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gime-independent tunneling current of a tip-sample system in scanning tunneling spectroscopy
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%'hen analyzing data from scanning tunneling spectroscopy (STS) it is generally assumed that the den-

sity of states and local density of states (LDOS) are simply related with the current-voltage (I-V) curves.
This assumption has been derived phenomenologically within the framework of theories developed for a
variety of situations. %'e continue here with the development of a theory of STS with concrete applica-
tions for semiconducting samples, going beyond the traditional Bardeen approximation. As in previous

works, our present model provides a current that is a sum over tip states of semiconductor 1oca1 density

of states modulated by tip-dependent coefficients. For a tungsten tip and silicon sample, we find that
these coefficients are nonzero only for energies close to the Fermi energy. This makes the I-V curve

closely follow the LDOS. On the other hand, we have found that the conductance-voltage curves

present features derived from the Van Hove singularities of the semiconductor.

I. INTRODUCTION

In scanning tunneling spectroscopy (STS), the current-
voltage (I V) and condu-ctance-voltage (o -V) curves of a
tip-sample system are used to extract information about
the sample density of states (DOS) and local density of
states (LDOS). This has been done experimentally on
semiconductors, ' superconductors, and metals. To-
day, after many theoretical studies have appeared in the
literature, ' there is yet no agreement on what is the
exact relationship between I Vor/and o--V, and the den-
sities of states. For low voltages, the Tersoff and
Hamann theory has proved to be successful in explain-
ing experimental data. Lang, ' Selloni et al, ' and Tsu-
kada et al. ' have extended the calculations to finite volt-
ages. On the other hand, there have been models to de-
scribe specifically scanning tunneling microscopy (STM)
on metals' and on semiconductors. ' A common
feature of most of these approaches is the use of Bardeen
approximation ' to evaluate the electron transition
probability from tip to sample. This approximation is so
popular because it is simple and gives results which are
consistent with experimental observations at certain tip-
sample distances. However, the range of validity of the
approximation requires clarification, and alternative ap-
proaches are required for ranges where the Bardeen ap-
proximation fails. Basically Bardeen's formula provides
the interaction Hamiltonian between two, somewhat dis-
tant, systems. From the Hamiltonian, one can calculate
the tunneling transition rate between the systems. This is
basically a time-dependent calculation. Since the typical
tip-sample distances are of a few A, we are dealing with a
clearly quantum system and, therefore, it is not unreason-
able to expect the formation of states that extend into
both tip and sample which will make the electron transfer
from tip to sample a steady-state one. Under these condi-
tions, we can still talk of tunnehng because the tip and

the sample are two clearly defined and distinct systems
(this does not necessarily mean that the Bardeen approxi-
mation applies though). In fact, the issue of resonant
tunneling versus sequential tunneling to exp1ain the
mechanism of tunneling through quantum wells has been
a subject of debate. From a fundamental standpoint, it is
correct to solve the appropriate steady-state problem for
the tunneling between the tip and the sample. In this pa-
per, we introduce a theoretical framework that makes no
use of Bardeen approximation and within which it is pos-
sible to compare characteristic curves and densities of
states. There are two main reasons to follow this path.
First, following our previous discussion, in typical STM
and STS conditions (tip-sample voltage of few volts and
tip-sample distance of 1 —5 A) it is expected that global
tip-sample effects are of importance and thus, the
behavior of the electron wave function between tip and
sample does not have to be that of an evanescent ex-
ponential but could have some richer structure. Second,
since the Bardeen approximation has been successful in
certain cases, it would be of use of gauge its range of va-
lidity. We model the tip-sample system as two cubes, one
for the tip and one for the sample, linked by an atom (c
atom, for channel atom) of the same chemical nature as
the tip. Microscopically, we assume that the cubes have
siinple cubic cell structure (different from each other).
Then, we find the energies and wave function in the
tight-binding (TB) approach. With suitable boundary
conditions, we consider only those Bloch functions that
come from far away within the tip. By choosing ap-
propriate TB parameters, we can account for a metallic
tip and a semiconductor sample. In the next section, we
present the general theory for this model and in the fol-
lowing section, we present concrete results for the case of
a tungsten tip and a silicon sample.

Our results show that I-V follows closely the LDOS of
the sample at the Fermi energy at the position of the c
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atom. This resemblance is better as the tip-sample dis-
tance increases, which is in accordance with calculations
based on the Bardeen approximation. The o.-V curve
presents characteristics that are borrowed from the van
Hove singularities of the DOS of the sample.

II. THEORY

Cm,.@m
m= sample sites

(2)

where k is the tip electron crystal momentum, a the sam-
ple crystal momentum, 4 are s-type atomic orbitals, and
Ck and C„arethe expansion coe%cients. The vector
index m tags both tip and sample atomic sites, and can
take AT+X&+ 1 different values. We impose, as the first
boundary condition, that the wave function, far away
from the c atom, be a Bloch wave;

C, ~e+' ' for ~m —m, ... ~~mo, (3)

where mo is a number that gives an idea of the extent of
the tunneling region. One expects it to be a single-digit
number, because bulk properties are present a few atoms
away from a perturbation to the perfect-crystal structure.
In Eq. (3), 8 is defined in the tip as k times the tip lattice

In order to calculate the tunneling current, we start by
obtaining the proper energies and wave functions. Con-
sider the system (Fig. 1) to be the union of a semiconduc-
tor with simple cubic structure with X& Wigner-Seitz
cells on a side, a metal with simple cubic structure and
XT Wigner-Seitz cells on a side and, inlaid between them,
a c atom that serves as the channel for current between
metal and semiconductor. Its energy states are con-
sidered in the near-neighbor TB approach with an s-

type basis function (cubium model ). This type of ap-
proach has been used in the past to study chemisorption
on surfaces 2 and DOS of surface states. In this con-
text, the global wave function has the following expres-
sion at the tip and sample locations:

gp T—
k

m=tlp sites

constant, and in the sample as v times the sample lattice
constant. Concretely, in that far-away region, we take
for the tip the sum of an electron wave function with am-
plitude

~
A

~
that comes from far away in the bulk, plus

an electron wave function with amplitude ~8 ~
that

moves away from the tunneling region, and into the bulk,

(4)

For the sample, we consider an electron that moves away
from the tunneling region, towards the sample bulk re-
gion with unit amplitude,

i(m„O +I 8 ) im 9

With these assumptions, total reAection corresponds to
the case A =+~, and, in general, the transmission prob-
ability is given by ~

A
~

. Strictly speaking, the electron
tunneling involves a scattering process in which Bloch
waves move away from the c atom in all directions in
both tip and sample. We, however, wrote down a simpler
form in which the total scattered wave is concentrated in
a forwardly transmitted and a specularly rejected elec-
tron. This assumption is correct in the far-away region
(where we set our boundary conditions) as can be inferred
from previous calculations. In the tunneling region,
where the previous assumption does not necessarily hold,
our results contain the full scattered wave.

The energy of the whole system is parametrized like in
bulk as

E=a +2P (cos8 +cos8r+cos8, )

=eV+a +2P (cos8„+cos8y+cos8,),
where V is the voltage applied between the tip and the
sample and e is the charge of the electron. o, is the
Coulomb integral and p the resonance integral.

By using TB, we can calculate all the coefficients in the
tunneling region and A and B. Thus, we can calculate
the total current between tip and sample,

I= 1 d8 ( —e)n QU,
1

(27r) E ~EF

where n is the electronic density of the tip, 0 is the tip
transverse area in the bulk region, and U, is the electron
velocity in the tip along the tunneling direction, and can
be explicitly calculated as

1 BE 1 BE 2P

where a is the tip lattice constant and the definition of 0
was used. Finally, the current takes the form

en Qp sin8,I d8
4 .A'a E E IAI

FIG. 1. Tip-sample system.

which is the form we used to evaluate the results of the
next section. The main result of this paper is the method
we proposed for the evaluation of 2 in Eq. (9).
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FIG. 5. Comparison between normalized tunneling current
(continuous curve) and current with the velocity in Eq. (9) taken
to be constant equal to VF (dashed).

-3 -2 —1 Q j. 2 3 Eq. (9) and also calculated without the sine term. ~e see
that both curves agree at any of the distances considered.

Finally, we use our model to study the relationship be-
tween density of states and dI/dV. This is important
since it has been argued that is this quantity, and not I-V
which is relevant. Figure 6 shows a dI/dV curve for a

1.5

0

) Q5a

FIG. 4. (a) Fermi sphere for the bulk states of the tip. (b)

Fermi surfaces for the bulk states of the sample for various tip-
sample voltages. The horizontal axis represents 0 and the vert-
ical axis 8~, both in radians.

I l I I ~ I I

0 2 4 6 8 lO 12 34

V (volts)

FIG. 6. dI/dV vs voltage for 5-A tip-sample separation. A
jump in the function can be seen at about 3.5 eV, which corre-
sponds to the first Van Hove singularity of the sample.
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0

tip-sample separation of 5 A. The more interesting
feature is that is presents nondifferentiable points which
correspond to the Von Hove singularities of the DOS of
the sample. Concretely, we see a jump of dI/d V at 3.5 V,
which comes from the Van Hove singularity of Si. The
jump is not extremely sharp because as the voltage varies,
a few tip states close to E~ contribute to the current.

IV. CONCLUSIONS

We have presented a method for calculating steady-
state tunneling current in STM by using running Bloch
functions. We have used the method to study the com-
mon experimental situation of a tungsten tip and a silicon
sample. Results show that I-V curves follow the sample
LDOS unless the tip-sample distance becomes too small.
At small distances tip and sample are indistinguishable
and the concept for sample LDOS is meaningless.

We have found that, at distances below 3 A, Bardeen
approximation stops to provide good results. Our model
provides a good tool to investigate resonant tunneling

that is more important in the small distances regime.
Our results also prove that most of the tunneling current
comes from states with enegies close to the Fermi energy.

In agreement with previous work, ' we found that
dI/dV present nondiff'erentiable points that come from
the Van Hove singularities of the sample. Last, from an
experimental point of view, we provide a framework
within which alternative experimental results can be in-
terpreted. Although working with the STM in regimes in
which the particular shape of the tip and/or sample wave
functions is relevant would make it difficult to extract mi-
croscopic information, that is not to say that people
would not like to investigate those regimes. In fact, a lot
of new important science may be obtained there.
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