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Rigorous upper bound for the persistent current in systems with toroidal geometry
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It is shown that the absolute value of the persistent current in a system with toroidal geometry is
rigorously less than or equal to e#iNa/4wmr3, where N is the number of electrons, 7y 2= (r;"2) is the
equilibrium average of the inverse of the square of the distance of an electron from an axis threading the
torus, and a <1 is a positive constant, related to the azimuthal dependence of the density. This result is
valid in three and two dimensions for arbitrary interactions, impurity potentials, and magnetic fields.

The phenomenon of persistent currents occurs when an
electronic system is placed in a magnetic field: at thermal
equilibrium, an electric current flows without dissipation
of energy. This effect is usually studied in systems which
are topologically equivalent to a torus, for example, a
metal ring or a hollow cylinder. The interesting quantity
is the flow of current through a cross section of the torus.

The persistent current exhibits a variety of behaviors,
depending on both the magnetic field and the geometric
parameters of the system. A first example is that of a
thin metal ring, i.e., a ring whose thickness is much
smaller than its radius. Mesoscopic versions of this sys-
tem have received particular attention in the past few
years. The experiments' have been done in the
Aharonov-Bohm configuration, in which a weak magnet-
ic flux threads the ring, without significantly affecting the
electron orbits. In this case, the main physical effect is
the “twisting” of the boundary conditions on the electron
wave function, leading to a persistent current which is a
periodic function of the threading flux, with period
®,=hc/e? The typical magnitude of the current is
ev /L, where v is a characteristic velocity of propagation
of an electron, and L is the length of the ring. The
current vanishes if the ring is made larger and larger
(L — o0 ), so this effect is a purely mesoscopic one.

A different behavior is obtained in a two-dimensional
ring, with inner and outer radii R; and R, (R; <R,), in
the presence of a strong perpendicular magnetic field B
such that the magnetic length A=(#ic /eB)'/>?<<R,—R.
This model has been studied by several authors.>* The
magnetic field induces currents flowing in opposite direc-
tions at the inner and outer edges of the ring. If R, and
R, are macroscopically different, the edge currents do
not cancel each other exactly, and one is left with a net
current that fluctuates violently as a function of electron
number when the Fermi level is in a gap between two
Landau levels.* A typical value of the order of a fraction
of ew. (w,=eB /mc is the cyclotron frequency) has been
reported in a numerical study.*

In the special limit R, —0, the ring becomes a “punc-
tured disk,” and then it has been found® (neglecting disor-
der and interactions) that the net current is quantized in
integral multiples of ew, /4 when the chemical potential
is pinned to one of the Landau levels in the bulk.

In view of the diversity exemplified above, it is remark-
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able what we show in this paper, that there exists a
rigorous upper bound to the persistent current of a sys-
tem of arbitrary size and shape, provided that it is topo-
logically equivalent to a torus. We do not need to assume
any symmetry, and we do not put any constraints on the
nature of the magnetic field, not even that it be uniform.
In essence, our derivation of the upper bound is a shar-
pening of the argument presented by Bohm,® following a
suggestion by Bloch, to prove that a macroscopic one-
dimensional ring cannot carry a finite circulating current
at thermal equilibrium. Assuming that the upper bound
is a good estimate of the maximum value of the persistent
current that can be reached in a given system with an ap-
propriate magnetic field, this result enables us easily to
understand the large difference in order of magnitude and
geometric dependence of persistent currents in, for exam-
ple, thin rings and punctured disks. Also, the rigorous
upper bound can be useful as a test of the validity of ap-
proximate theories of persistent currents.

Let us consider a system of electrons confined within a
body of toroidal topology, such as the one shown in Fig.
1. No symmetry is assumed. Let us chose an axis—the z
axis—which threads the body, but is otherwise arbitrary.
The question of the optimal choice of the z axis will be
addressed later. Each half-plane emerging from the z axis
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FIG. 1. Cylindrical coordinates for a toroidal body.
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at an angle ¢ (0<¢ <2m) cuts a two-dimensional cross
section S(¢) in the body (see Fig. 1).” The persistent
current is defined as the flux of the current density j(r)
through S(¢). By virtue of the continuity equation
V-j(r)=0, this flux is independent of the choice of ¢.

We introduce the standard cylindrical coordinates
r; =(r;,2;,¢;) to characterize the position of the ith elec-
tron in the body. The corresponding momenta are

= —i#(d/9r;,0/3z;,r, '8/3¢;). The Hamiltonian of
the system is
2

ﬁ=ﬁz ’ [pi+'f—.A(l',-) +V(r;)
e? 1
+ 2 IEJ lri_l.jl , (l)

where V(r) and A(r) are arbitrary scalar and vector po-
tentials. The exact eigenfunctions
Y, (ri,z,05 .. ry,2,éy) of A, with eigenvalue E,, are
completely antisymmetric, and vanish very rapldly (ex-
ponentially) outside the boundaries of the body. The
average persistent current, at thermodynamic equilibri-
um, at temperature 7T, is given by

1 —(E, /kT)
I=E %e <1/}n

fs(¢)j¢(r)dr dz ¢,,> .

where Z is the partition function, and
A _ e
Jor)=——— 2 (f, S(r—r)+8(r—r)fl, ), ()

is the azimuthal component of the current-density opera-
J

A=0807=+]>

i

fl,, fl,,
~ fi)+fi(¢)—= |+

i

where f;(¢)=df,(¢)/d¢. Let F and F' denote the free

energies associated with the Hamiltonians A and A’ , re-
spectively. They satisfy the well-known inequality®
F'<F+(A'—A) . (10)

But, in this case, F' =F because A and B’ are related by a
unitary transformation. Therefore, (A'—A)>o0. Using
Egs. (3), (5), and (6) to evaluate the average of A’ — H, we
obtain, after straightforward manipulations, the inequali-

ty
< fI 2( ¢l
2m rl.

which must be satisfied for an arbitrary value of the in-
teger I. Equation (11) can be rewritten for /50 as

>—1’izzo, (11)
e

f1(¢)

dx , (12)

I < |l| fp(x

where p(x) is the electronic density distribution, and
x=(r,z,¢) in cylindrical coordinates. Next, we choose the
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tor. The azimuthal component of the kinetic momentum
operator is defined as

4= =28 L r,) @)

r; a¢l

As we have already remarked, the integral in Eq. (2) is in-
dependent of the angle ¢ characterizing the cross section
S (¢) in the (7,z) plane. Using this fact, together with the
definition of the current-density operator, Eq. (3), it is
easy to verify that

I1=(I), (5)
where
~ Hi

is the current operator, and ( ) denotes the usual thermal
equilibrium average, with Hamiltonian A

The upper bound to I is derived as follows. Consider a
gauge transformation

0,=exp

lzfl(d’l)] H (7)

where [ is an integer and the function f;(¢) is continuous
and differentiable in the interval 0 < ¢ <2, and satisfies
the boundary condition

fil¢+2m)=f(d)+2xwl , (8)

in order to preserve the single valuedness of the wave
functions. The Hamiltonian is transformed to

f1(¢:) ] o

w3l

function f;(¢) in such a way as to minimize the right-
hand side of the inequality. A standard variational calcu-
lation leads to the following differential equation for

S1(d):

¢[p(¢)f,(¢)] (13)
where we have introduced an “angular density”
pg)= [ X gy (14)

S(¢) r

Solving Eq. (13), with the boundary condition given by
Eq. (8), and substituting the solution in Eq. (12), we ob-
tain

eh|l|

|17 =< (15)

f 2r d Q a

0 ple)
The most stringent bound is obtained when|/|=1. Let us
now define

= fP—d ——f plo)ds , (16)

|-
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which is an average inverse square distance of the elec-
trons from the z axis. The fact that the threading axis
does not “touch” the toroidal body guarantees that 1/r3
is a finite number, because the wave function vanishes ex-
ponentially in the regions where r—0. In terms of r,
the upper bound for the current takes the form

1| <1, =<Ne (17)
4mmr

where

_|_L prds |

il el w(e) (18
and

rh
w(¢)EFﬁ(¢) (19)

is a rescaled version of p(¢) which is normalized to 1 in
the interval 0 < ¢ <27 [see Eq. (16)]. This is the main re-
sult of this paper. It is evident from the interpretation of
w(¢) as a normalized probability distribution that

1 p d¢ o
L,

implying that the positive constant @ <1. The equality
sign holds only when the density distribution is invariant
under rotations about the z axis, i.e., when w(¢)=1/2.

The above argument is also straightforwardly applica-
ble to a strictly two-dimensional ring geometry. The arbi-
trary axis threading the toroidal body is replaced by an
arbitrary point within the hole, and the cylindrical coor-
dinates relative to that axis are replaced by planar polar
coordinates relative to this point. The cross section be-
comes a segment (or a collection of segments) of straight
line, and the z coordinate is suppressed. The final result
is still given by Eq. (17).

Equation (17) is still dependent on the arbitrary choice
of the reference axis. We can completely remove this ar-
bitrariness, by choosing, for any given system, the axis
that yields the most stringent inequality, i.e., the smallest
value of a/r}. Thus, our definition of a /73 becomes

-1
N o dé , 1)
472 Yo p(g)

where the minimum is calculated with respect to the set
of all axes heading the toroidal body. Qualitatively, the
optimal axis is the one which, on the average, remains as
far as possible from the body.

It is worth noting that the upper bound on the per-
sistent current depends only on a moment of the electron-
ic density distribution—a relatively “gross” property of a
many-electron system. Furthermore, from the form of
Eq. (21), it is clear that the value of I,, is not sensitive to
too fine details of the density distribution. Essentially, I,,
is a geometric parameter. In three-dimensional macro-
scopic bodies, we expect that approximating the density
as a constant within the geometric boundary of the body
and zero outside, should lead to an excellent aproxima-
tion for I,,. A better estimate of the density distribution

2= min
2
ro
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can be obtained by solving the Thomas-Fermi or the
Kohn-Sham equations.

Let us now consider a few concrete applications of Eq.
(17). Suppose that the body is a circular ring of radius R
and negligible thickness (“thin ring’’). Then the optimal
axis coincides with the axis of the ring, and ry~R,a=1.
The upper bound to the current is in this case is

eh

In =N oL 22
where L =27R is the circumference of the ring. This
tends to O for L — o, so there is no current flowing in a
macroscopic thin ring. It must be noted that Eq. (22) is
rigorous for a geometrically thin ring, i.e., it incorporates
the effect of electron-electron and impurity scattering ex-
actly. The ring may still be three dimensional as far as
the electronic wave function is concerned. No assump-
tion about the form of the density distribution has been
used. In the special case of a nondisordered one-channel
ring, containing noninteracting electrons with a one-
dimensional Fermi velocity vy, the upper bound reduces
to 2evp /L (the factor 2 arising from spin degeneracy).
This value is attained exactly at 7 =0, when the ring is
threaded by an Aharonov-Bohm flux ®=hc /2e (odd N)
or ®=07 (even N).

As a second example, consider a two-dimensional disk
(outer radius R,) with a central hole of radius R, in a
strong magnetic field, such that the magnetic length
A<<R,—R,. Once again, the optimal axis coincides
with the axis of the disk. Since the electronic areal densi-
ty ng=N/A (A is the area of the ring between the inner
and the outer edge) is essentially uniform in the bulk of
the system, we can calculate l/ré by taking a uniform
average of 1/r?, which yields the result
1/r3=2mwIn(R,/R,)/ A. Substituting this into Eq. (15),
we obtain

R, (23)

Im = Enoln

The behavior of the upper bound depends only on the as-
pect ratio R,/R;. If R{~R, to an accuracy much
smaller than R, or R,, we simply recover the thin ring
geometry, and the persistent current vanishes. In the
limit R;—0 (or R,— ), we obtain the *“punctured
disk” geometry. The upper bound diverges logarithmic-
ally, allowing a large persistent current. (The logarithmic
divergence is of course cut off when R, becomes compa-
rable to the size of the edge region, in which the approxi-
mation of constant density is no longer valid.) In all oth-
er cases, the logarithmic factor is a constant of order 1,
and the upper bound to the current can be written as
I,, ~e#i/2mma?, where a is the average distance between
the electrons.

In the interesting case that the filling factor v=2712n,,
rather than the areal density, is kept constant in the bulk
of the ring, Eq. (23) takes the form

R,
R,

vew,
I, =
4

In (24)
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In this case the upper bound is proportional to the inten-
sity of the magnetic field, and the persistent current is al-
lowed to grow indefinitely with the latter (N is now not
constant). A persistent current of the order of ew, /4w
[we assume that the geometric parameters are fixed and
that In(R, /R ) is of order unity] is consistent with the
results of quantitative calculations of the persistent
current in an ideal ring.*

All the above examples have cylindrical symmetry, and
the value of ¢ is 1. A much more stringent bound can be
obtained in situations in which the ‘“angular density”
p(#) is a strongly varying function of angle, becoming
small at certain values of ¢. As an example, consider a
torus with a narrow constriction, such that the area of
the cross section S(¢) becomes small at some ¢=¢,.
Then, even if the electronic density is nearly uniform, the
“angular density” will be small for ¢ ~ ¢, and the value of
a will be correspondingly reduced. Another possibility is
that the electronic density becomes strongly nonuniform
via a process of spontaneous symmetry breaking, such as
the formation of a Wigner crystal [we are talking, of
course, only of the relevant conduction electrons—see
comment (i) below]. In this case the electronic density
will be very small on cross sections lying between crystal
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planes; the value of a@ and the bound on the persistent
current will be reduced to almost zero.

In closing, we make the following remarks. (i) The
rigorous upper bound derived in this paper is also appli-
cable to an effective Hamiltonian, of the form given in Eq.
(1), describing only a subset of the electrons in the system
(for instance, the conduction electrons in a metal). In
this case N and m are replaced by the number and
effective mass of the relevant electrons. (ii) Our Hamil-
tonian (1) does not include the reaction of the electronic
currrent on the magnetic field. However, to the extent
that this effect can be treated in mean field theory, i.e., by
adding a self-consistent correction to the external vector
potential, it is clear that the upper bound is not modified
by its inclusion. (iii) The upper bound derived in this pa-
per is not necessarily applicable to the current carried by
a superconducting ring. This is because, in the case of a
superconductor, the current-carrying state is not neces-
sarily the true equilibrium state—it can be a metastable
state which cannot decay.’
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