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Path-integral Monte Carlo study of crystalline Lennard-Jones systems
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The capability of the path-integral Monte Carlo (PIMC) method to describe thermodynamic
and structural properties of solids at low temperatures is studied in detail, considering the noble-gas
crystals as examples. In order to reduce the systematic limitations due to finite Trotter number and
finite particle number we propose a combined Trotter and finite-size scaling. As a special application
of the PIMC method we investigate Ar at constant volume and in the harmonic approximation.
Furthermore, isotope effects in the lattice constant of Ne and Ne are computed at zero pressure.
The obtained results are compared with classical Monte Carlo results and with experimental data.

I. INTRODUCTION

The path-integral Monte Carlo technique (PIMC) is
a widely used method in condensed matter physics to
compute quantum efFects in solids and liquids. Mostly
the method is applied to so-called strong quantum sys-
tems, in which exchange of particles or tunneling are
playing a dominant role, like superHuid helium, proton
tunneling, superconductivity, see, e.g. , Refs. 2 and 3. Re-
cently the interest has also been focused on weak quan-
tum systems in order to include the nontrivial inHuence of
the quantum nature on thermodynamic and static prop-
erties of condensed matter, as seen in dense rare gas sys-
tems (solids, liquids, and clusters). Since the interaction
of rare gas atoms can be described very accurately by
simple model potentials, comparison of computed data
with an experimental one can be carried out easily. Ex-
amples in the literature are the investigation of quantum
efFects in solid and liquid He, liquid neon, ' inclusion
of nonharmonic interactions in the description of crys-
talline Ar, and the isotope shift in the melting pressure
of He and He

Nevertheless the capabilities and limitations of the
PIMC method in describing low temperature behavior
of dense Lennard-Jones or related systems have not yet
been discussed in detail. However this is necessary if
the range of validity of a simulation has to be judged.
The factors lixniting the accuracy of the standard PIMC
algorithm are the finiteness of the Trotter number and
finiteness of the particle number. It is standard to ap-
ply Trotter scaling to extrapolate to the exact quantum
limit, reached at infinite Trotter number. Finite parti-
cle numbers and Born —von Karman periodic boundary
conditions, as customarily installed in a computer simu-
lation, involve a discretization of phonon spectra. For low
&equencies the density of states contains a gap between
zero &equency and the lowest mode given by acoustic
phonons with wavelength equal to the linear size of the
box. Thus if the temperature is smaller than the en-
ergy of the lowest energy vibrational excitation in the
system, the computer solid &eezes completely, although
in real solids (we have in mind ideal crystals) there al-
ways remain some long-wave excitations which are still

therxnally excited, leading typically to a specific heat pro-
portional to the third power of temperature. In this sense
the number of simulated atoms has to be increased when
temperature is lowered in order to avoid such discretiza-
tion efFects. The total number of simulated beads in the
PIMC method (equal to particle number times Trotter
number), that needs to be taken into account for quanti-
tatively accurate results, thus increases due to increasing
particle number and due to increasing Trotter number
when temperature is lowered. Keeping in mind that cor-
relation times usually also increase with increasing Trot-
ter nuxnber, it is evident that there is a range of temper-
ature, where some properties of the solid can no more be
computed accurately.

In this work we propose a low temperature finite-size
scaling method for systems where momentum eigenval-
ues are good quantum numbers, and apply it to an Ar
crystal treated in the harmonic approximation (with fi-
nite and infinite Trotter numbers), since in this approx-
imation analytical results for given particle number and
Trotter number can be evaluated and expensive simula-
tions have not to be carried out explicitly. We show that
the application of this low temperature scaling strongly
reduces the number of particles to be simulated.

Of course we also examine the quality of the har-
monic approximation and compare analytical results
with PIMC data computed &om the full pair potentials
for some selected combinations of the system parameters
temperature, system size, and Trotter number.

While the computation of low temperature specific
heat of solids turns out to be very expensive in CPU
time within the PIMC formalism, there exist some other
pure quantuxn efFects, where the application of the PIMC
method should be more efBcient. One-well known exam-
ple is the isotope efFect in the lattice constant of solid
neon, which has been determined experimentally with a
high resolution. In comparison to argon, neon has a
smaller mass and a smaller atomic radius. Furthermore
the potential of neon is not very deep. Due to Heisen-
berg's uncertainty principle, neon atoms have a relatively
strong zero point motion and thus the atoms move into
the nonharmonic part of the potential even at low tem-
perature. This in turn leads to a mass dependent lattice
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constant. We carry out a PIMC simulation at zero pres-
sure and compare the obtained isotope shift in the lattice
constant of Ne and Ne with experimental data.

II. THE PATH INTEGRAL MONTE CARLO
METHOD

A. The NpT ensemble

PIMC techniques are typically used to calculate expec-
tation values of observables in the (N, V, T) ensemble. In
order to carry out a PIMC simulation, an approximant
for the density matrix has to be formulated, which gives
an instruction how to generate a random walk through
phase space, respecting the principles of detailed balance.
During this walk, approximants for the observables are
averaged, yielding the expectation value of the observable
in the given approximation.

The so-called primitive form of PIMC has its origin in
Feynman's formulation of the canonical partition func-
tion Q(N, V, T). Meanwhile there exist better approxi-
mants for the density matrix, for a thorough presentation
see, e.g. , Ref. 13, but for our purposes the primitive al-
gorithm already yielded satisfactory results. One point
particle with a mass m is represented by a chain of classi-
cal "beads, " numbered t = 0, 1, ..., P. In the isomorphic
classical picture of distinguishable particles every bead
interacts within the chain with its next neighbors and
interaction between the chains only takes place by beads
with the same bead number. The canonical partition
function is

( p ) (ENP/2

Q(N, V, T) = »m
IE2~~' )

x d (r) exp — H(pl ((r))—P

with

d(N, p, T) = f dVe P Q(N, V, T)).

In the following every real vector r, is expressed as

sr,- 0, where s has the meaning of a scale variable and.

the vector r,. 0 is constrained to a reference volume V0.-(t)
)

One configuration is thus characterized by the complete
set of the Monte Carlo variables 8, (rp). If we write
the unnormalized probability of one con6.guration as
exp PE(p—l (8, (rp)) one can write, with Eqs. (1)—(3),

@(P)(8 ("p)) = k&T—[d(NP + 1) —1] ln(8) + pVps

(cor) (cor)

+ (P) (( o)) + ,', + (4)

The terms v0'„' are potential corrections, due to the
cutoK in the Lennard-Jones potential and will be dis-
cussed in Sec. II B. The Metropolis procedure can now
be applied. Thermodynamic functions are expressed in
terms of average quantities [. ]Mc of the classical sys-
tem. It is convenient to measure the kinetic energy Tk;„
with an approximant which is diagonal in the coordinate
representation [see Eq. (5b)], because the statistical er-
ror does not increase with increasing Trotter number P.
Pressure p can be computed to test self-consistence and
for this purpose it is sufhcient to use the straightforward
expression

N P
V, , = lim —) ) v,P-+~ P i=1 t=l - MC

(5a)

N P
Tj„„= lim ) ) sr(', v, ((srp))

MC

(5b)
N P

N(p) ((p$): ) ) ((, +e )-
i=1 t=l

(2a)

p = lim
P—+oo

PNkgg T
sdV

/ N P
1 ' 2()28 tds"V P0 i=1 t=l

mP
2 p

)

„(') ) „(~i
„-(') „-(e)

i)

(2b)

(2c)

N P

+) ) 8—V Srp l +V( l(8)
i=1 t=l ) MC

(5c)

The determination of lattice constant a is trivial:

(T') denotes the complete set of T; being the coordinate
of the bead at Trotter index. t corresponding to the ith
point particle. r,- has to be chosen identical with r,
In Eq. (2) for simplicity we have specialized to pairwise
interaction between the point particles v(I r, —T'( l I).

The integration in Eq. (1) is constrained to a fixed d-
dimensional volume V. In the case of constant pressure
we are interested in the formulation of the isothermal-
isobaric partition function A(N, p, T):

a = ap lim [8]MCP—+oo

with a0 being the lattice constant of the system with vol-
ume V0. It is worth mentioning that the two sums con-
taining derivatives in Eqs. (5b) and (5c) are not equiva-
lent virial expressions, because of periodic boundary con-
ditions. That is why correction potentials have to be
considered in the computation of the pressure, but not
in the computation of Tg;„.
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B. Technical details

We consider a system, consisting of N distinguishable
point particles with mass m, interacting via a Lennard-
Jones potential v(r;z) = 4e( —) [(—) —1]. We choose

standard values for neon and argon potentials. Ex-
change is neglected, since this effect would only be impor-
tant for Ne if the mass would be smaller than 2 amu.
Three-body interactions have been neglected also, be-
cause at low pressures they do not play a significant role
and their computation is rather expensive in CPU time.
In most of the simulations, we put 256 or 500 particles
in the box.

Interactions have been taken into account up to the
fourth neighboring shell, so that in fcc symmetry one
particle interacts with 54 neighboring particles. Their
contribution is about 90% of the total energy or of the
total virial. The outer lying neighboring shells have been
treated in a static lattice approximation (450 particles
with a contribution in the order of 10% of the total
energy). The rest is treated in a continuum static ap-
proximation with 1'%%uo contribution to the energy. It is
worth mentioning that corrections of that kind, com-
monly used in condensed-matter simulations, are im-
portant to make data, computed at constant pressure,
quantitatively comparable to experiment. The total cor-
rection potential is computed at a reference volume Vo

and splits into two parts v06 vo y2 If the scale vari-(cor) (cor)

able s changes, the corrections in potential change also
and have to be considered in the Metropolis procedure
[see Eq. (4)].

In most of the PIMC computations, we choose the
Trotter number P between 4 and 16. During one MC
step every bead and the center of mass of one chain
make one trial move. The sequential update of all beads
in a randomly chosen chain consists of random displace-
ments in real space, with a maximum displacement cho-
sen such that the resulting Metropolis acceptance ratio
is about 30%%uo. The number of equilibration steps is cho-
sen to be bigger than 100P. After relaxation data points
were taken all 2P MC steps for averaging. At least 100
(independent) observations are made. Quantum limit is
reached by applying Trotter scaling, see Sec. III.

III. FINITE-SIZE EFFECTS
AT LOW TEMPERATURES

Only in the last decade the PIMC method has
been used to determine quantum contributions arising
Rom the anharmonicity of realistic model potentials
of solid matter. Already in previous work for conve-
nience noble-gas solids have been chosen, because their
interaction is known very accurately and its descrip-
tion, with a Lennard-Jones potential plus three-body
corrections if necessary, is very easy. Bulk He (Ref.
4) and linear chains of Lennard-Jones atoms have been
investigated, ' later a three-dimensional argon crys-
tal was simulated ' with a very powerful extension of

PIMC, leading to the formulation of an effective "clas-
sical" potential. This approach is based on the assump-
tion that any solid can be described in the harmonic ap-
proximation at zero temperature. This method however
cannot be applied if anharmonicities already are impor-
tant in the ground state. It thus will be a challenge
to this method to compute isotope effects in the lattice
constant of rare gas solids, which are a consequence of
anharmonicity in the ground state.

The question, whether the quantum limit has been
reached within a finite Trotter decomposition, is dis-
cussed in nearly all PIMC simulation studies of con-
densed Lennard-Jones systems. Depending on the choice
of the algorithm, the expectation value of the observable
(0) = tr [Oexp (—PH)] /tr [exp (—PII)] has a systematic
error2s h(O), with

b'(0) oc P ', zeN

if the approximant in the density matrix is chosen Hermi-
tian, as in the primitive form where z = 1. This knowl-
edge about the systematic error can be used to extrap-
olate to the quantum limit or one can argue that the
quantum limit is already reached within statistical un-
certainties, if P is large enough.

If thermodynamic properties are governed by long-
wave excitations, as in noble-gas solids at low temper-
ature by phonons, an additional scaling has to be carried
out. The finite particle number N and Born—von Kar-
man boundary conditions are leading to a discretization
of energy spectra. In the quantum case this leads to a
dependence of thermodynamic functions on the system
size, while thermodynamic functions of classical systems
do not change at all in the harmonic approximation.

A classical solid always becomes harmonic when the
temperature tends to zero, provided that it is mechan-
ically stable. The computed ground state energy only
depends on the cutoff radius and thus does not change
anymore when the simulation box is bigger than (twice)
the cutoff radius. The specific heat is given by the law
of Dulong-Petit. Thermodynamic functions thus do not
depend on the system size when the temperature is low.

In the quantum case every elementary excitation with
wave number k has its proper contribution to the ther-
mal energy, specific heat, and so on. Let us call this
contribution f(k) Amacroscop. ic observable quantity 0
is then given by the integration over all k values in the
first Brillouin zone. This integration can be carried out
by choosing points k; in the first Brillouin zone and d-
dimensional Taylor expanding f(k) at k;. The choice of
the complete set of (k;) is given by the simulation box
geometry and the periodic boundary conditions. In cu-
bic geometry the k spacing in direction of the main axes
is constant (2Kk). The resulting leading order terms
are given by the first even order terms in the Taylor ex-
pansion, the odd terms vanish after integration, see be-
low. We schematically sketch the integration over the
phonon branch in the (1,0, 0) direction, where we choose
k; = 2iLk:
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f" a*af(v) =) f"' '

(~)

dk ) —,f(')(k, )(k —k;)'
1=0

(8)

93.2

93.0

where f(')(k, ) denotes the 1th derivative of f(k) at (k;).
In a computer simulation observables are measured in
real space. If their measurements would be transformed
into the momenta space, the corresponding terms of these
measurements are those with l = 0 in Eq. (8), thus the
two leading errors of discretization E'y, 8'2 are

92.8
hd

~~ 92.6

92.4

(9a) 92.2 '
0.000 0.002

I 4 I

0.004 0.006
1/N

0.008 0.010

Lkc.(~k) = 2, ) f(')(k, ). (9b)
FIG. 1. Scaling plot for the internal energy u~ of solid Ar

in the harmonic approximation at T = 4 K vs inverse particle
number (symbols). The line is a fit according to Eq. (lla).

The finite size of the simulation box would lead to a finite
Ak in Eqs. (8) and (9). Due to the translational symme-
try in k space, the numerical integration &om ki —Lk
to k; + Ak in Eq. (8), resulting in a smaller systematic
error than an integration &om ki to ki+ 24k, is justified
automatically. The exact integral of any f(~+ & over one
branch is zero because of the translational symmetry in
k space, but not the discretized sum. The order of mag-
nitude of the total sum cannot be bigger than one, which
we assume to be the case. In the full d-dimensional in-
tegration the leading order discretization errors are still
oc Lk and Lk . If we express the proportionality of Lk
with respect to the particle number N in a d-dimensional
space,

4k oc N l"

specific heat data, see Fig. 2, we also need the term e2 oc
N —5/3

Of course higher order corrections may be necessary if
the temperature is very low (if one assumes that N has
an upper bound in practical use of computers). Consider
a typical dispersion relation u(k) in the form of

(12)

For phonons v = 1 and in the Debye model k~ propor-
tional to the Debye temperature TD, v corresponds to
the group velocity. (For ferromagnetic magnons v = 2.)

In any textbook on solid state physics, that kind of

and insert this into Eq. (9) we obtain

&,pr '~") ~~ (11a)
0.025

(11b)

Equation (11)gives an instruction how to scale computed
observables with finite N to N + oo, when k is a good
quantum number. We apply this scaling method to a
three-dimensional fcc-Ar solid, defined in the computer,
with periodic boundary conditions. The Lennard-Jones
potential is treated in the harmonic approximation, thus
all allowed values of k are good quantum numbers. The
eigenenergies E(k) can then be computed and from them
the partition function Q(P) = g& exp[ —PE(k)] at any
temperature follows. It depends on the number of atoms,
which k values are allowed, and in Fig. 1 we present the
internal energy u~(T) = —(1/1V) [8ln Q(P)/BP] and in
Fig. 2 the specific heat cv (T) = Bu~(T)/BT at a given
temperature and density for different particle numbers
N~ ——4L, l = 3, 4, . . . , 9. The computed data are fitted
according to Eq. (11). The corrections to energy are only
in the first order eq. For the accurate description of the

0.020
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V

0.010

0.005
0.000 0.002

~ ~

0.004 0.006
1/N

0.008 0.010

FIG. 2. Scaling plot for the speci6c heat c~ of solid Ar
in the harmonic approximation at T = 4 K vs inverse particle
number (symbols). The line is a fit according to Eqs. (lla)
and (lib).
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dispersion relation for (boson) excitations is discussed.
The following low temperature specific heat cv (T) is ob-
tained:

~ ~ ~ I ~ 1 I ~

( T )d/u
cv(T) ~

~ ~, T~O.
kT~)

In the computer solid the possible A: values are dis-
cretized, due to the finite-size according to Eq. (10) and
this in turn leads with Eq. (12) to a lowest nonzero exci-
tation &equency u

~~ 10

V

—v/cE
cc)mjg oc N (14)

The computer solid thus begins to exhibit a qualita-
tively different speci6c heat, when the temperature is
smaller than Ru;„/k~T, because internal energy mi-
nus ground state energy vanishes exponentially fast oc

exp ( Ru—;„/k~T) It is.evident that size scaling in these
temperature regimes is strongly recommended in order
to 6nd the right thermodynamic behavior. This can bee
seen in Fig. 3, where the specific heat as a function of
temperature is plotted for different system sizes. The
smaller the system is, the more rapid is the decay of
the speci6c heat with the temperature. It is nearly im-
possible to find a temperature region with specific heat
c~ oc T for systems with less than 500 particles. Note
that there are still many simulations in the recent lit-
erature where due to the use of complicated potentials
appropriate for real materials or other technical reasons
particle numbers less than 10 are used, and hence one
must expect limitations of this sort to occur in such work.

Up to now, we discussed Trotter scaling in the in6nite-

10
10

T [K]
100

FIG. 3. The specific heat c~ of solid Ar in the harmonic
approximation, as a function of temperature, for different sys-
tem sizes: N = 108, 500, 4000 and in the infinite particle num-
ber limit. Some experimental points (Ref. 21) are shown for
comparison.

size limit or size scaling in the infinite Trotter number
limit. Of course, in general, one can neither do practical
calculations in the quantum limit if no approximations
are made, nor install an in6nite number of particles in a
simulation box. Using Eqs. (7) and (ll), an observable
0 (N s~d, p 2') with leading errors of order N s~d due
to 6nite N and leading errors of order P due to 6nite
P can be written formally:

(o (m-", I -'*)) = (o(o, o)) + a(o (N-'~d, o))
8(N —s~d)

N —+oo

N —3/d

8(o op
+ ' P *+0 P *P *W i N i)g(p —2z) . P—woo

gP) qN ) (16)

If one makes a scaling plot, one computes observables for
a set of Trotter numbers P; or a set of particle numbers¹,with i = 1, 2, . . . , i „,then the observables are plot-
ted against P or N /" and extrapolated to P + oo
or N —+ oo. It thus would be highly desirable to make
this extrapolation in one step. To do this one would have
to choose:

extrapolation to the quantum limit, above all an interpo-
lation between Trotter numbers is much less risky than an
extrapolation to in6nite Trotter number. After a proper
choice of such an integer pair N „,P „ interpolations
are not required at high Trotter numbers and high par-
ticle numbers, but only less expensive interpolations at
lower total numbers of beads. In a set of computations,
where N; and P; are chosen according to Eq. (16) the
leading error eq is proportional to P,. and N,. /, re-
spectively,

Unfortunately, it is nearly impossible to find an adequate
set of integers P;, N, , which ful611 this condition. Never-
theless one can always find a pair of integers N „,P
If the particle number lowered now, one has to carry out
two simulations with different Trotter numbers and in-
terpolate between them. This procedure will be less ex-
pensive in CPU time compared to carrying out the full

ei(i) oc P, oc N,

Of course the proportionality constant depends on tem-
perature, pressure and so on. Before we apply this com-
bined Trotter and size scaling to an Ar crystal, we check
to which extent the harmonic approximation is valid and
we investigate the inBuence of finite Trotter number on
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functions in the Quid and solid phases of He can be
obtained with high accuracy. Quantum nature of par-
ticles can lead to different isotope effects. The melting
curves of He and He differ slightly, while the classi-
cal melting curve does not depend on the masses of the
given species. These effects have been computed in good
agreement with experiment within PIMC simulations. '

Solid neon also exhibits an isotope effect in the lattice
constant, which has not yet been investigated within a
PIMC approach. We carried out a PIMC simulation at
zero pressure for Ne and Ne at different temperatures.

Based on a Trotter scaling plot analysis, it turns out
that convergence for the lattice constant is reached as
fast as for other thermodynamic functions like energy and
specific heat, but due to the small Huctuations of volume,
lattice constants can be detected with a very high pre-
cision. In Fig. 6 we show such a scaling plot for both
investigated neon species at a temperature T = 16 K,
which is smaller than but in the order of the Debye tem-
perature. Trotter scaling can be applied at this temper-
ature, with Trotter numbers P = 4, 6, 8, 10. We carried
out such a scaling (plot) with suitable Trotter numbers
for temperatures T = 8, 10, 12, 16, 18, 20, 22 K. In order
to avoid the smallest systematic errors, we always chose
the same Trotter numbers and the same number of equi-
libration and observation MC steps for both isotopes at
a given temperature.

In Fig. 7 we show the obtained expectation values of
the lattice constant as a function of temperature and we
also present for comparison experimental data and classi-
cal data with and without correction potentials (see Sec.
II). The qualitative behavior of experiment and PIMC
simulation is quite similar. We have not been interested
in optimizing the potential in order to achieve perfect
agreement with the experimental data and present this
comparison just as an illustrative example. We only want
to remark that the Lennard-Jones parameter o used in
the literature is chosen between 2.75 and 2.79 A. , with a
relative difFerence of 2%%uo. We use the smallest value 2.75

4.50

4.45

oQ 4.40
I-
lO

4.35

4.30

4.25 I I

10
T [Kj

20

FIG. 7. Lattice constant a of Ne and Ne: experimental
data (full lines), PIMC results (circles); upper curves: Ne,
lower curves: Ne. Classical MC data with correction poten-
tial (triangles up) and without correction potential (triangles
down). Error bars are smaller than symbol sizes, dashed lines
are drawn to guide the eye.

A. and we obtain a lattice constant I%%uo smaller than the
experimental one. It thus would be easy to obtain still
better agreement, also with potential parameters within
the usual range. We note again that in the classical sim-
ulations no mass effects are present resulting in the same
lattice constants for Ne and Ne.

Of course the hardest test is to detect (relative) difFer-
ences in the lattice constant and we define the relative
difFerence in the lattice constant y = (2 a —2 a)/2za. In
Fig. 8 we compare the computed results with experimen-
tal data. All points agree within statistical error and a
little offset, which may have its origin in the three-body
forces or in the choice of Lennard-Jones parameters. At
temperatures below 20 K, y decreases with increasing
temperature due to the approach to the classical high
temperature limit (y = 0). At higher temperatures y in-
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FIG. 6. Trotter scaling plot for the lattice constant a of
solid neon. The upper curve corresponds to Ne, the lower
curve to Ne at T = 16 K. Symbols: PIMC results, error
bars are smaller than symbol sizes.

FIG. 8. Relative difference y of the lattice constants of
Ne and Ne as a function of temperature. Lines are exper-

imental values (Ref. 11), symbols are PIMC results, the error
bars of the 10 y(T) data values are about +0.03.
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0.003 ir- mation only is fulfilled in the sense that potential and
kinetic energy with respect to the classical ground state
are equal.

0.002 V. CONCLUSION AND DISCUSSION

hC
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FIG. 9. Linear thermal expansion coeKcient o,~;„of Ne as
a function of temperature. Lines correspond to experimental
values (Ref. 11), circles to PIMC data, triangles to classical
MC data with (triangles up) and without (triangles down)
correction potentials, the error bars of the n~;„(T) data values
are about +0.0002. Dashed lines are drawn to guide the eye.

creases with temperature in agreement with experimental
findings. This increase in y may be attributed to the ap-
proach of the temperature to the melting temperature,
which is lower for Ne resulting in an increasing lattice
constant for Ne. We note that the resolution is of order
0.1% of the lattice constant ( 10 fm).

Another observable of interest is the relative thermal
(linear) expansion coefficient n~;„= [da(T)/dT]/a (see
Fig. 9). This computed observable also agrees within a
little offset of about 15'Fp with experimental data. It is
worth mentioning that this offset would be much bigger
if the static correction potentials described in Sec. IIB
would not have been considered. In order to prove this,
we insert classical MC data with and without correction
potentials. At temperatures higher than 20 K the infIu-
ence of the potential corrections on o.~;„becomes more
important than that of the quantum nature. Below 20
K the difFerence between the thermal &eezing of a real
quantum solid and a classical solid can also be seen in
Fig. 9. The interpretation can easily be done in terms
of Gruneisen theory. The quantum phonon occupation
numbers no longer change drastically at temperatures
smaller than TD, thus anharmonicity effects attributed
to phonons, like thermal expansion, also do not change
any longer. In the classical case the amplitudes of sound
excitations are not discretized and o.~;„does not tend to
zero at very low temperatures. The harmonic approxi-

Path-integral Monte Carlo is a suitable method to sim-
ulate low temperature vibrational dynamics of solids.
The lattice constant and associated structural properties
can clearly be resolved. This was shown by computing
the isotope shift in the lattice constant of Ne and Ne
with a very high accuracy. The thermal expansion coefIi-
cient has been computed as well in good agreement with
available experimental data.

At very low temperatures however much effort has to
be done in order to avoid discretization efFects of phonon
spectra, resulting in an artificial fast decrease of specific
heat with decreasing temperature. We have proposed
a combined Trotter and size scaling, in order to reduce
strongly the required computational effort if size depen-
dence is to be eliminated. Nevertheless better approxi-
mants as in the primitive algorithm are necessary in or-
der to be able to compute "critical" exponents describing
how the specific heat vanishes as the temperature goes
to zero. Of course their detection is very hard for pure
crystals, since this exponent only can be measured at
temperatures small in comparison to the Debye temper-
ature, e.g. , at T = 0.05TD.

Crystals containing a few impurities, or heavily dis-
turbed solids such as mixtures, orientational glasses, and
so on show anomalies in the specific heat which should be
more easy to detect, hence there exists an amount of spe-
cific heat bigger than the part attributed to the phonon
spectra of the pure system. This amount of specific heat
should suffer less &om statistical noise of the energy es-
timator, which always is on the order of the statistical
noise of a classical simulation, since any straightforward
PIMC method uses quasiclassical moves of single beads
and total chains, independent of the formulation of the
high temperature density matrix. PIMC simulation thus
could illuminate the understanding of thermal and struc-
tural anomalies of this kind of condensed matter.
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