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We develop a hydrodynamic model for the calculation of second-harmonic generation (SHG) at
the surface of conductors with arbitrary equilibrium electronic density profiles no(rz). We apply
our model to simple profiles and calculate the linear surface conductivity s(u) and the nonlinear
surface susceptibility tensor y2(2cu = su + u) for all u, and we obtained the way they scale with the
relevant bulk and surface parameters. The conductivity s(u) displays a peak that corresponds to
the dipolar surface plasmon at a frequency su&, which depends on the profile shape and width. The
susceptibility (y2)&zan has very large resonances at us and urs/2. The SHG efBciency is enhanced
by several orders of magnitude at these resonances, suggesting that SHG spectroscopy might be a
useful probe of surface collective modes.

I. INTRODUCTION

Optical spectroscopies of surfaces have the advantage
of being nondestructive and of having a very good energy
resolution. Furthermore, they may be employed to probe
surfaces in any transparent ambient and they do not re-
quire ultrahigh vacuum. However, their use is hindered
by the large penetration depth of electromagnetic waves
at optical wavelengths. Procedures are required to dis-
entangle the surface &om the bulk contributions to the
radiated light. In some instances this separation might
be performed taking advantage of the reduced symme-
try of most systems at their surface. Second-harmonic
generation (SHG) by centrosymmetric crystals has been
proposed as a useful tool to study surfaces since their
dipolar bulk contribution is suppressed by symmetry.
However, there is a residual bulk contribution originated
&om the small nonuniformity of the electric field and it is
expected to be of a similar order of magnitude as the sur-
face contribution, namely, a factor (a/A) smaller than
for non-centro-symmetric materials, where a is a distance
of the order of atomic dimensions and A is the wave-
length. To distinguish surface from bulk contributions
some experiments have concentrated on the anisotropy of
the signal, ' and only a few have considered its frequency
dependence. Recently, experiments performed on metals
immersed in an electrolyte have shown that the surface
contribution to SHG depends on the surface electronic
distribution. Since a local theory of SHG (Ref. 7) yields
no electronic density profile dependence, spatial disper-
sion has to be accounted for.

There are different theoretical approaches in the lit-

erature to study SHG. Sipe et al. have developed a
phenomenological analysis of the surface and bulk sus-
ceptibility tensors, identifying their independent com-
ponents, and the possible functional dependence of the
second-order reQectance on the incidence and azimuthal
angles for difFerent crystal surfaces; they studied the
possibility of separating the surface and bulk contri-
butions using symmetry arguments, but they did not
attempt actual calculations of the susceptibility. The
nonlinear surface response was estimated ' and later
calculatedii'i2 within the hydrodynamic model (HD) and
microscopic calculations for simple metals have been per-
formed using self-consistent jellium models. Schaich
and Mendoza have developed a model that accounts
for local field and crystallinity efFects in the response of
insulators and semiconductors, and it has been ex-
tended to noble metals. However, there are still very
few attempts to calculate the nonlinear spectra for
more realistic models.

Early works on the applicability of the HD model
to the calculation of surface plasmon dipersion warned
against its use since it yields spurious collective modes
originated in the exponentially decaying tail of the elec-
tron gas density profile; they recomended the use of
less realistic profiles which go to zero at some well defined
point. In spite of this and of other well known limitations
such as the absence of Landau damping, the HD model
has proved useful due to its relative simplicity which al-
lows the study of systems which are more intricate than
the simple semi-infinite jellium ' and to bring forth a
qualitative picture about the physics involved.

Previous hydrodynamic calculations have been re-
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stricted to discontinuous step pro6les, and require that
additional boundary conditions be imposed at the den-
sity discontinuities. Microscopic calculations of the non-
linear phenomenological parameter a(w) have been per-
formed within the time-dependent local density approxi-
mation (TDI DA) and the random phase approximation
(RPA), ' and they display a very sensitive dependence
on the details of the ground-state surface density pro61e;
in particular, that a(u = 0) is significantly largeri4 4 than
in the previous hydrodynamic calculations. ' However,
these self-consistent calculations have been confined to
the region w ( ~„/2 due to technical difficulties whenever
a propagating bulk plasmon at 2u is excited. Chizmeshya
and Zaremba have extended the hydrodynamic model
to account approximately for exchange and correlation
employing in its formulation a gradient-corrected energy
functional, and performed a self-consistent calculation.
They calculated a in the static limit ~ = 0 only, and
their results agreed with TDLDA. We remark that
low frequency experiments are frequently interpreted in
terms of a(0),4 which dominates the angular dependence
of SHC. '4

In this paper, we apply the HD model to arbitrary sur-
face density pro61es and we calculate the nonlinear sur-
face response and the SHG eKciency for all frequencies.
The structure of the paper is the following: In Sec. II,
we develop the hydrodynamic model to first and second
order in a perturbing external 6eld for inhomogeneous
conductors starting Rom the equations of continuity and
of momentum conservation. The boundary conditions
obeyed by the induced 6rst- and second-order polariza-
tion are obtained &om the HD equations themselves. We
also obtain scaling laws for the 6rst- and second-order
surface response. In Sec. III, we present a calculation
of the linear and nonlinear surface response and of the
SHG eKciency calculated for conductors with difFerent
surface pro6les, and we discuss our results and compare
them to those of earlier workers. We show that large res-
onant structures are to be expected in the SHG spectra
at the multipolar surface plasmon &equencies and their
subharmonics, suggesting an optical approach to the ob-
servation of these modes. Finally, Sec. IV is devoted to
conclusions.

XI. THEORY

Let us consider a p-polarized plane wave of &equency
~ incident at an angle 0 on a metallic surface which we
represent as a semi-in6nite jellium. The second-order
induced currents are the sources of reflected p-polarized
radiation of frequency 2u generated with efBciency given
b 24, 11,26

where

0 ((d) = (d((d + 2/T),

'g(Cd) = [E((d) —Sill 8] / cos 8)

t~(~) = 2/[e(cu) + g((u)],

(3)

(4)
(5)

e((u) = 1 —u&/0 (w) is the transverse dielectric func-
tion, t„(w) is the Fresnel transmission coeKcient for p
polarization, 7 is a phenomenological damping parame-
ter, us = (4vrnse /m) ~ is the bulk plasma frequency, ns
is the bulk equilibrium electron density, —e and m the
electron charge and mass, and c the speed of light.

The dirnensionless functions a(u) and b(u) parametrize
the surface SHG response, while the bulk contribution is
characterized by d(u). 'ii It is known that b(tu) = —1
and d(~) = 1 independently of frequency for a Bat
jellium. '" Therefore, in this work we shall concentrate
on a(ur), which we write in terms of the nonlinear sus-
ceptibility (y&)~&~(2w = u + u)) as

a 1 —6
(Xz)J J J

4eng 4' e
(6)

(Pz);:—(&z)'ii, Ei(0 )Eg(0 ).

Since we are interested in the surface region's response,
and we assume that the selvedge's width is much less than
an optical wavelength, we may perform our calculation in
the non-retarded regime and ignoring the field variations
along the surface. We start our HD calculation from
the continuity equation and &om Euler's equation for
momentum conservation in a semi-infinite electron Quid
of density n(z, t) and velocity field u(z, t)z in the presence
of an electric field E(z, t)z, where we take the z direction
along the surface normal,

B,n+ 0, (nu) = 0,
mnOtu + mnu/r + mnuB, u = —neE —B,p(n).

The consecutive terms of Eq. (9) correspond to iner-
tial forces, dissipation through kiction with the positive
background, convective momentum flow, electric force
and a pressure gradient. We calculate the pressure p
starting &om the density dependence of the average en-
ergy of a fermion within a noninteracting homogeneous
gas U/K = i pnz~, where p = (3m ) ~ 5 /(3m). Then,
assuming local equilibrium, the pressure is

The susceptibility yz is defined through the response of
the surface polarization to the field E~(0 ) just outside
of the metal,

Rz((u) = , ... Ir(~)l'
2

r(~) = — e(~) [e(~) —1]t„(2(u)t ((u) tan 8

(
)e(2~) . z8 b(

)2q((u)g(2(u)
e Lal E 4J

0'((u)
+2d(~)

(2)

B(U/N) 3
On 5

(10)

as in the Thomas-Fermi theory. We account partially
for the Coulomb interaction identifying E as the self-
consistent mean Geld and we neglect exchange and
correlation.

Now we perturb the system by an external monochro-
matic field D(z, t) = Re(De '

) and expand all quan-
tities such as n, u, etc. , in powers of D. To zero order,
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Eq. (9) yields

—en 0(z)E 0(z) = 0 p0(z) = mP0 (z)I9 np(z),

where
P02 (z) = ~ n0~ (z). E0(z) plays the role of an effec-

tive field which confines the electron gas to a semispace,
acting against the pressure term p0 ——bpn0~ (z) leading
to the the equilibrium density profile»(z).

Now we expand Eqs. (8) and (9) to first order, and
substitute Eq. (11) to obtain a differential equation for
the first-order polarization Pi,

»(z)c, no O, Pi + p0 (z)qi (z)Pi ——Si(z), (12)
m

with a source term

electron gas. Sipe et aL and Corvi and Schaich have
stated equations consistent with (12) and (15) but the
former did not attempt an explicit solution and only
made an order-of-magnitude estimate of a, and the latter
solved them only for abrupt-step profiles. To our knowl-

edge, ours is the first solution to the consistent HD first
and second-order equations.

The second order differential equations (12) and (15)
can be solved analytically in the bulk region where np is
independent of z,

Pi(z) = Pb+ Aie'~",

v A2
'q, z 1 2iqi Z

e~bPb 5 V2 411

Pbvi Ai
~'(z)

Si(z) = — ~ D,
4m

(i3)

where u„(z) = uibn0(z)/nb is the local plasma &equency,
and

0'(j(u) —~2 (z)q()= ", j=12 (14)

is the local plasmon wave number at the fundamental

(j = 1) [or second-harmonic (j = 2)] frequency. In deriv-
ing Eq. (12), we employed the relation between electric
current density j = —enu and P, namely, j = B&P, and
we wrote the self-consistent field Ei(z) = D —4mPi(z) in
terms of the external and the depolarization Gelds.

Using a similar procedure, we obtain the following
equation for the second-order polarization P2 oscillating
at the second harmonic 2~,

and they can be integrated numerically near the surface
where np varies &om 0 in vacuum to its bulk value ng.
Here, Pb = P0(bulk), vi ———w(3u + i/r), v2 ——[8u +
2i(u/~+ ur„(z)]/3, Pb = Pi(bulk) = [e((u) —1]D/4m'(~) is
the bulk polarization induced by a homogeneous exter-
nal Geld and Aq and A2 are coefIicients to be determined
by sewing together the bulk and surface solutions using
additional boundary conditions (ABC' s). In the spirit of
consistency within the HD model, as mentioned above,
we derive the ABC's &om the difFerential equations them-
selves. Therefore, we claim there is no ambiguity in the
choice of ABC' s. Demanding that the singularities that
may be present on both sides of Eq. (12) should be of
the same order leads immediately to the following linear
ABC's:34

—»(z)~. no ~.P~ +~0(z)&2(z)P2 = S2( )~m

whose source

Pi continuous,

—1/3
np 8 Pi continuous.

(19)

(2O)

(d
S,(z) = »(z)0, (n0 B,Pi)' —,P,'(z)B,n0

+ (3(d + Zld/'r) OiPi2e» z

These are equivalent to the ABC's Grst proposed by
Forstmann and Stenschke in order to satisfy energy and
charge conservation at sharp boundaries between homo-
geneous layers. Similarly, &om Eq. (15) it is possible to
find the second-order ABC' s,

arises &om the spatial derivatives of the equilibrium den-
sity» and &om the square Pi2(z) of the linear polariza-
tion.

We remark that equations similar to our Eq. (12)
have appeared repeatedly in the literature. Calcula-
tions of surface plasmon dispersion relations ' and of
photoyield spectra within an hydrodynamic approach
have employed a modified form of Eq. (12) in which its
first term is written as P202Pi, si where P2 = C~n0~

3 Cv+ . The constant C = 1 for u~ (& 1 and C =
5 for

uv )) 1 in order to agree with the long wavelength limit
of RPA in the bulk. Although it is adequate in the bulk,
this modified equation ignores the spatial derivatives
of np and is inconsistent with the HD equations of mo-
tion close to the surface. In the present work, we have
opted for consistency and written the equations directly
as derived &om the HD equations for the inhomogeneou8

P2 continuous, (21)

np 0P2 —
2 3 np OP

m4) 2

Pi continuous, (22)
2e+np

Pi — dz Pq z —Pq bulk

P2 = dzP2 z,

(23)

&om which we identify the surface susceptibilities

which are the same as those proposed in Ref. 12. After
solving Eqs. (12) and (15) for Pi(z) and P2(z) for a given
profile»(z), we calculate the surface polarizations,
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(~i)« = Pi/»
(&2)~» = P2/D'.

(25)
(26)

10
dipolar surface, -

1

Finally, we obtain the linear surface conductivity

S = —th)(g i)~~ (27)

and a(u) [Eq. (6)]. It can be seen that for an abrupt pro-
file, Eqs. (17) and (18) together with the boundary condi-
tions (19)—(22) yield immediately the solution oi' Schaich
and Liebsch.

To find what the relevant parameters in our theory are,
first we introduce a parameter z, which is a measure of
the width of the surface region, and we use it to normalize
distance, i.e., z = z, z. Next, we normalize the ground-
state density to its bulk value, no(z) = nano(z). Notice
that no(z) contains information on the shape of the profile
only. Finally, we use the bulk plasma &equency to nor-
malize time; u = wyrd and w = 7/sr~. Performing these
substitutions in Eqs. (12) and (15) it is straightforward
to show that writing

0—

5—
X

o -10—

0.5 0.6 0.7 0.8 0.9 1.1 1.2

FIG. 1. Linear surface conductivity 8 calculated within the
hydrodynamic model for K (r, = 4.86ao, for other metals
the results scale with 1/r, ) using a linear (dashed) and a
quadratic (solid) surface profile, with a lifetime r = 30/&uq.

The selvedge width z, = 3.5ao (z, = 2.5ao) was fitted to the
indicated position of the dipolar surface plasmon in the linear
(quadratic) case.

Pi(z) = DPi(z),
D

P2(z) = D P2(z);
CAbz

(28)

we obtain differential equations whose coefBcients depend
only on the parameters u, r, and (, —:z, /ATp, where
&Tp = Pt, /(us is the Thomas-Fermi screening length.
Therefore, for a given profile shape, the surface is en-
tirely characterized within the HD model by the dimen-
sionless paraxneter (,. Since we have seen that Pi(z) =
Pi(z;~,f, (,), P2(z) = P2(z;~, v, (,), then Eqs. (27),
(6), and (1) yield s = P~s(u, ~, (,), a = a(~,f, g, ), and
R2 ——[2/(nsmc )]B2(~,~, (.).

III. B,ESUITS

'1, z)1
no(z) = & —,'(1+ z), —1 & z & 1

0, z & —1,
(30)

and a quadratic profile,

z) 1

( )
1 —2(1 —z), 0&z&1

(31)
-', (1+z)', —1& z & 0
0 z ( —1.

We will consider parameters that correspond roughly to
K: we chose the bulk density parameter r, = 4.86ao (ns =
47rr, /3, ao is Bohr's radius), and we took sr~7 = 30. As
discussed at the end of the previous section, our results
can be easily scaled for different densities.

In Fig. 1, we show the real part of the linear conduc-
tivity s(~) obtained Rom Eqs. (12), (23), (26), and (27)

To illustrate our model we have chosen two simplified
shapes for the equilibrium density profile no(z) that in-
terpolate between its vacuum and bulk values, namely, a
linear profile,

using both the linear and quadratic profiles. The con-
ductivity s(u1) displays a peak at w& and a Lorentzian
peak at a &equency up which corresponds to the excita-
tion of a dipolar surface plasmon. This collective mode
appears in addition to the usual surface plasmon when
the density profile is sufBciently diffuse. It was predicted
by earlier hydrodynamic calculations of the surface plas-
mon dispersion2s ~s si for several shapes of no (z), and by
calculations of the photoemission yield spectra for a two-
step density profile. 3 Random phase approximation37
and TDLDA calculations38 for semi-infinite jellium also
predict a similar resonance situated near 0.8mb. This
multipole plasmon mode is suspected to be responsible
for the large surface photoyield of Al, and it has also
been observed in the electron-energy-loss spectra (EELS)
of smooth K and Na films, although it is strongly shad-
owed by the regular (monopole) surface plasmon; for Al
the dipolar mode is just too weak to be observable with
EELS. Experiment has confirmed the position predicted
through RPA and TDLDA.

% ithin our hydrodynamic model, the number of mul-

tipolar resonances, their position, and their strength de-
pend on the width of the selvedge and on the shape of the
density profile. Therefore, we have adjusted the width
parameter z, to locate the dipolar peak close to the ex-
pected frequency ~q ——0.8&et„obtaining z, = 3.5ao ((, =
2.48) for the linear profile and z, = 2.5ao ((, = 1.77) for
the parabolic one. Notice that for any other bulk den-
sity but the same surface profile shape, the position of
the dipolar surface resonance depends only on (,. The
structure observed at w = ub corresponds to the exci-
tation of the bulk plasmon. From s(u) it is possible
to obtain the surface impedance, the reBection amph-
tude r„, the surface plasmon dispersion relation, and. the
EELS spectrum. We have verified that our calculation
yields a negative initial dispersion for the ordinary sur-
face plasmon

So far, we have adjusted our model to reproduce
qualitatively the main features of the surface linear
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response. ' nIn this way we have exhausted the pa-)

rameters of our model, so we proceed now to perform
the nonlinear part of our calculation. In the following we
calculate a(ur) and R2(u)).

We start with a(u) in the static limit which, accord-
ing to Eq. (1), determines the low frequency (tu (( ups)

nonlinear reflectance. Previous calculations employing
the HD model for the one-step discontinuous profile yield
a(0) = ——independently of r, and slightly larger values
f - t file ' Much bigger negative values

9
for a two-s ep pro e.
[a(0) —7 for K and —30 for Alj have been obtained
employing TDLDA (Refs. 14, 4, and 41) and the gen-
eralized Thoinas-Fermi Dirac (GTFD) approxiination.
Our HD calculation for linear and quadratic profiles with
(, adjusted to erg yields a(0) —2.8 and a(0) —9.0, re-
spectively, independently of r, . Thus, our result for t e
parabol' rofile is in good agreement with microsopic
calculations for K, but it becomes too small for Al, and
the linear profile results underestimate both extreme lim-
its. By increasing the widths of our profiles within rea-
sonable limits, we have been able to increase a(0) for

a(0) we shift u~ towards the red and we get spurious
higher order multipolar plasmons.

Now we turn our attention to the high frequency limit.
It is possible to demostrate quantum mechanically that

with a single abrupt profile yields an incorrect limit

j ————.We have verified that when we smooth
i s thethe profile introducing a finite („our model attams e

correct limit a ~ —2 for high enough &equencies. The
smaller („ the higher the frequency of the asymptotic
region. This limit has not been attained in the self-
consistent calculations since they have been restricted to

Figure 2 shows the numerically calculated &equency
dependence of a(u) = ~a(ur) ~e'~ for the two profiles for
a fixed profile shape no(z) and lifetime parameter 7, a
depends only on u and g, and is independent of the bulk
d t ~ &

~d' lays large peaks at the dipolar plasmon
&e uency ~g and at its subharmonic u~/2, and at aequenc
the plasma frequency us/2 as could be anticipated.
model does not include photoemission and, therefore, we
d'd t btain any structure related to the work func-
tion. For a discontinuous profile the HD mode yie s
values of a(u) of order 1 —10. We obtained at the res-
onance &equencies an enhancement of one to two orders
of magnitude for the linear profile. For the quadratic
profile a(~) is enhanced up to four orders of magnitude.
The resonance in a(w) at the subharmonic of the surface
collective mode was obtained previously in Ref. 15 em-
ploying TDLDA and RPA. Their results for K are brack-
eted by ours: with the linear profile we underestimate
the peak by a factor of three, while we overestimate it
by a factor of ten with the quadratic profile. For Al, our
result for the linear profile agrees with the microscopic
calculations and for the quadratic one it is too large y
a factor of thirty.

We remark that the peak in the surface nonlinear re-
sponse at up has not been reported previously. The
TDLDA and RPA calculations have been impeded for

X

CO

10

0.2 Q 4 0.8 1.2

2.5—

0.5—

—10 0.2 0.4 0.6 0.8 1.2

FIG. 2. Absolute value (upper panel) and phase (lower
panel) of the nonlinear response function a(u) =
culated for a linear (dashed) and a quadratic (solid) surface
pro6le. The parameters are as in Fig. 1.

30—

25

2Q—
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X ]
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x10
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x10 ~

0.6

x10

1.2

FIG. 3. Second-harmonic generation efEciencyenc R2 u cal-
culated for a linear (dashed) and a quadratic (solid) surface
pro61e. The angle of incidence 8 = 60' an' an the other param-
eters are as in Fig. 1.

u ) urs/2 by the propagation of a bulk plasmon at 2~.
On the other hand, since we use an analytical expression
(18) for the polarization in the bulk region where the pro-
file is constant, the propagation of plasmons produces no
particular difIiculties for our calculation.

In Fig. 3, we display the nonlinear efliciency for our
two profiles calculated for p polarized light incident at



51 HYDRODYNAMIC MODEL FOR SECOND-HARMONIC. . . 2561
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FIG. 4. Second-harmonic generation eFiciency Rz(u) cal-
culated for a linear (dashed) and a quadratic (solid) surface
profile. The angle of incidence 8 = 60, the lifetime r = jO/&ub

and the other parameters are as in Fig. 1.

IV. CONCLUSIONS

In this paper, we have extended the hydrodynamic
model to calculate the linear and second-order surface
response and the SHG eKciency of semi-infinite xnetals
taking account the presence of a continuous electronic

0 = 60 on a K surface and plotted using common units.
Recall that for other metals our results scale with r, .
The results display a small structure at orb/2 and two
large peaks at ug/2 and uq Com. paring our results to
the hydrodynaxnic calculation shown in Fig. 2 of Ref. 11,
we find the same order of magnitude in the regions out
of resonance. However, the second-harxnonic efEiciency is
increased by a large amount at resonance. For the linear
profile the enhancement is about a factor of three at iog/2
and three orders of magnitude at cup, for the quadratic
profile the corresponding enhancexnents are three and six
orders of magnitude. Our enhancements are larger than
the peaks found in Ref. 11 for a two step profile.

We have performed similar calculations for different
selvedge widths z, and we have found that the resonances
in R2 track closely the peaks in the linear surface re-
sponse 8 and their subharmonics, even for large widths
for which several multipolar modes are present. This is in
contrast to what was found in Ref. 11, where the peaks
in R2 seem not to be simply related to the multipolar
surface modes.

To study the permanence of our results under increased
dissipation, in Fig. 4 we display the nonlinear reBectance
for a smaller lifetime ub7 = 10. The height of the mul-
tipolar resonance and that of its subharmonic are de-
creased by a large amount, but both peaks remain well
defined and are clearly visible.

density profile at their surface. It is known that the
hydrodynamic model is unable to deal with realistic pro-
files, since it overemphasizes the contributions to the
response &om the exponentially decaying tail. There-
fore, in this paper, we employed two simple model pro-
files that interpolate between the bulk and vacuum. We
chose the profile parameters so that the resonance &e-

quency of the linear surface response fitted roughly the
position of the dipolar surface collective mode, as ob-
tained &om self-consistent jelliuxn calculations ' and
&om experiment.

We calculated the nonlinear susceptibility of K, and
discussed its normal-to-the-surface component, charac-
terized by the a(io) parameter. We also calculated its
nonlinear refiectance R2(io). We noticed that for a given
profile shape, the surface is entirely characterized by its
width in units of the Thomas-Fermi screening length, and
we arrived at a set of simple scaling laws to extend our
results to different metals.

We verified that our calculation of a(w) has the correct
asymptotic value at large &equencies and tends to under-
estimate its static value as compared with self-consistent
jellium calculations, although for the quadratic profile
it yields good agreement in the case of K. The graphs
of a(io) and R2(u) display some structure at the subhar-
monic of the bulk plasma &equency, and very large peaks
at the dipolar surface plasma &equency and its subhar-
monic. Peaks similar to the latter were also obtained in
Ref. 15 and their height was bounded within our results
for the linear and the quadratic profiles. There are no
microscopic calculations above ~b/2. However, the kind
of agreement we obtained with microscopic theories be-
low ub/2 gives us confidence that the huge peak at the
dipolar surface plasmon is at least qualitatively correct.

These results suggest that the multipolar modes, which
are diKcult to observe in electron scattering experiments,
might be observed. through SHG spectroscopy. Usually,
the experiments ' have concentrated on the angular de-
pendence of the SHG signal and there are few studies
of the &equency dependence. ' 3 We hope our calcula-
tion encourages more experiments to measure the SHG
spectra, and more theoretical calculations close to the
surface resonances. In summary, the surface nonlinear
susceptibility and its eKciency display a series of very
large peaks corresponding to the excitation of multipo-
lar surface plasmons, indicating that the observation of
these elusive modes might be performed with SHG spec-
troscopy.
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