negative D. Now the local
axes n (x) are disfavored and even in the limit of large D
a long-ranged ordered ground state is preserved. We find
different types of planar ordering with the quadrupolar
orientation restricted to one plane, for example the x-y
plane, such that
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tion between the face diagonal and their local preferential
plane. For large D, however, the random-field contribu-
tion dominates and one has o. ~0.

(b) (looj~ ordering with axial symmetry:

3,5--
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where all quadrupoles minimize their local orientational
potential.

(c) The general (looj phase with lower symmetry,
where only (21) holds and thus the averaged quadrupole
moment is of the form

83=0, a= 1, 3, 5.
(Since q = 0, other s are irrelevant. ) We distinguish
between the following three planar phases:

(a) (looj~D ordering, where a face diagonal is a sym-
metry axis:

sin o.
s =

i
cos 0!

, (1)
s = 1~ &0)

s 3
(cosa )sin 0!&0)

(22)

Due to the competition between quadrupolar interaction
and local Gelds, s and s take an intermediate posi-

FIG. 3. Ground states of the continuous model for q = 0.
The phase diagram can be interpreted as the continuation of
Fig. 2 to negative D.

(x a o)
B ——A 0

1——, )
(24)

For the special cases of a (looj~ and a (looj~L) phase
one has A =B= 0 and A= 6, B=

6 + ""3,respectively.
So far we have focused on the cases q = 1 and 0. As

pointed out in Sec. II, the parameter range of experimen-
tal interest would be q=0.5. In the framework of mean-
Geld theory, however, this case is essentially a superposi-
tion of the two systems discussed above. Consequently,
at least a &action of the quadrupoles orders ferromag-
netically at T = 0. The relevance of these results for
short-ranged models will be discussed in the last section.

B. TQO

Now we are going to discuss the properties of the model
deFined by (12) at T $0. Introducing the tensor m~„of
Gaussian integration variables and performing a saddle-
point integration, we obtain as free energy per site in the
thermodynamic limit

1
f(N = min —ms Ts ms —T)in so(n i)) Im

1= min —m J m —T ln ds e~~"" „„f„„(s)+P(D(sn) 2

p'v I v p'v ) (25)

mdiv= pv S = [(f~-(s)) j (26)

where P =
& is the inverse temperature and the s inte-

gration has to be taken over the unit sphere. Since the
disorder is local in the site index x, we have used the law
of large numbers ([ . .

] denotes configurational averag-
ing), thus proving the self-averaging property of the &ee
energy (see, e.g. , Ref. 14). The self-consistency equation
for rn at the saddle point shows that the order-parameter
matrix can be identified with the average quadrupole mo-
ment

Using this ansatz in (25) yields

f fN = min (
—(M, + M, ) + —(Ms + Ms)

(27)

I

(111)order in the case of purely ferromagnetic fields, we
write (1)

= M f„(es) + Mzf»(«) I ~3 (1)

where (. ), stands for an average taken with the single-
site partition function in (25), and ( . ), as usual, denotes
thermal averaging.

In order to analyze the Rop transition from (100) to

—T ln ds exp JM s.e3

+f)Ms)s es)'+f)D(s n)') ) (28)
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lattice deformations with tetragonal, rhombohedral, and
monoclinic symmetry, respectively, whereas the (100)~D
and (100j~ phases have orthorhombic symmetry. With
the help of Eq. (30) the elastic degrees of freedom can be
eliminated, and one only has to calculate thermodynamic
averages of a model without coupling to the elastic de-
grees of &eedom, but with a renormalized quadrupolar
interaction:

8.85-- = J + &i(~ii —~i2)
(31)

1

8. ZS 8, S

D/J

I

8.75

FIG. 4. Phase diagram of the continuous model with q= 1
and J/ J= 1.1.

J = J+ 2A~S44

0 0 0
S„~p~ —S + S pA~py~p~gA~gS ~ (32)

The temperature dependence of the elastic constants can
be obtained by the following exact relations:

Figure 4 shows a typical phase diagram resulting from
a numerical investigation of the free-energy landscape.
Again, in a certain parameter range quadrupole flopping
is possible, but in contrast to Ref. 11 all transitions are
first order. Furthermore, it should be noted that there is
no intermediate mixed phase with M, and Mq $0.

so that in the weak-coupling limit the elastic constants
are given by

~0
+p, 1/ pc7 p, gg p~ ~p D ~pc7 g p A pet' (33)

~ is the uniform susceptibility defined as the response of
the system to a uniform quadrupolar field H:

IV. ELASTIC PROPERTIES OF THE MODEL
mdiv

gp. vpa
H=O

(34)

We now briefly discuss the coupling between orienta-
tional and elastic degrees of &eedom in our model. Each
quadrupole acts as a local stress center, which couples
bilinearly to the strain field of the crystal. Here we con-
centrate on homogeneous deformations of the lattice, i.e.,
e„„(x)=e„,but strain fluctuations could be treated in a
self-consistent cumulant expansion. If we again assume
cubic symmetry and consider the elastic energy in the
harmonic approximation the complete Hamiltonian for
the six elastic and N orientational variables reads

Because of the symmetries of y (see below) one has the
invariants

3

j=1
3

+11+2C12 for i = 1, . . . , 3
(35)

0 fori =4, . . . , 6

~ can easily be calculated by means of the local suscep-
tibility

& = &"""' (fp-(&))
N+ Ep~C Ep~ E~ggAp~ ) fp~(x)

A„„=Agb„+ A2(1 —8„)

(29)

&".,.= & (f~-(s)fp-(s))..
—(fp-(s)).. (fp-(s)).. (36)

Here 'R '""t denotes the Hamiltonian (12), C is the ten-
sor of the bare elastic constants, and A1, A2 are coupling
constants.

The thermodynamic properties of the infinite-ranged
models can be calculated by saddle-point integrations
yielding exact relations between elastic and orientational
variables. These read

[(e~-) t
= ~'...&p- [(fp-(s)) j

= S„Ap~mp~
((~]y ~/~2)~lb@ + 2~44~2(I ~$1 ) j ~pl

(30)

where S is the bare elastic compliance tensor. Thus
(100), (111), and (100) ordering leads to long-ranged

and the relation

loc 7 loc
gpvpo —~p.vaj9&cxP+aPP~ ~ ~pvpcr

In the (100) and (ill) phases, for example, the fourth-
rank tensor ~ has tetragonal and rhombohedral symme-
try, respectively. Because of property (9) the number of
independent components can be reduced further:

~I +PP ~PPI

Thus, Eq. (37) has to be solved for at most four com-
ponents. We numerically Gnd a Curie-Weiss behavior at
high temperatures, but the divergencies at T, are cut off
by the discontinuous transition. Consequently, the elas-
tic constants exhibit a minimum with a discontinuity at
the critical temperature. If, however, the system remains
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at all temperatures in the disorder dominated IQ phase
(see Fig. 4), C has only a rather weak T dependence.

V. CONCLUSIONS

Based on a microscopic investigation of the orienta-
tional potential felt by a quadrupole in a random cage
of cations, we have proposed a model Hamiltonian for
crystals with substitutional disorder. Considering only
second-order terms in the expansion of the potential, we
arrive at a random-field model with ferromagnetic and
antiferromagnetic local fields. In the limit of infinite
interaction range we find various long-ranged ordered
phases in the model, including planar ordering and Hops
between the (100) and the (111) phase, reminiscent of
the disordered uniaxial Heisenberg model. In the case
of purely ferromagnetic fields, large field strength leads
to a disordered ground state with the quadrupoles &eez-
ing parallel to their local preferential axes (IQ phase).
For purely antiferromagnetic fields and the mixed case,
long-ranged order is stabilized even if the random fields
are large. Experiments on (NaCN) ~ (KCN) (Refs. 15
and 16) indicate that at intermediate K+ concentrations
these systems remain in an IQ-like phase at all accessi-
bjte temperatures. However, exceedingly long-time scales
possibly prevent the experimentalist from observing par-
tially ordered states at very low temperatures.

Another important question is whether or not the
ground states predicted by mean-field theory survive in
models with short-ranged interactions. Domain-wall ar-
guments of the Imry-Ma type can also be applied to the
case of antiferromagnetic random fields yielding a lower
critical dimension di = 4 for arbitrary q [cf. Eq. (14)].
In real systems the elastic interaction of the quadrupoles
may lead to additional global anisotropies that restrict
the possible molecular orientations to a Chscrete set of
axes. In this case ferromagnetic ordering would be
stable in three dimensions.

There is another mechanism to destroy ferromagnetic
order in the short-ranged model: Consider, for example,
a (100)~ ground state in the limit of large field strength.
In the infinite-ranged model the qN quadrupoles with
((x) = 1 will order along their local preferential axes,
—(1 —q)N molecules will freeze in the same, say es, axis,
and s (1 —q) N quadrupoles will freeze in the eq axis. Al-

together we have es alignment at s(2 —q)N sites. In
a short-ranged model this ground state can only be es-
tablished if there is a connecting cluster of such sites,
which means s(2 —q) & p„ the percolation threshold of

the lattice. For a 2d square lattice (p, = 0.593) and for
a triangular lattice (p, = 0.5) this condition can be vi-

olated, while for a fcc lattice the percolation threshold
is too small (p, = 0.198). Thus, in three dimensions a
long-ranged ordered ground state is not ruled out by this
argument.

Furthermore, we have given a discussion of the cou-
pling between orientational and elastic degrees of &ee-
dom in the crystal. Since this coupling is linear, the
phase diagram of the pure system remains valid (apart
&om a renormalization of the quadrupolar interaction),
and exact relations between averaged orientational and
elastic quantities can be derived: Long-ranged orienta-
tional ordering gives rise to macroscopic lattice deforma-
tions, the magnitude of which is determined by the aver-
aged quadrupolar moment of the orientational degrees of
freedom. We find a variety of lattice symmetries in the
low-temperature phases including a monoelinic phase as
observed in (KBr) ~ (KCN) . This indicates that anti-
ferromagnetic random fields may also play an important
role in mixed alkali halide —alkali cyanides. The tempera-
ture dependence of the elastic constants can be obtained
from another exact relation, which connects the orienta-
tional susceptibility with the elastic compliance tensor.

In summary, we have analyzed in detail the random
fields and stochastic anisotropies that appear in a cer-
tain class of mixed cyanides. As a next step towards
understanding the phase diagrams and elastic properties
of these systems we would like to combine the local ef-
fects of substitutional disorder with a more realistic de-
scription of the quadrupole-quadrupole interaction. Be-
ing mediated by lattice strains, it falls ofF like r in
three dimensions, so it is an open question whether or
not a long-ranged model is adequate. Furthermore, the
interaction is known to depend not only on the relative
orientation of the quadrupoles, but also on the distance
vector joining them. As a result, the bonds are frus-
trated and may give rise to glassy states even in uniform
systems. Finally, the quadrupolar interaction may also
have a randomly Huctuating component, which is, how-

ever, expected to be much smaller than in mixed crystals
with randomly distributed orientable defects.
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