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Coherent phenomena in inelastic backscattering of electrons from disordered media
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The phenomenon of weak localization in an inelastic-scattering channel is considered in the context of
the reAection of moderate-energy electrons with fixed energy loss from a disordered medium. The locali-
zation features in the backscattering angular spectrum are found to be manifested under the condition of
strong interference, co « y (here %co is the energy loss and y is the frequency of electron collisions). Un-

like the elastic-scattering channel, the center of the enhanced peak is shown to be displaced relative to
the exactly backward direction under the condition of oblique incidence of the electrons on a disordered

sample surface.

I. INTRODUCTION

Weak localization of conduction electrons and back-
scattering enhancement of classical waves in disordered
media have been studied extensively (see, for example,
Refs. 1 and 2). It is well known now that both phenome-
na have the same physical origin and are connected with
the constructive interference of random wave fields, scat-
tered in the backward direction. It manifests itself in the
enhancement of scattering in a narrow angular cone of
width 68t —I/kl ((1 in the vicinity of the retrorefiection
direction (here k is the modulus of the photon or electron
wave vector and i is the mean free path).

Also of great interest is the problem of the backscatter-
ing of external particles (electrons, neutrons, etc.) in-
cident on disordered samples (amorphous and polycrys-
talline), where analogous coherent eFects take place.
Such scattering in systems with various types of disorder
has been considered in several theoretical works. In Ref.
3 the weak localization of neutrons was analyzed. The
authors of Refs. 4—6 studied the localization of external
electrons. In Refs. 4 and 5 it was suggested that back-
scattering enhancement might be observable for electrons
of moderate energies (from hundreds to thousands of eV),
which difFer significantly from conduction-electron ener-
gy.

Unlike in the case of light scattering, the probability of
inelastic processes is quite large when an electron of
moderate energy propagates in a solid. The significance
of inelastic scattering is twofold. On the one hand, in the
presence of inelastic collisions the quantum coherence is
destroyed by phase-breaking processes, which leads to
dissipative electron transport. In this sense, inelastic
scattering plays a rather negative role, because it
suppresses the probability of elastic scattering and de-
creases the contribution of scattering processes of high
multiplicity to the coherent backscattering intensity in
the elastic-scattering channel. For conduction electrons
this phenomenon was studied in Refs. 7 and 8. On the
other hand, inelastic scattering gives rise to refiected elec-
trons with energies that difFer from the energy of the in-

cident particles (the so-called inelastic scatte-ring chan
nel) Fo.r example, in experiments on backscattering of
electrons from polycrystalline samples of transition-metal
oxides and perovskite materials La, Sr„VO3 with ran-
dom distribution of Sr + and La +, the low-energy
plasmon modes and interband electron excitations
(%to- I eV in both cases) were recorded using the high-
resolution electron-energy-loss spectroscopy technique.

The interference of elastic and inelastic scattering can
engender new coherent efFects in the inelastic channel,
which arise due to the interference of particle wave fields
associated with difFerent realizations of scattering pro-
cesses in which the electron is multiply scattered elasti-
cally and once inelastically. This type of quantum in-
terference was considered in Ref. 10 by an approach in
which the electron trajectory is determined by a single
elastic incoherent scattering process and a single inelastic
collision. It has been shown there that the nonsuccessive
nature of elastic and inelastic collisions leads (due to in-
terference) to specific features in the angular spectra of
electrons backscattered inelastically. The characteristic
angular width of these features is of the order of y/co,
where y is the frequency of particle collisions and Ace is
the energy lost by a particle. Quite recently, in Ref. 11 an
attempt was made to demonstrate that multiple elastic
scattering of electrons does not destroy this coherent
phenomenon.

The ratio y/co can be considered as a parameter of the
strength of interference processes in the inelastic-
scattering channel. In this sense the results obtained in
Ref. 10 are associated with the weak-interference limit.
In the opposite case of strong quantum interference
(y/co »1), the coherent features in the angular spectrum
of inelastically backscattered electrons, predicted in Ref.
10, should vanish. We note that this limit corresponds to
a small value of the parameter col/v (here v is the
modulus of the electron velocity before an inelastic col-
lision), which is equal to the phase shift between the arbi-
trary electron trajectory that includes an act of single in-
elastic scattering, and its reversed partner. It is apparent
that under the condition col/v(&1, corresponding to
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strong interference and to a small phase shift, weak local-
ization should manifest itself in the inelastic-scattering
channel. It is precisely this situation that will be studied
in the present work. Apart from the fact that exploration
of this scattering regime (which is opposite to the one
considered in Ref. 10) is of general physical interest in the
theory of the inelastic quantum transport of particles, it
can turn out to be a method for the study of low-energy
excitations in disordered systems by means of the inelas-
tic reAection of electrons with a fixed energy loss.

The paper is organized as follows. In Sec. II we derive
a diagrammatic representation for the electron density
matrix in the inelastic-scattering channel. In Sec. III the
di6'usion approximation is introduced to describe multi-
ple elastic scattering in a disordered medium in the pres-
ence of wave fields having di6'erent energies. Section IV
is devoted to the derivation of expressions for the angular
spectrum of electrons inelastically rejected from a disor-
dered medium, and the physical sense of various Feyn-
man diagrams is discussed in detail. The form of the an-
gular spectrum of electrons in two opposite cases of in-
elastic scattering is considered in Sec. V. Section VI con-
tains conclusions.

II. DIAGRAMMATIC TECHNIQUE
FOR DENSITY MATRIX OF ELECTRONS
IN INELASTIC-SCATTERING CHANNEL

Let an external electron be incident on a disordered
medium, which occupies the half space z & 0. We shall be
interested in the angular spectrum of electrons rejected
by the medium with a fixed energy loss due to a single in-
elastic collision.

The wave function g„of an electron in the nth inelastic
channel is governed by the Schrodinger equation

bf„(r)+2m%' [E„—U(r)+i U„']P„(r)

=2m A' T(r, i ~n )g;(r),

U =5UG O6U . . 6 o5U (4)

containing the fluctuating part 5U of the random poten-
tial U(r) a times. G~o is an integral operator corre-
sponding to the Green's function of an electron with en-
ergy E~ in the mean field ( U(r) ),

U(r) = ( U(r) ) +5U(r),

which also contains a complex potential connected with
the inelastic mean free path of the electron,
U' =A'v/2l;„„(E ).

Equations (1)—(3) must be supplemented by boundary
conditions. In the case of the elastic-scattering channel
(m =i ) it is necessary to satisfy the requirement that
f;(r)=exp(ikr) at z= —ao, as well as the continuity of
the function g; and its normal derivative across the
boundary z =0. Analogous requirements of continuity
must be satisfied by the electron propagator 6,

The boundary conditions for the electron wave func-
tion g„and propagator 6„ in the inelastic-scattering
channel have a difFerent form. Namely, they depend on
whether the electron moves in matter away from or to-
ward the boundary. In the first case, when (nk') )0, the
requirement g„(r)=0 at z =0 must be satisfied if wave
reflection from the boundary is neglected (here k' is the
wave vector of the electron that has undergone an inelas-
tic collision, and n is the internal normal to the surface).
When (nk') (0, the function f„and its normal derivative
must be continuous at z=0. The boundary conditions
for G„are the same. The requirement of vanishing of P„
and G„at the vacuum-medium boundary when (nk') )0
is associated with the fact that at z =0 there are no elec-
trons moving inward from the boundary in the inelastic-
scattering channel.

We define the operator

where m and E„are the mass and energy of the electron,
U(r) is the random potential describing the interaction of
the incident particle with the atoms of the medium, and
the efFective complex potential i U„' describes the dissipa-
tion due to quantum transitions between the nth and oth-
er excited states. T(r, i ~n ) is a matrix element of the
Hamiltonian describing the inelastic interaction between
electron and medium, calculated with the wave functions
of the medium subsystem, associated with the corre-
sponding inelastic process. The wave function i)'j; of an
electron in the elastic-scattering channel on the right-
hand side of Eq. (1) satisfies the equation

hg, .(r)+2miri [E;—U(r)+iU ]g;(r)=0, (2)

where E; is the initial energy of the electron in matter
and iU is a complex potential for the elastic-scattering
channel.

The Green's function G for the scattering problem is
determined by the equation (rn =i, n )

66 (r, r')+2mB [E —U(r)+iU' ]G (r, r')

=2miii 5(r —r'),

where the angular brackets ( . ) denote a statistical
average with respect to the ensemble of the fluctuating
atomic potential 5U, which is assumed to be a Gaussian
random process. Then the solution of Eq. (1) can be
represented as

X I+ g 6;OUp tP;0(r) .
p=i

J

Here I is the umt operator and g, o denotes the wave func-
tion of an electron of energy E; in the average potential
( U ) in an elastic-scattering channel.

The angular spectrum of inelastically backscattered
particles can be defined through the electron density ma-
trix in the nth scattering channel

5p„„(r„rz)= ( g„"(rz)g„(r,) ) —( P„'(rz) ) ( g„(r, ) ), (7)

for which an expansion can be obtained with the aid of
Eq. (6):
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r

5p„„(r,, r2)= G„o g U"G„oT,„g,o, G„o g U$G„oT;„$,0
.2.

+ . G„OT;„G;o g U'Q;0, G„OT;„G;0 g Ubg;o

+2 Re ~ G„o g U"G„OT,„Q,O, G„OT,„G,O g U&$,0 + 0 ~ ~

where subscripts 1 and 2 correspond to radius vectors ri and r2, respectively, and the notation
[y,yJ = (y'y) —&y*) & g) was used for short.

It is convenient to average Eq. (8) in a graphical way, as was done for the mutual coherence function of classical
waves in an elastic-scattering channel. It has been shown in Ref. 13 that only those connected double-row diagrams
contribute to the density matrix that contain an even number of elastic collision vertices 5U, joined pairwise by dashed
lines in all possible manners. On omitting the diagrams in which at least one dashed line surrounds an inelastic-
interaction vertex T;„[they are of the order of 1/kl « 1 (Ref. 12)], one can obtain in the first order in I „;

5p'„'„'(r, r')= f fdridri f fdr&dr~(G„(r, ri))(G„'(r', rz))I „„(ri,ri,'r~, rz)

X f fdr3dri(G„(r', , r~)) (G„'(rz,ri)) T;„(r3)T„,(r3)(p, (r3))(1(;(r3)),

5p'„„'(r,r')= f f dridri f f dr&dr& f f dr3dr3(G„(r, r3))(G„'(r', r3)) T;„(r3)T„,.(r3)(G;(rs, ri))

X ( G,'(r3 rQ) )I,, (r„r', ;ri, r~)(P, (r', ) ) (g;(rz) ),
5p'„„'(r,r')=2Re f f dr, dr', f f dr&dr& f f dr3dr3(G„(r, r, ))(G„'(r',r3)) T;„(r3) T„;(ri)(G (r3, rz))

X I"„;(ri,ri,'r~, rz)(G„(ri, r3) & & g;(r3) & & P,*(rz) &,

(9)

so that 5p„„=5p'„'„'+5p'„„'+5p'„„'. The two first terms,
given by Eqs. (9) and (10), coincide with those obtained in
Ref. 12 in the approximation in which the elastic col-
lisions and the inelastic one were assumed to be strictly
successive relative to each other. The third term, given
by Eq. (11),was neglected in Ref. 12 and describes the in-
terference of multiple elastic scattering and a single in-
elastic collision. In Eqs. (9)—(11) (G ) is the average
electron propagator in the mth scattering channel, ( g; )
is the average wave function of the electron before the in-
elastic collision, and the four-point vertex I „, describes
the evolution of the wave field of the particle in the pres-
ence of inelastic collisions (its structure will be considered
later).

To calculate the contribution of all inelastic processes
we have to sum 5p„„over all the excited n states:

5p;„,i(r, r')=g 5p„„(r,r')= fdc@8(co)5p(r, r', co) . (12)

D(r, r', co) =g 5 co— T;„(r)T„;(r') . (14)

E—he@ E

energy fico (see Fig. 1). A thin solid line in Fig. 1 corre-
sponds to the average electron Green's function
G(E;r, r') [or G(E fico;r, r')] if this—line is to the right
(or left) of the wavy line that describes single inelastic
scattering (in the following we drop the angular
brackets in writing the average propagators). A thick
solid line corresponds to the density matrix
po(r, r') = (g;(r') ) (g;(r) ) of the electron with energy E;
that did not experience incoherent elastic scattering. The
wavy line denoting an inelastic collision corresponds to
the D function

Integration over co in Eq. (12) means integration over the
energy lost in an inelastic collision. Therefore 5p(r, r, co)
can be considered as a spectral density matrix of the elec-
trons:

E—hco E

~n
5p(r, r', co)=+ 5 co — 5p„„(r,r') .

n

(13)

Keeping in mind Eqs. (9)—(11) and Eq. (13), it is con-
venient to turn to a diagrammatic representation for the
spectral density matrix 5p(r, r', co) of the electrons which
underwent incoherent elastic scattering and lost the fixed

E—he@ E—hco F

FIG. 1. Diagrammatic representation of the density matrix
in an inelastic scattering channel.
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W;„,](q, co) .

Under the assumption of the spatial homogeneity of
the inelastic subsystem of the medium D ( r, r', co )

=D(r —r', co), and the Fourier transform of the D func-
tion is related to the probability W,„,](q, co) of inelastic
scattering per unit time with momentum transfer Aq and
energy loss Ace by the relation

2
1 2M

D(q, co) =— (15)
v m

X

I

+
I

X

X

I

I

+
I

X

X

X

FIG. 2. Graphs contributing to the I matrix.

X

The shaded block in Fig. 1 corresponds to the matrix
I (E,E'), which describes propagation of the particle
with energy E in a random medium, when E=E'. If
EWE' the matrix I describes the interference of multiply
scattered waves with different energies in the disordered
medium. It is equal to the sum of all connected double-
row diagrams without incoming and outgoing average
Green's functions (see Fig. 2). Two crosses joined by a
dashed line are associated with the correlation function
(5U(r)5U(r') ) of the fluctuating part of the random po-
tential U(r). The average Green's function can be writ-
ten in the p representation as

III. I matrix in the di8'usion approximation

To calculate the I matrix it is necessary to sum up all
the diagrams shown in Fig. 2. In accordance with gen-
eral ideas of weak-localization theory, we shall exclude
from this graphical series all the diagrams except the
ladder and fan-shaped (maximally crossed) ones.

Leaving aside the effects of the anisotropy of the elastic
scattering, we write the average and Auctuating parts of
the random potential U(r) as follows:

Ap . kG(E —i]]'co, p) = E fico —+i-
2m l

(16)
2M'

(U(r)) = — nf, (17)

where l is the electron mean free path, l '=l,
&
'+l;„,'&.

Thus the pole of the average Green's function contains an
imaginary part depending on both elastic and inelastic
processes. The contribution connected with the inelastic
mean free path is the manifestation of the dissipation of
electron waves in matter.

Note that the diagrarnrnatic representation introduced
is valid for an arbitrary type of electron-atom potential.
The diagram 1(a) describes the motion of an electron in
matter in which the particle first undergoes an inelastic
collision and then multiple elastic incoherent scattering.
The diagram 1(b) corresponds to the process in which the
sequence of scattering events is reversed. The diagrams
l(c) and 1(d) describe the contribution of electrons scat-
tered inelastically to the density matrix due to the non-
successive nature of the multiple elastic and single inelas-
tic scatterings relative to each other. In other words,
these diagrams are associated with the interference of
multiple elastic collisions and a single inelastic collision,
and are the source of new coherent phenomena in the an-
gular spectrum of electrons backscattered from a disor-
dered medium with fixed energy losses.

It is interesting to note that the diagrammatic repre-
sentation presented in Fig. 1 is similar to the diagrams for
the correction to the conductivity caused by the interac-
tion of the conduction electrons (see, for example, Ref. 1),
but, of course, the sense of the elements entering the dia-
grams is quite different.

2M'
5U(r) = — f g 5(r r, ) —n-

m
(18)

Here n is the number of force centers per unit volume, r,
designates the set of radius vectors of the centers, f is the
efFective amplitude of electron scattering by an atom,
which is connected with some effective elastic scattering
path length by the relationship l,*] = 1/4irn

~f ~
. For iso-

tropic elastic scattering l,&
coincides with l,&

introduced
after Eq. (16). In the case of anisotropic scattering it is
usually implied that l,&

coincides with the elastic trans-
port mean free path.

By using Eqs. (17) and (18) the contributions of the
ladder and fan-shaped diagrams to the I matrix can be
written as

g2
I ],d(co; r], r],r„r,') = 5(r] —r, )5(r'] —r,')

m
e1

X [5(r]—r', )+I (co;r„r', )],
I c,„(co;r„r'];rz,rz)

f2
5(r, —r2)5(r2 —r', )I"(co;r„r',) .

el

(19)

(20)

Here co=(E E')/fi, and the new f—unction I (co;r, r') is
the solution of the equation

I (co;r, r') = 1

4~1,*,

exp[ —(1/l+ico/v)~r r'~ ]
y

—exp[ —(1/l+ico/v) ~r R~]-
fr —r'/' fr —R/'

(21)

which can be solved analytically in the half space z) 0. We restrict ourselves, for simplicity, to its solution in the
diffusion approximation, which is valid when the condition col /v « 1 is satisfied. Using the approach of Ref. 14, one
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can obtain the Fourier transform of the solution of Eq. (21) in the following form:

I (co, Q~~', z, z')= f dp I (co,p;z, z')exp[ —
iQ~ip]

3
[Q~( +l ] I exp [ —

«~( +1 ') '"lz —z '
I ]—exp[ —«'„+1 ') '"

I
z +z '

I ] ]
el

(22a)

where

3 l . col
P =—1 — +i

2 I*
el

(22b)

i(pp lp, ~)
2 p2

(2 )2
5p(k', z = —0;k', z' = —0; co ) . (23)

and Re(Q~~+P ))0. According to Ref. 15 we require
that the function I (~,Q~~, z, z') vanish on the planes z =0
and z'=0, but not on the planes z,z'= —zo, where zo is
the extrapolated length in the Milne problem. '

IV. ANGULAR SPECTRUM
OF REFLECTED ELECTRONS

The backscattering angular spectrum may be expressed
through the diagonal matrix element of the density ma-
trix

Xexp[ —i k~~p+i k~~p
]'. (24)

According to the rules derived in Sec. II, the contribu-
tion of the diagram in Fig. 1(a) to the spectral density ma-
trix can be represented as

Here k~'I is the component parallel to the surface of the
wave vector of the emitted electron, k =k —2m'/iri, S
is the area of the interface, po=cosO, p =cosO', and 0 and
0' are the incidence and emission angles, respectively.
The Fourier component of the density matrix in Eq. (23)
is defined in the following way:

5p(k~'~, z;k~~, z', to) =f dp f dp'5p(p, z;p', z', co)

5p'"(r, r', co)= fdridridr" , f dr2dr2dr2G(E —fico;r, ri)G*(E—A'co;r', rz)r"(ri, ri,'rz, rz)

XG(E fico;r'„—r", )G'(E cabiri;rz,
—rz')D(r", , rz', co)g (rl)fi(irz') . (25)

Here gk denotes the average electron wave field ( g, ) in

an elastic-scattering channel, and k is the wave vector of
the electron in the initial state. The quantity I " is the I
matrix in the case that the energies of the lower and
upper propagation lines are the same,

D(r, r', co) = f D(q, co)exp[iq(r —r')],dq
(2~)

(26)

Keeping in mind Eqs. (19) and (20), one can separate the
contributions of ladder and fan-shaped parts in Eq. (25).

Let us introduce the Fourier representation for the D
function

Qg(r )=exp( ik lip

fi,(z)=exp[ik, z —z /21pp],

(27a)

(27b)

and the Fourier representation for the average propaga-
tor in the inelastic channel for two types of electron
motion in matter (away from and toward the boundary
z=0) is

which is valid in the case when the inelastic collision
occurs in the bulk of the matter and the inhuence of the
surface on the properties of the inelastic scattering is not
taken into account. We also define the mean wave field of
a particle in the elastic scattering channel as

G(E —fico;r, r')= f G(E —%co;p,p, )
d PlldP

Z

exp[ip(r —r')] if (nk')(0,
exp[ip~~(p —p')][exp[ip, (z —z')] —exp[ip, (z+z')]] if (nk')) 0 .

Then, taking into account the identity'

(28)

(29)



2764 E. KANZIEPER AND V. FREILIKHER

where k' '=(kI), —~k,'~ ) and k,'= —k ~p~, one can obtain the following expressions for the ladder and fan parts of the
contribution of the diagram in Fig. 1(a):

5p',"(k)), = —o, k'„, '= —0; )=. . .f d d 'lg„- ( }I'[5( —')+I "(0;, '}]~S
mP el

dqlldqX,'
D(q)), q. , ~)

I
~ (E —&~;q)), q, ; ')I',

(2m )
(30)

m.S
5pq,'„'(kI),z = —0;kI),z'= —0;co)= 2

dz dz'1i(k( )(z)1i)k( )(z'}
k p I,*, GP CO

dq~~dq,
X

(2n. )

X~(E (31)

Here the function A denotes the integral

l p, exp(ip, z )
A(E fico;q, q, ;z—)=——f dp, G(E —Ace;k +q,p, )'

p —[k, +q, +i/2lp ]
(32)

and I "(Q)),z, z') =I (co=0,Q))', z, z') [see Eq. (22a)]. In the derivation of these results we assumed that after the inelastic
collision the electron continued its motion from the boundary into medium, so that (nk') & 0.

The same transformations bring us to the following ladder and fan-shaped contributions of the diagram in Fig. 1(b) to
the density matrix:

5pI,~(kI), = —0;kt), '= —0;co)= f d dz'~1()„(z')
~

[5(z —z'}+I "(0;z,z')]
~P ei

dqlldq;D (q„,q. ,~}IB(E;q„,q. ;z }I',
(2m. )

5pr, „'(kI~, = —0;kI), '= —0; )= f d d 'P„( )tP„( ') f D(q~~, q„)I"'(k~~+k~'~ —
q~~, , ')

(2n )'

X B(E;q~~, q„z )B (E;qm, q, ;z'),
where the function B is defined by the integral

exp( ip, z)—
B(E;q)),q, ;z)= f dp, G(E;k

2r)' ' ' '
p, —[k,' —q, i/2l„—p ]

(33)

(34)

(35)

In the derivation of Eqs. (33) and (34) we assumed that after the inelastic collision the electron moved from the interior
of the medium toward the boundary, (nk') (0.

Let us consider the diagrams in Figs. 1(c}and 1(d). Their contributions are complex conjugates of each other. Keep-
ing this in mind, we can write the ladder contribution in the following manner:

ll~ &

5p,",,'(kI), = —0;kt),
'= —0; )= R. fd d 'q*, ,( )y„'( ')f,*

D(
q~~, „q)[ (5

—')+I'""(q),;, ')]
(2m )

The fan contribution is

X A (E—duo'qll'q, ; )Bz(E;q)) q (36)

5p', „'(k~'~, z = —0;kI(,z'= —0;co)= Ref dz dz'g„', ,(z)g„(z)I"""(k)~+kI),z, z')
~P el

3 D(q)) q. ~)~« —~ q)( q, z'}B «;q)) q. ;z'}dqlldq

(2~)

We note that in Eqs. (36) and (37) I'""(Q))',z, z') = I (co, Q))', z, z'). By means of Eqs. (15), (23), (24), (30)—(37), and the re-
sults of Appendix A one can write the following expression for the angular spectrum of the electrons rejected from the
disordered medium that have lost energy fico due to a single inelastic collision:
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dq~)dq
&;.„(p.~ I pl, ~)= W;„,i (q~~, q„co )

vl,*, m (2m )'

X f dz f dz'([5(z —z')+I "(0;z,z')]

X [ I 0„(-)(z)I'I yk(z') I'[F q(v, v;z', z')+F (v', v', z,z) ] J

+l'(k~~~+k~'~+q~~, 'z, z')Q' —(z)g —(z')ir'jf(z)gg(z')F (v, v;z, z')

+1 "(k~~+k~'~ —
q~~,

'z, ')g', ,(z)g, ,(z')g (z)f ( ')F (v', v';z', )

—2Re[[5(z —z')+I '""(q[~' z )]If&~ ~(z)I IP&(z')I F~(v, v', z, z')J

—2 Re[1 '""(k~~+k~~,'z, z')g&~ ~(z)gj, ~ ~(z')Pf(z)gi (z')

XF~(v, v', z', z')]) . (38)

Here

exp[ iq, (z —z') ]-
F~(v, v', z, z') =

fi (co+vq)(m+ v'q)

. ~+v'q
X . 1 —exp iz

U

, co+ vqX 1 —exp —iz'
Uz

(39)

In comparison with the result obtained in Ref. 12, the
expression given by Eq. (38) takes into account the
correct boundary conditions for the electron propagator
in the inelastic-scattering channel and the interference
between multiple elastic and single inelastic collisions.
The detailed calculations of the angular spectrum will be
carried out in the following section, whereas some gen-
eral conclusions can immediately be made from Eq. (38).
First, the enhanced peak exists in the inelastic-scattering
channel irrespective of the wave vector transferred to the
inelastic excitation, if the inequality col /v « 1 is fulfilled.
Second, unlike in pure elastic backscattering the localiza-
tion peak turns out to be displaced from the exactly back-
ward direction. To see this, let us concentrate on Eq.
(38).

The first and second terms in Eq. (38), which contain
F~(v, v;z', z') and F~(v', v';z, z ), describe the contribu-
tion to the spectrum from trajectories in which the elastic
and inelastic collisions are strictly successive to each oth-
er [see Figs. 3(a) and 3(b)]. These terms introduce no
coherent effects in the angular spectrum, and correspond
to the incoherent background. Their structure enables
one to treat the function

nel. ' From Eq. (40) we can conclude that the source
function g;„,& differs from g, &

by an additional integral
factor, which depends on the type of inelastic collision.
The physical sense of Eq. (40) is transparent enough. The
integral factor as a function of the variable z describes the
transitions of electrons into the coherent inelastic wave
field due to the inelastic collisions. At the same time, the
exponential function g,&

describes the ejection of elec-
trons from the coherent inelastic wave field due to both
elastic and inelastic scattering. Since the source function

g;„,& can differ significantly from that for the elastic-
scattering channel, the behavior of the incoherent back-
ground in the angular spectrum of inelastically backscat-
tered electrons can differ from the angular background in
the elastic channel as well.

The third and fourth terms in Eq. (38), containing
r'l(k+kil+qll 2 z') are associated with the coherent
effects in the inelastic backscattering spectra that arise
due to the interference of wave fields before and after the
inelastic collision, respectively [Figs. 3(c) and 3(d)]. The
appearance of

q~~
in the argument of I " means that this

type of interference depends strongly on the wave vector
transferred to the inelastic excitation. In Refs. 12 and 18
it has been shown that this type of coherent feature with
an angular width b, 8&

—1/kl occurs only when q, l «1
(here q, is the characteristic wave vector transferred in
the single inelastic collision), and vanishes as the magni-
tude of q, l increases. These features become negligible

g;„,i(z) =g„(z)f dq 8';„„(q,co)F~(v, v;z, z) (40)

as a distribution of effective radiation sources in the
inelastic-scattering channel. Here

g„(z)= Ig„(z)I =exp( —z/21@0)

is the source distribution in the elastic scattering chan-
FICx. 3. Schematic representation of different diagrams con-

tributing to the angular spectrum.
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when q, / & 1.
The fifth term, containing F~(v, v', z, z'), arises from

the interference of multiple elastic and single inelastic
collisions, when the elastic collisions can be considered as
strictly successive [Figs. 3(e} and 3(f)]. This type of
coherent effect was studied in Ref. 10, where it has been
found that these trajectories lead to the appearance of
features in the angular spectra with a width of the order
of y/ni, which is very wide in comparison with the width
of the usual weak-localization peak, when the energy loss
is much smaller than the electron energy (fico «E). This
means that the term in question must be related to the in-
coherent background in the vicinity of the localization
peak.

The last term in Eq. (38) is the most interesting, and it
represents the main result of our study. This term is due
to the interference of multiple elastic scattering and a sin-
gle inelastic collision, which are completely nonsucces-
sive [Figs. 3(g} and 3(h)]. Its integrand contains the fac-
tor

r'""(k~~+kI~ z z )f —(z)lf —(z ) tP (z)P (z ),
which in the case of pure elastic backscattering of in-
cident waves with different energies (E and E—%co)

yields, after integration over z and z', an enhanced peak
displaced from the retroreAection direction. In our case,
when the wave fields are due to the inelastic processes in
the medium, this factor is multiplied by the function

f d q W;„„(q,co )F„z(v,v', z', z') .

Since I'"" does not depend on q~~, the localization peak
always exists in the limit col /v « 1 independently of the

I

J';"„;,(po~)p(, co}=Jo f dr f d~'exp( rl[p))exp( —r'/pe)—

wave vector transferred in a single inelastic collision.
The shape of the peak is determined by the particular
type of inelastic collision.

V. BACKSCATTERING ENHANCEMENT
IN INELASTIC-SCA'I''I'ERING CHANNEL

To forward the analytical calculations, we shall consid-
er below two opposite cases of the single inelastic col-
lision: (i) q, l «1 and (ii) 1 «q, l «kl. The first limit is
associated with an inelastic collision in which the charac-
teristic scattering angle ht9, -q, /k is much smaller than
the range of the weak-localization angles 60& —1/kl.
The second limit corresponds to the scattering in which
50, »b, O, .

I

F~(v, v', z, z') =
fi U, U,

' (41)

Keeping in mind the discussion in Sec. IV, we can carry
out the separation of the angular spectrum, Eq. (38), into
a background part and a coherent part in the following
way:

A. The case q, I && 1

Under this condition the function F~ in Eq. (38) can
be simplified. %'e note that the exponential factors
exp( —z/l ) and exp( —z'/I ) appear in the integrands.
This means that the main contribution to the integrals
arises from the regions of z and z' that are bounded from
above by values of the order of /. Under the conditions
col/v&&1 and q, l &(1 this allows us to factorize the
function F„ in the integrands of Eq. (38) as follows:

X [(r +r' }[5(v—r')+I'"(0;r, r')]+2m'[5(r —r')+ReI'""(0;r, v')]],
J;:."i(po I@I,~}=2JoRef dr f dr exp( —r/p)exp( r'/P, ')[T1—I (

kll

+Ikl''T, r )+Tl (kll+'ktl'1, T )] .
0 0

(42)

(43)

Here I (Q;r, r')=ll (Q;z, z'), r=z/I, and 'rz'/I are
normalized coordinates, and

1.8-

(P) =— + +il(kpe —k„~iu ~ ),1 1 1

Po
'3

l dq
2 W;„,i(q, co) .

pal;i & (2m )

Using the diffusion approximation for the I matrix de-
rived in Sec. III, we can obtain an analytical result for the
enhancement factor r) = 1+J;„;"i/J', "„;i. These calculations
lead to a rather unwieldy expression that we do not
present.

The enhancement factor g is shown in Fig. 4. The
shape of the peak has a pronounced triangular form, and
is qualitatively close to that in the elastic-scattering chan-
nel, but it is displaced relative to the exactly backward

o 1.6
O

~cd

v I.4

1.2

-1.5 -1 -0.5 0.5 1 1.5

Scattering angle 8 + 8' (deg}

FIG. 4. Enhancement factor g in the case q, l « 1. E =500
eV, Am=1 eV, l =15 A, l/l,

&
=0.95. Solid line, incidence angle

6 =0'; dashed line, 8=30'; dotted line, 0=60 .
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tan8 .'AQ)

2E
(44)

The displacement h8 depends on the energy loss A'cu, the
energy E of incident electrons, and the incidence angle 0.
The width of the peak is about 1Ikl for normal electron
incidence, and depends on 8, increasing as 1/cos8 under
oblique incidence.

B. The case 1«q, / «kl

The growth of the parameter q, l causes the destruction
of the coherent effects in the angular spectrum which are
associated with the diagrams shown in Figs. 3(c) and 3(d).
This demolition process has been analyzed in Ref. 18. In

direction in the case of oblique incidence of the electrons.
The angular magnitude of the displacement b,8 is defined
by the equation Ik~~+k~~l =0, from which for small b,8
one obtains

a mathematical sense the destruction is caused by the di-
minution of the contribution of the terms containing
I "(k~~+k~'~+q~~, z, z') to the coherent part of the angular
spectrum. Namely, the appearance of I"with

qual
in the

first argument limits the region of integration Qz- f dq
in q space, which contributes substantially to the spec-
trum, to the region Qq- q, l . Since in the absence of

qual

in the first argument of I " the integration region can be
estimated as 0 -q„ the contributions of diagrams 3(c)
and 3(d) are small and of the order of Q~/Q~-(q, l)
compared with the contributions of diagrams 3(a) and
3(b). Analogous estimates hold for that part of the con-
tribution from the inelastically crossed diagrams 3(e) and
3(f) that is proportional to I'""(q~~,z,z').

At the same time, the diagrams shown in Figs. 3(g) and
3(h) contribute significantly in the scattering regime
q, l »1. This means that coherent angular features will
remain in spite of the smallness of diagrams 3(c) and 3(d)
already noted above. Therefore we can write the follow-
ing expression for the background and coherent corn-
ponents of the angular spectrum:

J' ~(pp Ipl co) =Jp ~ f dr exp
0 pp

1 1

Ipl
[F(v,v, r)+F( —v, —v, r) —2ReF( —v, v, r)]

+f dr f dr'exp( rllpI )exp—( r'Ipo)I "(0—;r, r')[F(v, v, r')+F( —v, —v, r)] ', (45)

J;„)(po—+I@I,co) = 2J —fedrdr'exp( —r/p)exp( —r'/p )I'"'(k(~+kl~, r, r'
0

(46)

Here Jp =m6 l /vm l,&
and function F is defined as

F(v, v', r) =fi f W;„,&(q, co)F~(v, v', rl, rl ) .
(2m )

(47)

1 1

I plpp

Using the diffusion approximation Eq. (22a), the angular spectrum of inelastically backscattered electrons can be ex-
pressed through the Laplace transform FL of the function F,

r T

1 1J'"~a(Po~lpl ~)=Jo 2FL, v v +,
I

—2ReFr v, —v;
pp ~p

+3 p FL, v v; +pp FL v v; —(p +po )FL v v;
—2 . 1 —2 1 —2 —2

pp p po

1 1

lp I

(48)

T

J;.„;"&(pp~ Ipl, co)=6JoRe [g —(P) ]
'

FL (v, —v (P ) '+g) FL v, —v; +-
,

Po ~IP

(49)

where

g'=[P +l (k +k') ]'

and Ref) 0.
The Laplace transforms of the functions F are calculated in Appendix B. It can be derived from Eqs. (48) and (49)

and Eqs. (84) and (85) of Appendix 8 that the enhancement factor g is given by the formula

Im[[1/(1 —g po)][A(co+yg"po, y(1+pop')}/(1+gyp) —A(co, 2y)/4]]
'g = 1+p() (50)

1m[ A(co, y )+ [(2po —3)/12]A(co, 2y ) ]
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Here g' =Ref, g"= Imp, and the function

A(co, y)= I W;„„(q,co)
dq 1

(2' )
3 '"' co+ vq —i y

is associated with a specific inelastic collision by means of
the probability function W;„,i(q, co); y =v/l is a collision
frequency. Equation (50) shows that the shape of ii de-
pends on the function 8';„,&, which is different for the
different types of inelastic scattering.

For example, in the case of plasmon excitations' or ex-
citations of electrons in an atom in the dipole approxima-
tion the probability of inelastic collision per unit time
W;„,~(q, co)-q O(q —q). For plasmon excitation q
is the cutoff wave vector, and for excitation of atomic
electrons q —1/a, where a is a length of the order of the
atomic size. In this case A(co, y ) can be calculated analyt-
ically ' in the limit q l »1 and co/y « 1,

~qm
A(co, y) =arctan(co/y)+i ln 2+ y2) i/2

The behavior of the enhancement factor under the
above-mentioned assumption about S;„,& is shown in Fig.
5. As can be seen, the magnitude of the enhancement
eff'ect is smaller than in the case of q, l «1 (see Fig. 4),
but its width is twice as large as that for the case q, I (& 1,
so that the areas under the localization peak are approxi-
mately equal in both cases. The peak shape can have a
complicated form, with small maxima that are defined by
the nature of the single inelastic collision. Note that for
oblique incidence the maximum of the enhanced peak is
displaced from the exactly backward direction in accor-
dance with Eq. (44).

The additional calculations show that enhancement de-
creases with the ratio l/l;i. This means that for the ob-
servation of weak-localization effects in the inelastic-
scattering channel a weak dissipation (l;„,& » l,&

) is need-
ed, which can be achieved by the "freezing" of the disor-
dered system.

1.2

VI. CONCLUSION

APPENDIX A

Let us calculate the function A, defined by Eq. (32).
Keeping in mind Eq. (16), we can represent
G(E —

irico;k~~+q~~, p, ) in the following way:

G(E fi;k—„+q,p, )= — [p, P'+'(q, , —)]

X [p, +P'+ '(q~~, c)o]
' . (A 1)

P'+'(
~q~,

c)ois that branch of the double-value complex
function

kii+qii)'+ik/1 ] (A2)

for which ImP &0. In the limit of small-angle inelastic
collision (q « k ) P'+' can be represented in the form

P'+'(q~~, co) =k, —co+ viiqii +
Uz 2lpo

(A3)

The integral in Eq. (32) is defined by the residue of the in-
tegrand at the points p, = ,k+,q+i 2/lp eand p, =P'+'.
The integration contour is closed in the upper half plane
of the complex variable p, due to the finiteness of the
function 3 when z —+ ~. As a result we obtain

The results obtained lead to the conclusion that
coherent effects exist in the angular spectrum of
moderate-energy electrons (E=100—1000 eV) refiected
inelastically from a disordered medium with fixed energy
loss. The enhanced peak is shown to exist irrespective of
the wave vector transferred in a single inelastic collision.
In distinction to the well-studied backscattering enhance-
ment in the elastic channel, the shape of weak-
localization features in the angular spectrum of inelastic
backscattering is more complicated and depends on the
nature of a single inelastic collision. In the case of non-
norma1 incidence of electrons, the center of the enhanced
peak is displaced relative to the exactly backward direc-
tion. Since the coherent phenomena in an inelastic chan-
nel exist independently of the wave vector of the excita-
tion, they can be considered as a possible tool for the ex-
perimental study of the wide class of low-energy excita-
tions in disordered media.

1 ~ 15

1.05

-0.5 0.5

Scattering angle 8+ 8' (deg)

A (E fico; q~~, q, ;z)—
exp[ iq, z ] — ~+vq

~ 1 —exp —iz
A'( co+vq) u,

Qq(z) .

(A4)
The calculation of the function B defined by Eq. (35) is

completely analogous to that of the function A, except
that the integration contour must be closed in the lower
half plane of the complex variable p, . Carrying out these
calculations, we obtain with the accuracy Aco/E « 1

FIG. 5. Enhancement factor g in the case q, l »1. E =500
eV, %~=0.5 eV, I =20 A, I /1,*& =0.99. Solid line, 8=0', dashed
line, 8=30; dot-dashed line, 8=45'; dotted line, 8=60'.

B(E;q~~, q. ;z )

exp[iq, z ] ' ~+v~q
. 1 —exp —z .g~~ ~(z) . -(A5)

fi( co+v'q
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Let us calculate the Laplace transform

Ft (v, —v;p)= I drF(v, —v;r)exp( —p7)
0

of the function F(v, v; r—) using Eq. (47):

APPENDIX B

(81)

FL (v, —v;p ) = W;„,&(q, co) —+dq 1 1 1 1

(2~) '"' '
to —(v ) p p+2ilto/v, p+il(to v—q)/v,

1

p + i 1 (to+ vq) /v,
(82)

If we assume that W;„„(q,to) = W;„„(~q~, to), Eq. (82) can
be transformed as follows:

FL (v, —v;p ) =2i 1

u, p(p+2itol/u, )

. l 1
FL (v, —v;p ) =2i

u, p p+2itol/u,

(2~)3 '"' to+ vq ipu,—/l

(83)

X A(to+p "v, /l, p'v, /l ), (84)

where p'=Rep and p"=Imp.
Similar calculations lead to the following expression

for the Laplace-transform of the function F(v, v; r):

Ft (v, v;p ) = [A(to —p "u, /l, —p'u, /l )
il

UzP

This integral can be rewritten by means of Eq. (51) in the
final form

—A(co+p "u, /l, p'u, /l )] . (85)
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