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Electron states in a quasi-one-dimensional charge channel over liquid helium
in the presence of a transverse magnetic field
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Calculations are carried out for single-particle energy levels and wave functions for electrons in a quasi-
one-dimensional charge channel formed on the surface of liquid helium. The expressions for the spectrum are
obtained for two different orientations of the magnetic field perpendicular to the channel. The conditions for
the applicability of the formulas derived are established and they can be used in experimental studies of
spectroscopic transitions between the confined states and the electron transport of the system.

There has been a lot of interest in recent years in the study
of electrical and optical properties of one-dimensional semi-
conductor nanostructures, mainly due to the great techno-
logical progress in crystal growth, lithography, and etching
processes. A regime for transport electron was found where
the quantization of the conductance is proof of the ballistic
one-dimensional transport and the character of the one-
dimensional density of states of the electron system was

mapped out in tunneling spectroscopy studies. On the other
hand, a quasi-one-dimensional system (Q1D) can also be re-
alized by creating a solitary channel of high-mobility elec-
trons on a helium surface strongly distorted by capillary
forces due to a substrate formed by two dielectric polymer
sheets forming a sharp angle, as shown in Fig. 1. ' The
physical realization of this system opened as a possibility of
studying different phenomena in the Q1D electron system.
Such a system has all the advantages, which are typical for
surface electrons (SE) on helium such as the cleanness, ho-
mogeneity, and the possibility of a wide variation of the elec-
tron density and the holding electric field, in contrast with
dirty semiconductor structures where the electron properties
are strongly influenced by spatial inhomogeneities, impurity
scattering, and so on.

The electrons are free to move along the channel (x axis)
but are confined by the potential due to the holding field
E~ along the z direction and the polarization forces corning
from the helium surface and the substrate. In the z direction
the confining potential is very well known and generates the
two-dimensional subbands. In the y direction the potential,
for small deviations of the electron from the bottom of the
channel (y= 0) can be written as

(2)

and

exp(tk~) y.(y) f~(z)x L
(3)

where k is the electron wave vector, L is the size of the
system in the x direction, g„(y) is the Hermite function, and
n=0, 1,2, . . . . The energies bt (/=1, 2,3, . . . ) and wave
functions ft(z) refer to the confinement in the z direction.
For E~~300 V/cm, the probability of an electron makes

nificantly the strength of the electron confinement along the

y and z directions, and the spectroscopy of the electron states
can be successfully determined. Equation (1) is valid when
the condition y(&R is satisfied. The harmonic potential gives
the following spectrum: '

v/ co()y
V, (y) =

2

where coo= eE~ /mR, with R the curvature radius of the liq-
uid in the channel (10 —10 cm), and m and e are the
mass and the charge of the electron, respectively. One can
see that only by varying the holding field, one changes sig-

FIG. 1. Schematic view of the channel filled by liquid helium
between two dielectric planes. Electrons are free to move along the
x axis and the holding field E~ is in the z direction.
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transitions from the level I = 1 to levels I~2 negligible. The
mean distance of the electron from the bottom of the channel
in the z axis for l = 1 satisfies the condition (z)i(&R and we
can restrict ourselves to both the energy 5

&
and wave func-

tion fi(z) obtained for surface electrons over a fiat surface of
helium.

The aim of the present work is to describe the effect of a
transverse magnetic field B on the electron states in the Q1D
conducting channel over liquid helium. In the case of SE, we
know that the application of a magnetic field perpendicular
to the helium surface simply modifies the electron motion in
the plane, but does not directly affect the spectroscopic tran-
sitions in the z direction. On the other hand, if the field is
applied at a certain angle to the surface, then BI couples the
in-plane motion with the spectroscopic transitions while B~
forces an in-plane periodic motion at the cyclotron frequency
cu, =eB/mc The. Lorentz force due to B!!is equivalent to an
oscillating holding field F~ at frequency cu, . This modula-
tion of the splitting between the bound states in the z direc-
tion produces satellite lines spaced on either side of a tran-
sition by integral multiples of co, . In the Q1D case, due to
the confinement of the two degrees of freedom, the applica-
tion of the magnetic field in a transverse direction couples
the spectroscopic transitions in the two directions of confine-
ment. In contrary to the case when B is applied in the direc-
tion parallel to the electron motion, by switching on the mag-
netic field in directions normal to the x axis leads to a mixing
of electron states along the direction in which the motion is
free and along the direction in which the motion is confined
in the absence of the magnetic field. As a result, drastic
changes both in the energy spectrum as well as in the elec-
tron wave functions take place.

A. Magnetic field applied in the z direction

In this case, by taking the Landau gauge for the vector
potential as A = ( —By,0,0), we can write the electron
Hamiltonian as

1 ( (y —Y)'1 ~ y —Yl
X 4') = „,g P 2Is 22"n! rr I,* ( c t I, Ic /

(6)

where I,* =6/mA is the renormalized magnetic length,
Y= —Ace, k, /mA is the y coordinate of the center of the
electron orbit, and H„(x) is the Hermite function. Equations
(5) and (6) are very similar to the expressions derived for a
two-dimensional electron system in the presence of a uni-
forrn positive one-dimensional charge density, which also
leads to a parabolic potential. ' However, in the present case,
the potential given by Eq. (1) is valid only for y(&R, and a
careful analysis of the applicability of the equations obtained
is imperative. Then we first calculate the mean square of the
displacement of the electron in the y direction, which can be
written as

fL CO I/"

(y )„=(n+1/2) I,* +

The first term is smaller than the mean square displacement
at B=O, given by (yo)„=(n+1/2)yo, where yo= g fi/meso
is the localization length in the y direction. The second term
has a maximum at co, = coo and the major contribution of this
term to (y )„at co, =coo is approximately the same as

(yo)o for temperatures around 1 K and for holding fields

E~ ~3000 V/cm. So, the inequality v'(y )„(&R is satisfied
even for large enough n, which gives strong evidence that
Eqs. (5) and (6) can be used for describing the electron states
in Q1D channels on liquid helium in a wide range of holding
fields. In the limit of co, &&~0, we reproduce the results of
zero magnetic field given by Eq. (2). In the opposite limit,
coo~0 (for a given Ei, this limit can be achieved as
R~~), we obtain the familiar result of the Landau quanti-
zation of electron motion in the x-y plane. Finally, we ob-
serve that in order to have ~Y~&-L~, where L~ is the charac-
teristic size of the system in the y direction, the possible
values of k must fulfill the condition ~k, ~(mA L /fi co, .

eBy0= p + +p +p, + Vz(y)+ V,(z), (4)
2m i c

fi, Ok';+(n+ ,')r n+~, , -
2mB (5)

where the frequency A = g(co, + coo) indicates the hybrid ef-
fect between the geometric and magnetic confinement. The
wave function in the y direction is written as

where p; is the operator of the corresponding component of
the momentum and V,(z) is the confining potential in the z
direction, which consists of the attractive image potential, a
repulsive barrier at the interface and a linear term from the
holding electric field. As in the case of SE on helium, the
magnetic field does not affect the motion in the z direction.
The solution of the Schrodinger equation to the Hamiltonian
given by Eq. (4) leads to the following expression for the

energy spectrum:

(0=
2m +u, +u, +V,(y)+ V.(z) (8)c

In this case the magnetic field does not inhuence the electron
motion along the y direction. As in the previous situation

(B ~~ z) the x component of the electron momentum is con-
served and the wave function has the same form as that given
in Eq. (3) with y„(y) expressed by the same function as in
the case B=O. However the wave function fi(z) satisfies
the following equation:

fi 8 fi(z) +
2m Bz

m cu, z2 2

+«~z+
2 f&(z) = ~( fi(z)z

(9)

where E~ =F~ —fico,k /e is an effective , holding field
which incorporates the motion in the x direction. The total

B. Magnetic field applied in the y direction

Under such orientation of the magnetic field, the most
convenient gauge for the vector potential is A=(Bz,0,0)
which leads to the electron Hamiltonian given by
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energy spectrum is the same as in Eq. (3) with 5(= e(. In Eq.
(9), we have used the explicit form of the potential V,(z),
given by

E„((k )= +(n+ 2)ficop+b, (
(p)

V,(z) =—Ap + eE,*~,
z

(10)

m Ql~
+ z [f(( ((z)] dz

2 J p

f oo

—mco, zp z[f', ((z)] dz
ap

(14)

with Ap=(ez/4)(eH, —1) /(eH, +1), eH, being the dielec-
tric constant of helium. There is no analytical solution for
Eq. (10). However, it is possible to obtain an expression for
the energy of the ground level I = 1, by using the variatioval
method. Using the trial wave function as

f, (z) = 2 y ' zexp( —yz)

where zp=fik/mco, , and f~& l(z) is given by Eq. (11) and

y, is defined by Eq. (13) for B=O. After straightforward
calculation, we obtain for the level 1=1 the following ex-
pression for the energy spectrum:

2 2 26 k 3 men,
E„,(k,)= +( n+-,')fi cop+6, +—

2 (1—yizp)2m 2 yi

which takes into account the presence of a potential barrier at
the liquid-vapor interface satisfying the boundary condition

f,(0)=0, one can write the energy of the ground state as

I'2y' 3 eE* 3 moo,:=2' -'y
2 "22m 2 y 2 y

(12)

The parameter y should be determined from the condition
c(&i/oy=O. If we write y= ypx with yp=mAp/6, the
variational parameter is found by solving the following quar-
tic equation:

The shift of the energy state is a maximum for the case
E~=O when yi is a minimum and yi=yp=mAp/fi 2

=1.31X10 cm . In such conditions ~Ai ~= —fi yp/2m
=7.58 K or 157.9 GHz in frequency units. In this way, we
can estimate the quantity ci, = -',m co, / y, (1—y, zp) for
k (0 and ~k

~

= gmT/fi for T=1 K as ci(=6.6 6Hz, if
B=5 T, and A, co, =G.67 K &&51 . A similar procedure was
used in the calculations of the energy spectrum SE over a fIat
helium liquid when a magnetic field in the direction parallel
to the surface is applied.

In the limit of high enough holding fields, one can neglect
the first term in Eq. (10) and Eq. (9) can be solved analyti-
cally. The corresponding solutions for the spectrum and the
wave functions f((z) can be expressed as

( *l' ( I4
4 3 yJ, yc

x —x —
l x — —=0
I, yol ( ypl

(13)

/ l
E„((k,) = +(n+ 2)ficop+fico, l—+ ———

(16)

where (y~) =3eE~m/2fi. and (y, ) =3m co,/fi =3l,
where /, is the usual magnetic length. In the limit of B=0,
the solution of Eq. (13) coincides with the results of Ref. 13.
The positive definite conditions that should be imposed on
Eq. (13) lead to possible values of k in the interval

eE~/fico, ( k ~ eE~/fico, +mco, /fiyp. Even though it is
possible to obtain an analytical solution of Eq. (13), the
mathematical approach is quite cumbersome and we prefer
to solve it numerically. The calculated value, for thermal

electron momentum k = gmT/fi=3. 55X 10 cm, is
x= 1.2 and x= 1.5 for B=5 T and B= 10 T, respectively,
and holding fields up to 400 V/cm. We must emphasize that
we are considering the magnetic field in the positive direc-
tion of the y axis. In the case of the opposite direction, the
possible values of It,

. are negative and are connected with

C '

If the magnetic field is weak, i.e., the condition
fi, co,(&61 is satisfied with 61 being the energy of the level
1=1 for B=O, the correction to the energy spectrum can be
calculated in perturbation theory and leads to the result

and

(
f((z) = CD(

(l, / 2

where D((x) is the parabolic cylinder function and —(( are
the zeros of D((x), (()0. The possible values for k are
determined by the conditions imposed to solve Eq. (9) and

yields k„=eE~ /fi co, + m co,l,g(/+2fi, .
In the limit of l&&1, the energy spectrum can be written as

E„,(k.) = "+ (n+ —,')((' ~p
2EPl

(3~1 ~(3 (fik —eE /co )+ (l fico, )2g 2m

This expression agrees with the results of Ref. 14 in which
the energy of high states of SE over a fIat helium surface
subject to a magnetic field in the direction parallel to the
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surface were calculated in the quasiclassical approximation.
In conclusion, we have calculated the electronic structure

of Q1D electrons localized in the channel filled with liquid
helium in the presence of a magnetic field in the transverse
direction to the channel axis. The effect of the magnetic field
on the spectroscopic transitions of the system was demon-
strated and the wave functions and the energy spectrum were
evaluated. The results of the present work can be used in the
experimental study of the spectroscopic transitions between

the confined states and the electron transport properties of
the Q1D charge system on liquid helium.
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