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The electron-gas-model theory is critically examined by means of interatomic potentials developed
from ab initio quantum-mechanical descriptions of ions embedded in a crystalline environment and
from the basic hypotheses of the model, namely, spherically symmetric and additive ionic electron
densities, plus energy functionals for a homogeneous electron gas. We have found that the quantum-
mechanical crystal potential enhances the deformation of the ionic wave functions induced by the
crystal formation with respect to the self-consistent, crystal-adapted densities previously used in
electron-gas simulations. Since these differences are dependent on the crystal strain, it is shown that
some of the good results obtained in earlier electron-gas-based computations may be partially due to
a cancellation effect between the assumptions of the model and the approximate description of the
constitutive ions. For the test case explored here, the NaCl equation of state and the Bl-B2 pressure-
induced phase transition, the overall agreement with the experimental data is recovered when the
electronic densities and the energetic interactions are both computed quantum mechanically.

I. INTRODUCTION

The most interesting chemical and physical behaviors
of condensed matter are connected with its response to
external agents such as pressure, temperature, and elec-
tromagnetic radiation. The knowledge and the under-
standing of the bulk, surface, and defective properties
of materials under such conditions is therefore a mat-
ter where theoretical modeling needs to be developed in
deep. The available ab initio quantum-mechanical meth-
ods that try to solve the Schrodinger equation of the solid
are very effective on describing its static behavior, while
the atomistic simulations based on interatomic potentials
(IP's) constitute presently the only practical route to deal
with the global characterization of the materials. Since
the primary goal of theoretical modeling is prediction, it
is clear that nonempirical derived IP s provide the nat-
ural choice to perform computer assisted simulations of
solid materials at conditions that may not be attainable
in the laboratory.

The information generated by the quantum-
mechanical tools supposes both a severe test for the
atomistic simulation and a valuable source for develop-
ing reliable IP's. Thus, much efFort is currently dedicated
to link accurate solutions of the Schrodinger equation to
theoretical schemes that model the interatomic energy of
molecules, clusters, and solids.

One of the best known theoretical methods of atom-
istic simulation in ionic materials is the electron-gas (EG)
theory of Gordon and Kim. ' The three cornerstones
on which the model rests are (i) the additivity of the
ionic electron densities (IED's); (ii) the restriction of only
spherically symmetric distortion allowed to the IED's;
and (iii) the density functional algorithms used to com-
pute the interaction energies. From 1972 up to date,

the modifications in the EG model have been mainly ad-
dressed to the following two fronts: (i) the search for a
greater accuracy of the density functionals from which
the IP s are obtained, and (ii) the better descriptions of
the IED's. In this work, our focus will lie in the analysis
of the EG response to the quality of the IED's used in the
calculations. Therefore, it is worthwhile to recall some of
the previous reported contributions along this line.

Gordon and Kim assumed that the IED's can be ap-
proximated by gas-phase Hartree-Fock IED's, which led
to IP's that are pairwise additive and rigid. Improved
versions of the initial Gordon and Kim EG model sub-
stituted the gas-phase IED's by IED's generated by in-
cluding an approximated crystal potential in the ionic
calculation. When the IED's are allowed to change un-
der diferent crystal strains, a many-body contribution
to the crystal energy appears through the so-called self-
energy term, and the IP's move from rigid to relaxed.
What has been invariably common to the generation of
these relaxed IP's is the use of a Watson-type sphere to
mimic somehow the crystal potential. Muhlhausen and
Gordon chose the total charge of the sphere equal to
minus the total ionic charge and the radius such that the
potential at the anionic site coincides with the Coulom-
bic crystal potential at that site. The same idea is also
applied in the potential induced breathing model intro-
duced by Boyer et a/. , in the EG approximation pro-
posed by Mackrodt and Stewart, and in the EG model
of Hemley and Gordon. Differences among these ap-
proaches appear in the description of the crystal poten-
tial and in the explicit calculation of the IED. Going fur-
ther, Wolf and Bukowinski selected the charge of the
Watson sphere as Muhlhausen and Gordon did, but the
radius in such a way as to minimize the total crystal en-
ergy. As a result of this additional requisite, the anionic
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charge density suffers a greater contraction than in the
previous Coulomb stabilized method of Muhlhausen and
Gordon. Wolf and Bukowinski pointed out that the ne-
glect of this additional charge relaxation is probably one
of the principal sources of error for the equations of state
predicted by EG models.

In an effort to describe more accurately the IED's,
Z hang and Bukowinski proposed a modified local-
density-type crystal potential containing Coulomb, ex-
change, and correlation contributions that is made self-
consistent with the charge distribution of the ions in
the crystal. In their calculations, the total potential is
also simulated by a pseudo-Watson sphere. The cor-
responding IP's derived from their IED's were able to
provide a successful description of the equations of state
(EOS's) and the pressure-induced transitions for several
binary ionic halides and oxides and for the more covalent
stishovite phase of Si02. In spite of the sophisticated
iterative process followed to generate the IED's, Zhang
and Bukowinski found that their potential yields anions
that are only slightly smaller than those stabilized by a
point-ion Coulomb potential.

As far as we know, no attempt has been made up
to date to develop EG IP's using quantum-mechanical
crystalline IED's that were self-consistent with the crys-
tal potential they generate. A proper way to achieve
such IED descriptions is to work out the canonical pe-
riodic Hartree-Fock equations of the compound. How-
ever, this method is not very appropriate to use in com-
bination with EG models due to the intrinsic delocal-
ized character of the (Bloch) orbitals resulting from the
band-structure calculation. This inconvenience can be
bypassed if the Hartree-Fock equations are iteratively
solved within localized subspaces around every crystal-
lographically different ion of the crystal. It might occur
then that the IED's employed in some of the EG mod-
els commented above were very similar to those obtained
&om the quantum-mechanical self-consistent calculation
in the compound of reference. Such a possibility would
reinforce the plausibility of those EG models. However,
this is a hypothesis that has not been yet tested and that
deserves a detailed analysis due to the widespread use of
the Gordon and Kim EG formulation.

It is our aim in this work to investigate the performance
of the EG model when the IED's are obtained &om the
Hartree-Fock localized wave functions of the solid. We
pursue rationalizing the potential answers of rigid and
relaxed IP's in terms of the IED's used in their deriva-
tion and of the basic assumptions of the EG theory. This
commitment involves the development of a new nonem-
pirical procedure to generate EG crystal-consistent IP's
that will be applied to the test case of the NaCl poly-
morphs. To obtain the quantum-mechanical descriptions
of the ions embedded in the crystalline environment, we
have used the ab initio perturbed ion (aiPI) model,
a variational quantum-mechanical method inspired on
the theory of the electronic separability that has
been successfully applied to the description of a vari-
ety of electronic, structural, and thermodynamic prop-
erties of pure and defective crystals. ' Within the
azPI &amework, the electronic structure of every ion in

the crystal is solved in a localized Fock space by break-
ing the crystal wave function into local group functions
(atomic or ionic in nature). The minimization of the
total crystal energy required by the Hartree-Fock ap-
proach provides a set of crystal-like atomic wave func-
tions that respond self-consistently to the nearly exact
crystal potential. This potential includes the Madelung
contribution exactly evaluated by means of the Ewald
transformation, a Coulombic correction due to the non-
punctual character of the ions, a nonlocal exchange
potential, ' and a projection operator that tends to
procure the atom-crystal orthogonality. All the above
terms of the crystal potential are explicitly incorporated
in the Hamiltonian, in contrast with the consideration
of Watson parametrized spheres, as in the improved ver-
sions of the EG theory. Besides, the IED solutions of
the azPI model satisfy both the self-consistent requisite
with the crystal potential they generate and minimize the
total energy of the crystal. Finally, it is really interesting
to remark that the EG assumption of the total crystal
density being a superposition of the individual IED's is
better satisfied by the azPI crystal-like orbitals than by
the solutions employed in earlier EG calculations. This
behavior is due to the appropriate representation of the
quantum embedding effects, in particular of the Pauli re-
pulsion incorporated in the azPI crystal potential through
the projection operator. All these facts stress the rel-
evance of analyzing the EG theory making use of IED's
truly self-consistent with the crystal potential in which
they are embedded.

The article is organized as follows. In Sec. II, we
present the basic self-consistent Hartree-Fock azPI equa-
tions and compare the IED's generated with this method
with those obtained with approximate crystal potentials.
Section III is dedicated to establish the computational
parameters to be used in the EG model calculations and
to generate the crystal-consistent IP's making use of the
quantum-mechanical azPI electron densities. Section IV
is devoted to test the quality of the new derived IP's
for a well-known test example: the NaCl crystal. Their
response to structural, energetic, and thermodynamic
properties is compared with previous EG model calcu-
lations, quantum-mechanical results, and experimental
data. Finally, we summarize the more important conclu-
sions of this work in Sec. V.

II. SELF-CONSISTENT CRYSTAL POTENTIAL
AND IONIC ELECTRON DENSITIES

A. The Hartree-Fock aiPI equations

The self-consistent Hartree-Fock (HF) azPI equation
for the orbital P, of the ion A embedded in a crystalline
environment is

HP + ~crystal

where H, is the free-ion Hamiltonian and V,.
" ' is given

by
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= ) V. ()+& ()
s(gx)

(2)

S running over all the ions in the crystal except A. V~&(i)
represents the crystal potential of the zth electron of A
in the field due to the S ion:

crystal and their self-energies [E&(p&)]. Once the self-
energies and the pairwise interactions have been ob-
tained, the global properties of the solid are calculated as
in other atomistic simulation techniques. Results gener-
ated with the above quantum-mechanical scheme, which
is completely independent of any EG model approach,
will be denoted in the following with the azPI label.

V.zr(r's) =—
riS

+ V (') + V'( ) = V.'..(') + V (')

B. Relaxation of the charge distributions

This effective potential contains nuclear at traction,
Coulombic electronic repulsion, and exchange attraction
contributions. We have decided to preserve the spheri-
cal symmetry of the ions in order to simplify the treat-
ment. This approximation has been recently proved to
yield accurate results within the EG framework for those
ionic crystals in which the ions are not placed in very
low symmetry positions. The nuclear attraction plus the
Coulombic repulsion due to a closed-shell ion S becomes
then

Vi...i(r~) = ——+ p (r2)r12 dr2s + s
r1

(4)

g&S

where g runs over all occupied orbitals Ps with orbital
energies c . This term has its origin in the HF versiong
of the theory of electronic separability and plays a key
role in the azPI model. Its inclusion in V,

"~' leads to
solutions of Eq. (1) for different ions that are orthogonal
in the limit of complete basis sets. This means that the
hypothesis of describing the total crystal density as a
superposition of the individual IED's, one of the essential
approximations of the Gordon-Kim-type EG models, is
really behind the azPI formalism. However, as far as
we know, a projector or any other operator enforcing
orthogonality has not been included in the representation
of the crystal potential of previous IED's generated for
EG computations.

For our purposes, the relevant pieces of the output
of the azPI algorithm are the self-consistent IED's (p~)
for all the crystallographically nonequivalent ions of the

p (r) being the IED of the ion S. VP, &(r) can be
straightforwardly divided into a long-range classical term
V, & „(rq) plus a nonclassical electrostatic term V„,(rz)
that accounts for the diffuse character of the electronic
cloud.

The nonlocal exchange operator Vxs in Eq. (3) is
conveniently approximated by its nondiagonal spectral
resolution over the basis functions centered at S. A
detailed analysis of the errors introduced by this approx-
imation has been presented by Martin Pendas et a/. in
Ref. 27.

P (i) in Eq. (2) is a projector operator that enforces
the orthogonality between the orbitals of the ion A and
the orbitals of the ion S.2 For a closed-shell ion this
operator takes the form

We analyze in this subsection the relative importance
of the different contributions of V"~' to the relaxation
of the IED's. This relaxation is exclusively governed by
the crystal potential once the geometrical configuration
of the crystal and the basis sets for all the ions are spec-
ified. For this purpose, we have performed calculations
using four different crystal models, labeled class, Watson,
local, and QM. The class and local models use a crystal
potential formed only by the point charge part (V,~ „)
and the local part (Vj, ~) of V"z", respectively. Model
QM uses the total crystal potential V""' from the azPI
method. Finally, the Watson model is the crudest one
and corresponds to approximate the crystal potential act-
ing on the ion A by the Watson sphere:

Vwatsen—

' q~/r for r )
q~/( for r ( (,

where q and ( are the charge and the radius of the
Watson sphere, chosen such that V~ q, „——V,~ „at the
position of the ion A.

As test system, we have selected the NaCl crystal in the
B1 phase. The IED's and the self-energies have been ob-
tained using the high quality multi-( Slater-type orbitals
of Clementi and Roetti as input of the azPI program. 7

In Fig. I, we plot the ionic radius (defined as the radius
of the sphere that contains 99% of the electron density)
of the azPI solutions for Na+ and Cl versus the lat-
tice parameter a. The Na+ ionic radius hardly suffers
any change with a and is always essentially equal to the
free-ion value, regardless the crystal potential used. On
the contrary, the Cl ionic radius is highly dependent
on the crystal potential. Thus, V,~ „produces a mod-
erate contraction of its IED with respect to the free-ion
value that increases with decreasing values of a. The
use of the V~ t, „representation for the V, ~ „poten-
tial slightly emphasizes this contraction. Vj, ~, exactly
integrated. in the azPI model except for the spherical
average, turns to yield a pronounced expansion of the
Cl IED. Finally, the QM crystal potential restores the
expected contraction of the anionic electron density with
respect to the free-ion value. Furthermore, this contrac-
tion is considerably more pronounced than the obtained
with the two purely point charge potentials, V,~ „and
V~ t, „. It should be noticed that the above effects are
enhanced as a decreases.

Since the EG pair interactions depend sensitively on
the electronic charge in the overlap region, it is relevant to
analyze the effect of the above crystal models on the rate
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FIG. 1. Radii of the spheres containing 99% of the electron
density of Na+ and Cl versus the lattice parameter a in
NaCl H1 phase. Results are shown corresponding to the use
of several crystal potentials: class (+), Watson (()), local ( ),
and QM (x and D). See text for the definition of these crystal
potentials.

at which the Cl IED goes to zero. An appropriate way
to visualize the differences in this rate among the four
crystal potential models is to represent the logarithm of
the electronic density versus the radial coordinate. The
plot of the Cl IED at the theoretical azPI equilibrium
geometry of the NaCl Bl phase appears in Fig. 2. We
observe again that, except in the inner region of the ion
(r ( 2.5 bohr), where all the crystal potentials yield a

very similar answer, the QM model provides a more rapid
decay of the electron density as we separate away from
the nucleus than the other models. It is important to
remark that the class, Watson, and local curves behave
almost analogously to that one obtained with the free-ion
solution. We believe that these results can be extended
to other systems.

Support to this idea is found when we compare the
azPI solution for the 0 ion in the MgO BI phase (Fig.
1 of Ref. 21) with the corresponding IED obtained by
Zhang and Bukowinski (Fig. 2 of Ref. 15). It is observed
that the solution of Zhang and Bukowinski is very close
to that obtained by Huzinaga and Hart-Davies for the
0 free ion, whereas the azPI solution shows again a
more contracted character.

The more pronounced shrinkage of the IED when the
total crystal potential is used in the calculation has a
quantum origin directly related with the projector P (i).
Due to the localized character of the azPI method, an ef-
fective form of minimizing interionic overlaps is by means
of a contraction of the IED's. This fact can be viewed as
an additional attribute of the azPI formalism which helps
improving the fulfillment of the basic hypothesis of the
EG model theory.

The effect of the four crystal potential models on the
IED's can be quantitatively measured by means of the
deformation energy, E& &. This magnitude, de6ned as
the self-energy of A in the crystal minus the free-ion self-
energy of A,

is plotted for the Cl ion in Fig. 3. V~ „yields values
of E& f that are very small and that slightly increase
when a decreases. V~ t, „emphasizes again the effect of
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FIG. 2. Logarithm to base 10 of the ionic electron den-
sity (IED) of Cl versus the radial coordinate r according to
several crystal potential models.

FIG. 3. Deformation energy of Cl versus the lattice pa-
rameter a according to several crystal potential models.
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V,~ „,whereas Vj, ~ gives values of E&,&
that increase

very sharply with decreasing a' s. Finally, the QM crystal
potential produces values of Ed, &

much greater than the
two point charge potentials, V,~~» and V~~q»„.

III. DEVELOPMENT OF CRYSTAL
CONSISTENT INTERIONIC POTENTIALS

where

a = 117.15510K
b = 25.55999K
c = 42.11950K

11.488 98
0.162 748¹-79

- 1.58

We develop in this section crystal-consistent EG model
IP's using the IED's generated by the axPI model. From
now on, we will refer to these IP's as crystal-consistent
IP's (CCIP's). In the first subsection, we detail the com-
putational parameters used in the EG model calculations.
In the second one, we parametrize the CCIP's in order
to make the numerical explorations of Sec. IV easier.

A. Computational details

Once the IED's are available, the pairwise interaction
energy between ions A and B, V (R; p), is computed
in the EG theory as a sum of four contributions:

V (R;p) =V (R;p)+V (R;p)+V (R;p)
+V (R; p), (8)

V (R;p) =

ZB

p~(») pa(r2) ddr1dr2
~12

p (r )d p&(r2)
dr2 )

~2A

(9)

& P p) = f d~ u~ (p) p&~ (PA) pa~ (ua)] (&o)

where R is the interionic separation, p = p(a) = p~(a) +
p~(a) = p~ + pgy, and V+(R; p), V~(R; p), Vx(R; p),
and V (R; p) stand for Coulombic, kinetic, exchange,
and correlation energy interactions, respectively. In
terms of pA, pB, and p they are given by the following
expressions:

gp 0 48] 00~0.10137
~ p 232 73~—0.024536

0 443 30N s = 1.072N Q = 2/(3s) and
N = (N~ + N~)/2, N~ and N~ being the number of
electrons of atoms A and B, respectively.

Numerical integrations of the density functionals in-
volved in the EG models introduce some errors in the
calculation. These errors, in principle, can be diminished
by increasing the order of the quadrature. However, if an
analytical integration is possible, this should always be
preferred with respect to any numerical one. For this
reason, the expression of V@(R;p) in Eq. (9) has been
exactly evaluated in this article by means of powerful an-
alytical algorithms recently developed. This has been
motivated by the observation that a careful numerical in-
tegration of the electron density of a given ion-ion pair
did not give exactly a total number of electrons equal to
the sum of the electrons of both ions.

To compute the integrals that appear in Eq. (10),
we have used a spheroidal coordinate system. The an-
gular integration over P is trivially 27r, since the elec-
tron density is cylindrically symmetric along the inter-
nuclear axis. In the cases of A = (r~ + rgy)/R and
p, = (r~ —r~)/R, we have used a 60x60 Gauss-Legendre
quadrature. The limits of A and p are 1 & A & oo and
—1 & p & 1. Since the Gauss-Legendre quadrature re-
quires finite lower and upper limits, the integration of A

must be carried out with some care. To solve this prob-
lem we have proceeded as follows. First, we compute
the radii of the spheres containing 99.9998% of the IED's
(r& " and rI3 "). Second, we choose the upper limit of
A to be A " = 1 + & max(r& ",rg "). With this se-
lection, the total volume of integration contains at least
99.9998% of the electron density.

where e (I = K, A, or t ) are electron density func-
tionals that can be chosen in several ways. In this
work, we have used for ~, e, and ~ the functional
forms of Thomas-Fermi, Wigner (with the new fitting
by Clementi), and Handler, ' given respectively by
the expressions

(p) = —(3~') 3 p3,
10

- —1
e (p) = —0.1890p i 5.8032+ p i

—5.744 490 I
p;N

[1 + ap& + bpi + cp" + dp']

B. Parametrization of interionic potentials and
deformation energies

We have computed the Na+-Cl and Cl -Cl short-
range pairwise energies in the NaCI B1 phase with a
ranging from 8.0 to 12.0 bohrs at intervals of 0.2 bohr
using the EG model computational parameters reported
in the previous subsection. Some of these functions have
been plotted in Fig. 4, where the short-range energies
computed with free-ion electron densities are also shown
for comparison. We have found that for any value of a
greater than 8.0 bohrs the Na+-Na+ short-range energies
are negligible. Therefore, these potentials will not be
considered in the rest of the paper.

We observe from Fig. 4 that, at a given R, V (R; a)
and V )+i(R; a) increase their values with increasing
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V (R;a) = ) At, (a)R""e
k

(14)

values of a, being the interactions VN c (R; oo) and
V ' '(R; oo) the more repulsive ones. Due to this fact,
Gordon-Kim-type models using a single-crystalline IED
for each ion must give values of a and E, b smaller than
those obtained with free-ion solutions. Note that this is
the result predicted when using rigid IP's.

It is useful in practical calculations to represent the
computed interatomic energies with analytical expres-
sions. The regular changes shown by V (R;a) and
Vci i{R;a) with a and R allow us to establish the fol-
lowing three-step Btting procedure.

(i) Fit the (AA, ny) parameters of the following linear
combination of exponentials

to the computed V c'(R; a, ) and V ' '(R; a, ) short-
range energies, a, being the azPI theoretical equilibrium
lattice parameter (10.58 bohrs for the NaC1 B1 phase).

(ii) Repeat step (i) for all the lattice parameters at
which the short-range energies were 'computed with the
restriction of keeping the nI, parameters frozen at the
values obtained in step {i) optimizing only the linear co-
eficients.

(iii) Fit a polynomial to the Ag(a) values obtained in
the previous step.

The Anal analytical forms for the Na+-Cl and Cl
Cl short-range pairwise CCIP's are collected in Table
I. Along with these pairwise interionic energies, a term
containing the deformation energy of the ions as a func-
tion of the lattice parameter changes must be taken into
account to confer the appropriate relaxed attribute to the
IP's. These terms can be approximately represented, in
atomic units, by

0.4 ';—

!I; (a}

;1
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0.3
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0 2
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FIG. 4. Pairwise short-range interionic energies for the
Na -Cl (a) and Cl -Cl (b) pairs at different lattices ps, -
rameters a according to our calculations.

E f (a) = 2307.812 33edef
—721.738 041a (15)

Ec&-(ai)
( ) = 249.499 405e —0.746 459 27a

def
—123 574.800a

We have included in these functions the differential cor-
relation energy (crystalline minus free-ion) computed by
means of the Clementi and Chakravorty method. 3 The
relative importance of Ed f and Ed'f can be judged

from the following values: At a=10.60 bohrs E«f
Na+ (Bx)

—0.3 Kcal/mol and E&,&
——2.6 Kcal/mol. The cor-

responding values at a=8.0 bohr are —0.8 Kcal/mol and
104.5 Kcal/mol. Thus, the deformation energy of Cl is
far larger than that of Na+, as corresponds to the more
polarizable nature of the anion, in complete agreement
with our discussion of the previous section (see Fig. 1).
Besides, these numbers clearly show that not only the
deformation energy of the ions at a given a, but also its
variation with the crystal geometry, should be taken into
account to analyze crystal properties.

IV. QUALITY TEST OF THE INTERIONIC
FOTENTIALS

The purpose of this section is to test the quality
of the derived CCIP's. To this end, we compute the
equilibrium lattice parameter (a, ), the cohesive energy
[E, ~(a, )], the EOS and the Bl B2 pressure-indu-ced
transition data of the NaCl crystal. Although this sys-
tem has been used as a test bed for quantum-mechanical
methodologies, ' only few calculations of the EOS
and the phase stability have been reported for it. The
exception is the extensive work of Lowdin based on
the HF approach. More recently, Froyen and Cohen
have investigated the structural behavior of NaCl under
high pressure using a local-density approximation (LDA)
pseudopotential method. Their results are in agreement
with the room-temperature experimental data for NaCl.
However, Feldman, Mehl, and Krakauer have criticized
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TABLE I. Short-range pairwise interionic potentials (Hartree) for the Na -Cl and Cl -Cl
pairs of NaC1 in the Bl phase.

1.966 488 84

1.744 612 80

Na+-Cl

Ag(a)= Q'. , Cg, a'
Cgg ———1 796.494 02
Cg2 ——207.929 346
C2g ——2 867.605 19
C22 ———3 10.333 389

Ag (oo)
1 026.413 66

—1 355.663 50

AA

0
CHIC

2.087 207 99

1.699 803 30

0.000 000 00

Cl -Cl
Ag(a)= Q'. , CA,, a'
Cyy ——14 034.776 9
Cy2 ——2 019.249 47
Cy3 ———751.194907
Cg4 ——37.489 758 3
C2g ———30 817.274 0
Cg2 ——4 102.443 57
Cg3 ——83.062 470 6
C24 ———14.898 386 6
C3y ——10 021.945 3
C32 ———2 781.571 40
C33 ——246.304 231
C34 ———6.884 470 19

Ag (oo)
—4 892.426 23

4 038.863 76

521.194057

these results, and especially the good prediction of the
transition pressure, and have concluded that extra en-
ergetic contributions beyond the I DA are needed to im-
prove the agreement between theory and experiment. Re-
garding the results obtained &om HF-type calculations,
Recio et aI. , and Apra et a/. have shown that the ab-
scence of correlation energy effects introduces errors as
large as 50'% in the prediction of the zero P, T cohesive
properties. A consistent global description of the NaCl
crystal was only achieved after including correlation en-
ergy corrections in the case of the HF localized picture
provided by the azPI model.

In the first part of this section, we compare the CCIP
results with theoretical values obtained by means of the
above-cited quantum-mechanical methodologies and pre-
vious EG calculations, and with the available experimen-
tal data. In the second part, we analyze to what extent
the CCIP's derived in the Bl phase are transferable to
the B2 phase.

In our exploration, we use three types of CCIP's,
labeled CCIP (p ), CCIP (p'), and CCIP (p). The
CCIP(p )'s and CCIP(p')'s are rigid and use the &ee ion
and the azPI equilibrium geometry (a,=10.58 bohrs) so-
lutions as frozen IED's, respectively. [The CCIP(p ) set
is a limit case of a crystal-consistent interatomic poten-
tial where the crystal embedding is removed. ] Contrar-
ily, the CCIP(p) 's are relaxed, as the IED's used in their
derivation are the different azPI solutions corresponding
to different crystal geometries. The essential differences
between the CCIP(p )'s and CCIP(p')'s for the Na+-Cl
and Cl -Cl pairs are illustrated in Figs. 4(a) and 4(b).
The corresponding curves for the CCIP(p)'s cannot be
easily compared with those in the previous figures, since
these potentials include many-body effects through the

deformation energy contribution.
The comparison between the results obtained employ-

ing CCIP(p )'s and CCIP(p')'s gives us information on
the effect introduced by pairwise rigid potentials with
different repulsive characters over the crystal properties.
The comparison between CCIP(po)'s or CCIP(p')'s and
CCIP(p)'s will show us the importance of relaxing p in
deriving the IP's. Finally, differences between the azPI
results and those obtained with the CCIP(p)'s are only
due to the difFerent expressions used to compute the pair-
wise interactions, as the many-body contributions are di-
rectly taken &om the azPI results. Their analysis allows
the calibration of the energy density functionals used in
EG model calculations.

A. Crystal properties of NaCl

Using the three types of CCIP's defined above, we have
computed the cohesive energy of the NaC1 Bl phase (a
ranging from 8.0 to 12.0 bohrs) by means of a new com-
putational code named PAIRPOT. Details of the program
can be found elsewhere. ' We have used in our com-
putations an energy convergence threshold equal to 10
hartree. The properties explored here respond in a differ-
ent manner to the type of calculation performed. Thus,
as the short-range contribution to E, h(a, ) is around 11'%%uo

of the total cohesive energy for NaCl, little influence on
this magnitude is expected. However, as far as the a
and the EOS are concerned, the dependence on the po-
tentials is supposed to be larger, since the calculation of
these properties involves derivatives of the E,oh(a) curve.

First of all, we would like to notice that the global
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TABLE II. Static properties of NaCl (Bl phase) at zero
temperature and pressure obtained in several calculations.

CCIP(p )
CCIP(p')
ccIP(p)
Ref. 35
Ref. 37
Ref. 38
Ref. 39
azT'I

Ref. 10
Ref. 13
Ref. 15
Expt.

a, (bohr)
11.33
10.72
11.06
10.39
10.43
10.45
10.96
10.58
10.83
10.65
10.53
10.66

E, h (Kcal/mol)—
173.2
186~ 1
185.5
183.2

178.0
189.6
181.4
184.0
183.8
185.3

Bp(GPa) Bo
23.3 5.61
30.5 5.56
26.2 4.55
21.7
31~ 2
28.7 5.0
22.8
28.9

29.0
28.1
28.5 4.88

Extrapolated to 0 K by Brewer, quoted by Kittel, Ref. 48.
Reference 45.

description of the zero T, P cohesive properties of NaCl
provided by our CCIP computations is at least as succes-
ful as those given by other theoretical (quantum mechan-
ical or EG) approaches (see Table II). It is also shown
in Fig. 5 and Table II that, except for the CCIP(p ) and
the Apra et al. calculations, the computed and the ex-
perimental values of —E, h(a, ) lie in the range 181—1SO
Kcal/mol. The low value obtained with the CCIP(p )'s
(173.2 Kcal/mol) is due to the greater repulsive charac-
ter of these potentials. This feature is also responsible
for the larger a, value predicted in the CCIP(p ) calcu-
lation with respect to the CCIP(p') one. What is more
interesting to remark f'rom Fig. 5 is that the CCIP(p) EG
calculation gives a stifFer binding energy curve than the
one computed with the azPI scheme. This behavior leads
to a larger a, in the CCIP(p) calculation (11.06 bohrs)
than in the azPI one (10.58 bohrs) (see Table II).

Prom these results, we conclude that the pairwise re-
pulsive interaction computed with the energy density
functionals is overestimated with respect to the quantum-
mechanical result provided by the azPI method. In Secs.
II and III, we remarked. that the many-body contribu-
tion to these potentials was underestimated with respect
to the azPI value, since the IED's used in their deriva-
tion do not dier so much from the gas-phase IED's as
the local HF solutions do. Besides, it is necessary to
stress that with the IED's and the pairwise interactions
obtained following the Hartree-Pock localized scheme im-
plemented in the azPI model, the computed a, is in good
agreement with the experimental value (10.66 bohrs).

Considering these facts, the predictions obtained in
other EG model calculations using relaxed IP's may now
be foreseen: the overestimated repulsive pairwise inter-
action can be compensated by an underestimation of the
many-body energy. The final balance may produce a,
values shorter than those obtained in our CCIP(p) calcu-
lation and thus in better agreement with the experiments
(see Table II).

A similar analysis can be extended now to the discus-
sion of the NaC1 EOS. If we allow the IED's to readjust
themselves at each diferent lattice parameter, as in the
CCIP(p)-type calculations, we expect to find a more com-

0.3

0.2

0.1

00
v5

o -0.1

-0.2

-0.3

-0.4 I

10
a(bohr)

FIG. 5. Cohesive energy of NaCl in the B1phase versus the
lattice parameter a. The symbols Q, +, and H stand for the
CCIP(p ), CCIP(p'), and CCIP(p) calculations, respectively.
The symbol x represents the quantum-mechanical results ob-
tained with the azT'I model.

pressible crystal than with rigid CCIP(p ) and CCIP(p')
descriptions. The EOS is mainly determined by the bulk
modulus (Bo) and its first pressure derivative (Bo). Their
values are collected in the last two columns of Table II.
Although the CCIP(p ) value for Bo (23.3 GPa) is lower
than the CCIP(p) one (26.2 GPa), the resulting B(P)
function (in the linear approximation) is clearly stiffer
when using the rigid potentials. The predicted CCIP(p')
value for Bo is already higher than the one obtained with
the relaxed potentials.

The global result is also illustrated in Fig. 6, where
the static normalized volume (V/Vo) versus P diagrams,
generated from our E, i, (a) versus a curves, are plotted.
We also include in this figure the room-temperature (RT)
experimental data of Refs. 42, 43, and 44, and the extrap-
olated 0 K V/Vo Pcurve that w-as obtained from higher
T data using a Vinet EOS fitting. It is apparent here
that the CCIP(p) curve represents the behavior of the
softest crystal, which turns to be the experimentally RT
observed conduct of NaCl. This result is fortuitous since
our computations are performed for a static lattice (zero
T, zero-point contributions neglected). It should be no-
ticed that the azPI predictions describe accurately the
athermal corrected V/Vo Pcurve. T-he collected values
for Bo (see Table II) from earlier EG computations agree
again with thoses obtained quantum mechanically.

After the exploration of the Bl phase of NaCl, we dis-
cuss the data generated for the B2 phase and for the
BI-B'2 pressure-induced transition. The most interesting
results are gathered in Table III. In this case, the CCIP
(p')'s have been developed using the IED's obtained at
the mPI equilibrium geometry of the B2 phase (6.4S2
bohrs). For the CCIP(p)'s, we have used the IED's ob-
tained at lattice parameters of the B2 phase ranging from
4.6 to 6.9 bohrs. This interval corresponds to a variation
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1.0

0.9

0.7

0.6

GPa) by Zhang and Bukowinski. Since this is the only
number that breaks the observed trends among the dif-
ferent models used to analyze a„E, t, (a, ), and Bo, we
suggest taking it with caution.

As regards the transition data, the expected predic-
tions of the three CCIP EG computations and the com-
parison with the quantum-mechanical results and previ-
ous EG model calculations are dificult to guess due to
the cancellation of e8'ects between the two phases. This
consideration should be born in mind when analyzing the
results of Table III. A specific example illustrates this.
The Bl-B2 transition pressure, Pz, may be estimated as
the quotient4

0 10 20
I

30
P (Gpa)

40 50 60
E, h(B2) —E, g(BI) AE, g

Vp(B2) —Vp(BI) AVp
(17)

FIG. 6. Static V/Vo Pdiagra-ms of NaCl in the B1 phase
according to CCIP(p ) (solid), CCIP(p') (long-dashed),
CCIP(p) (short-dashed), and asPI (dotted) calculations. The
symbols, x, and + stand for the room-temperature data
of Refs. 42, 43, and 44, respectively. Diamonds (&&) represent
the 0 K extrapolated Vinet EOS.

of the nearest Na+-Cl distance similar to that one used
in the Bl phase. The fIrst point to remark is that the rel-
ative order of the values obtained for a, and —E, h(a, ) in
the three CCIP models explored, in the azPI scheme, and
in earlier EG model calculations is identical to the one
obtained in the Bl phase. Our previous argumentation
is then reinforced. The same consistency has been found
for the EOS and the Bo and Bo elastic parameters (for
briefness only Bo values are reported), with the excep-
tion of the surprising high value obtained for Bo (37.31

where the energies and volumes are calculated at the cor-
responding equilibrium geometries at zero pressure.

We observe in Table III that the computed value for
LE, h is very similar in the three CCIP calculations, in
the Apra et al. study, and in the asPI model. However,
the Vo(B2)/Vo(BI) quotient is higher in the CCIP EG
models and in Ref. 39 than in the azPI calculation. Ac-
cording to Eq. (17), these results would lead to a lower
value for P& in the acPI calculation. This is the tendency
followed by the tabulated values, that were obtained solv-
ing G(B2)=G(B1),G being the static Gibbs free energy.
We conclude again that the overestimated pairwise inter-
action, as computed with the energy density functionals,
is the major responsibility for the anomalous computed
high values of P, [45.3 GPa in the CCIP(p) calculation].
Previous EG calculations using relaxed potentials pre-
dict lower values for Pq, which we explain as due in part
to the balance introduced by the underestimation of the
many-body deformation energy contribution to the cohe-
sive energy.

TABLE III. Static properties of NaCl (B2 phase) at zero temperature obtained in several calcu-
lations.

CCIP(p )
CCIP(p')
CCIP(p)
CCIP(p)(B1)
aiPI
Ref. 35
Ref. 37
Ref. 38
Ref. 39
Ref. 10
Ref. 13
Ref. 15
Expt.

a, (bohr)
7.024
6.609
6.852
6.801
6.492

6.746
6.650
6.546
6.463

E,~h (Kc—al/mol)

162.0 (11.2)
175.9 (10.2)
175.1 (10.4)
175.0 (10.5)
178.8 (11.0)

168.7 (9.3)
173.4 ( 8.0)
176.8 ( 8.0)
176.9 ( 6.9)

Bo (GPa)
22.8
32.1
27.1
28.5
25.6

24.4

37.31
36.2

Vo (B2)/Vp(B1)
0.952
0.937
0.951
0.929
0.923

0.933
0.928
0.929
0.925
0.929

Pg (GPa)
29.0
34.6
45.3
35.5
22.0
10.1
27

21.4
39.2

18.5
29

26.8'-30

DVg/Vg (B1)—
0.071
0.058
0.047
0.048
0.113

0.058
0.047
0.043

0.070
0.040
0.058

The numbers in parentheses are AE, g(B1-B2).
Room-temperature extrapolated to zero-pressure value of Heinz and 3eanloz, Ref. 49.

'Reference 50.
Reference 51.
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B. Transferability of the 'o e xnterionic potentials

0.3

ase
ase -~--

A relevant matter in the develo m
sistent IP'

e eve opment of crystal con-

a speci c procedure, as the ona s eci c, e one outlined in
no e a le to describe the s

actions in other t . Her sys ems. Ho
i e e same inter-

reliable transference of the CCIP 's
er . H wever, we have seen

p)
' potentials from the

e p ase is possible, as long as both str
have the same reduced l tt

o s ructures
uce attice spacing &a ~a ~.

Since the relaxed CCIP~ ~'s ar

c a re ationship does exist
a, 1 a(B2)/a, (B2 . Th' d

'

the conclusion that + (1) = +2
&, is i

an essentia y common IED at the c
sponding equilibriumm geometries.

a t e corre-

In Fig. 7, the validity of the pro osed

s a eir corresponding zero-pressure
geometries are plotted '

equlllbl ium
o e in Figs. 7(a) and 7(b&. From t

e ers provide pairs of alike cur

the B2 ha
deformation energy of NaCl in

e 2 phase versus the nearest Na+-Cl distanc

e q nt reduced lattice pa-p ase at e uivalent
e ers. e coincidence of both curve

perfect.
o curves is again nearly

e conclude that the pairwise and man -bo

tries are identical wh 1 d
crys a geome-

,---.,-l.b----.w en sea e with res ect

e equilibrium properties of the B2
phase obtained using the CCIP's enerat

a e j~confirm the conclusion o t
&ey cog Re, and Bo values di

an . o, 0.1 Kcaltmol and
or e p ase transition ro

differences betw
no so goo, since these rop operties depend on

ces e ween magnitudes corn uted i

To end with the analysis of the B1-B
it is ver y important to mention that in our calcula '

o e - 2 transferabilit

e, in eran eof r
a, t is quotient, as coxnputed usin the
t d fro Bl IED' fo d

Consequentl
s, is found to be 1.619+0.015.

n y, we arrive at a worthw i'

qualit of they o e transferability scheme ro ose
while conclusion: the

pressure. This result also illustrates that

0.2

z
0.1

0.0 '

5
R(Na-CI) (bohr)

0.04

5 0.03

0.02

0.01

0.00—
5 6 7 8

R(Cl-Cl) (bohr)

0.25

0.20

0.15

0.10

0.05

0.00

-0.05
5 5.5

R„(bohr)

FIG. 7. Calculated short-ran e air-range pair+rise energies for the (a)
an ~b) Cl -Cl pairs in the Bl a=&

d th B2 ( =6.492 b h
of NaCl in the B2 h

o rs phases. c DeDeformation energy
p ase versus the nearest-

(A ). Symbolo s in c represent the value
rest-neighbor distance

in the text.
p ase usin the trag e ransference scheme described



DERIVATION OF ELECTRON-GAS INTERATOMIC. . . 2713

at any pressure the Bl and B2 phases of NaCl are well
described with common, pressure-dependent, IED's.

V. CONCLUSIONS

Drawn by the increasing demand of reliable IP's to
be used in computer simulations, we have critically ex-
amined in this paper one of the best known atomistic
techniques in ionic materials: the Gordon and Kim EG
model. Our contribution has mainly been dedicated to
the study of the dependence of the EG-type IP's on the
IED's employed in their generation. This task has been
performed in two steps: (i) analysis of the IED response
to a hierarchy of crystal models, and (ii) development
of the so-called crystal-consistent IP's (CCIP's) and sub-
sequent application of them to a test case: the NaCl
crystal.

We have demonstrated that only a precise description
of the quantum contributions to the crystal potential can
account for the global contraction of the anionic IED
and the increase of its self-energy upon crystal forma-
tion. The change of these two properties with the lattice
parameter a is captured only to a small &action of its to-
tal value with a classical lattice. It has also been shown
that the azPI IED's are better suited to fulfill the elec-
tron density additivity assumption of the EG theory than
other IED's obtained with approximated crystal poten-
tials.

A decisive test of the EG energy density functionals
is performed when comparing a variety of cohesive and
elastic properties obtained with the relaxed CCIP (p) 's
and with the azPI scheme. Our analysis shows that there
exists an overestimation of the pairwise repulsive energy
as calculated with the density functionals. A cancella-
tion efFect may appear if we combine these pairwise in-
teractions with self-energies computed &om approximate
crystal-adapted IED's. This is a plausible explanation to
some of the results previously obtained within the EG-
model approach. We believe that this critical attitude
opens new courses to investigate the basic hypotheses of
the Gordon and Kim EG model.
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