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Fluctuation and elastic properties of domain walls in two-dimensional dipolar systems
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We discuss the fluctuation of domain walls in two-dimensional systems interacting with short-range
exchange, anisotropy, and long-range dipolar interactions. The elastic energy of different domain walls
are calculated. Some of the domain-wall distortion modes are soft in the long-wavelength limit. The
competition of the stabilizing long-range dipolar interaction and low-dimensional fluctuation suggests
the possibility of a finite-temperature roughening of an array of one-dimensional walls in the film.

I. INTRODUCTION

There has been much interest recently in two-
dimensional (20) dipole systems from two different areas;
the ultrathin magnetic films and self-assembled Langmuir
monolayers with electric dipoles. ' The magnetic work is
partly motivated by the possible integration of the semi-
conductor microelectronics technology with magnetic
elements. This is stimulated by the success in the
growth of magnetic films on top of semiconductor sur-
faces such as GaAs. Much effort was devoted in charac-
terizing the fundamental physics of magnetic films from 1

to 100 layers. Depending on material parameters, the
magnetization can lie parallel or perpendicular to the
film. New physics occurs because of the competition be-
tween the stabilizing long-range dipole interaction and
the lour dimensionality fluctuation effects. In this paper
we examine the finite-temperature fluctuation of the
domain walls. These effects are important in understand-
ing domain formation, hysteresis, and relaxation phe-
nornena in the films. Whereas in three-dimensional situ-
ations, domain walls are flat, recent experimental re-
sults indicate that walls in ultrathin films are not flat.

A magnetic domain wall is an interface between a
spin-up region and a spin-down region. The statistical
mechanics of interfaces have been actively studied over
the last ten years. The movement of an interface at low
driving force proceeds not with the whole interface
marching forward in unison but with part of the interface
moving forward one at a time. This involves distorting
the interface and thus the elastic energy and the rough-
ness of the interface is an important consideration. The
mobility of the interface in the presence of external pin-
ning potentials is often discussed in terms of a roughen-
ing transition. At low temperatures, the free energy of
steps is finite. The movement of domain walls is activated
in character and depends on the driving force in an ex-
ponential manner. The interfaces become rough and
mobile if the temperature is higher than the roughening
temperature. The free energy of steps becomes zero; the
nature of the growth of domains becomes difFerent. The
growth rate of the domain depends linearly on the driv-
ing force in the low force regime. 2D interface in 3D sys-
tems roughens at a finite temperature. ' 1D interfaces in

2D systems are always rough at any finite temperature.
These studies assume that the interaction potential is
short ranged.

For magnetic domain walls, because of the long-range
nature of the dipolar force, the physics of the fluctuation
is different from ordinary walls. The fluctuation of a
physical quantity depends on the energy cost of distor-
tion for that quantity. The long-range dipolar potential
can increase the energy of distortion and reduce the
thermal fluctuation. An example of this suppression of
fluctuation is provided for by the question of the ex-
istence of long-range magnetic order. For 2D systems,
the fluctuation of the magnetization is of the order of
Jd qkT/co~ where co~ is the energy of the magnetic exci-
tations at wave vector q. When the spins interact only
with nearest-neighbor exchange, m ~ q; the fluctuation
is infinite and there is no long-range order. When the
long-range dipolar interaction is included, co ~ q for
some spin arrangements. The fluctuation becomes finite
and long-range order is restored. "'

For magnetic domain walls, the physics of its low-
dimensional fluctuation is more subtle than the physics of
the low-dimensional fluctuation of spins. We are interest-
ed in the mean-squared fluctuation of the position of the
wall, ((5r) ), which is proportional to fd 'qkT/E,
where E is the elastic energy of distortion for the walls
at wave vector q; d is the spatial dimension. The
behavior of E is more complex than the behavior of the
spin excitation energy m . In the absence of external pin-
ning potentials, this elastic energy can assume different
forms for different spin arrangements. For a two-
dimensional wall in a 3D system, the elastic energy is
proportional to q. The mean-squared fluctuation of the
position of the wall becomes finite. A 2D magnetic
domain wall in 3D bulk systems is never rough at any
temperature. For 2D systems, Eq can be negative, pro-
portional to q, q or q ln(q). With external pinning po-
tentials, it is constant at small q at zero temperature. At
finite temperatures, the constant can become zero and the
interface then is said to become rough. We find that a
single wall in an n-layer system still roughens at any finite
temperature even when the dipolar interaction is includ-
ed. For spins oriented along the y axis separated by an ar-
ray of Neel walls running perpendicular to the x axis a
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distance d apart, the walls are Aat for length scales less
than d. There exist a temperature Tz above which the
walls become rough. Tz =8~ gop~n a Id as the pinning
strength approaches zero. Here a is the lattice constant;
p~, the Bohr magneton; go, the g factor.

We also investigate the elastic behavior E of magnetic
domain walls for different spin arrangements in ultrathin
films. In particular,

weland

that Bloch walls perpendicu
lar to the x axis separating domains with spins along the z
axis are unstable against distortion. We now discuss our
results in detail.

II. ELASTIC ENERGY

The finite-temperature statistical mechanics and dy-
namics of domain walls are often discussed in terms of a
phenomenological model consisting of the elastic energy
E, to deform the wall and a pinning potential E that is
due to the intrinsic periodic structure of the crystal 1at-
tice. For a deformation of wave vector q described by the
displacement 5r, the elastic energy is often assumed to
be proportional to the strain - squared, i.e., E,
= A gzq ~5rq ~

for some constant A. The pinning poten-
tial is assumed to have the form gGBGg cos(G.r ),
where G is the reciprocal-lattice vector of the lattice. In
the case of impurity pinning, 6 is no longer a discrete
variable. Also, different probability distributions for BG
can be assumed.

We first discuss the domain-wall elastic energy. For
magnetic domain walls in bulk materials, in the long-
wavelength limit the elastic energy is not proportional to
q but, because of the long-range nature of the dipolar
forces, is instead proportional ~q~ in 3D. ' In 2D, for
magnetization in the plane, it is proportional to q ln(q)
for a single 1D wall and to q/d for arrays of 1D domain
walls separated by distances d. We explain how this re-
sult is obtained.

Depending on how the spins are rotated from one
domain to another, there are different kinds of domain
walls. For a Bloch (Neel) wall, the orientation of the
spins in the middle of the wall is parallel (perpendicular)
to the wall. The helicity (up or down) of the spins in the
middle of the wall is another characterization. We call
the plane of the film the xy plane and first consider the
calculation for the elastic energy for spins oriented along
the y axis separated by Neel walls running perpendicular
to the x axis of identical "helicity. " A Neel wall of width
w located at position c is characterized by specifying the
spin orientations at position r by the angles
H=rt/2, P=f (x c) where f is continuo—us function that
is equal to 0 x = —00 and m at x = 00; changing between
the asymptotic values over a range w around c. For ex-
ample, when only the exchange and anisotropy is present,
f =n(1 —tanh[(x —c)/w])/2. f assumes more compli-
cated forms when the dipolar interaction is included. '"
The interaction energy between the spins can be written
as

E =0.5 g V; (R —R')S;(R)S (R'),
ij =xyz, RR'

where V = Vd+ V, + V, is the sum of the dipolar energy

Vd; (R)=(5; /R 3—R;R /R )g p~,'

the exchange energy V, = —J5( ~R —R'~ =a)5;J; and the
anisotropy energy V, = —X5(R =R')5;,5, . Here a are
nearest-neighbor distances. The elastic energy is given by
the domain-wall energy change as its position c is
changed by 5ck =co(cos(k r)). The details of this is dis-
cussed in Appendix A. In calculating this change, one
ends up with the derivative of f, which behaves like a 5
function in the limit that the wave vector is less than the
inverse domain-wall width. We get

5E 0 5+ Vyy(R R )So[5c(R) 5c(R )] (1)
RR'

The prime on the summation indicates that we sum over
those R, R' only at the (d —1)-dimensional undistorted
wall position. Because of the factor 5c(R)—5c(R') the
anisotropy term does not enter into the V of the above
equation. At long wavelengths, the dominant contribu-
tion to 6E comes from the dipolar term, to which we turn
our attention.

In 2D the R can only lie in the xy plane, the dipolar in-
teraction coupling S, is different from that coupling the x
and the y components. For a general spin orientation the
dipolar energy is

Ed =0.5 g Vd~S;(R)S (R')
ij =xy, RR'

—( Vd„„+Vdyy)S, (R)S,(R') .

In terms of the Fourier transform S~ =+~ exp(iq R )Sz /
&N, and

D;.(q) =g [cos(q R ) —1]Vd;. (R );
R

(3)

Eq. (1) can be rewritten as

5E=0.5+D (q)S05cq .
q

(4)

For Bloch walls perpendicular to the x axis separating
spins along the z axis, the energy change is similar except
that D in the Eq. (4) is replaced by D„D.Th—is-
corresponds to the second term on the right-hand side of
(2) and is negative. The dipolar contribution dominates
over the positive contribution due to the exchange term
in the long-wavelength limit and indicates an instability
of straight walls. We think this instability rejects the
physics that the system wants to form domains in all pos-
sible directions. The final result of this instability requires
a careful analysis of the nonlinear terms and is beyond
the scope of the present paper. Examples of the end re-
sult of this instability may be the very interesting domain
shapes observed for the electric dipoles in lipid mono-
layers. ' For 2D walls in 3D systems, no such soft mode
exists.

Because Vd is essentially the second derivative of the
Coulomb 1/r potential, D in Eq. (3) is identical in form to
the dynamical matrix D of the Wigner crystal in two di-
mensions and can be summed with the Ewald sum tech-
nique. ' ' This is recapitulated in detail in Appendix B.
Applying this to the wall energy of an array of 1D walls,
we obtain
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2g Pa +[1 c—os(q.R)][4@R,R, .p, (. ~R i)

+~/~~~X [(ql+Gl )(q +GJ )pi[(q+6)z]/4g] —6.6.$ (6 i/4 )

Here p, (x)=Pm/x Erfc(V'x); & (x)=ex ( —z)(1+1.5 z~3 p /z)/z+0. 75/i(z)/z . e is an arbitrary cutoff parameter usual-

ly chosen to be ir/ad so that the rates of convergence of the R and the G sum are corn arable. R =iax+ 'u~ f
g j po itions of the spins on the walls, 6 are the corresponding reciprocal-1 tt' . Th
an are rapi y convergent. In the long-wavelength limit D; ~2ng p~q;q /(qd). The elastic behavior can be

di erent for di8'erent types and structures of walls. For an array of N 1 ll t d' dee wa s a isiances apart separating spins

yy
~ IMii qy q . e maximum q in the x direction is qo =m /d.along the y axis the relevant matrix element is D —&2' IM q /( d). Th

ol qy ))qp p qy q/ Dyy ~ q . For q„(qo, q cannot be approximated by q, D ~ q /q. Thus the walls are quite stiff for

%i ner
qy & qo it ecomes softer at smal ler q. This "anomalous" q dependence corr d t th 1 d

'

igner crystal language and to the Higgs phenomena in the language of high-energy physics.

irections are illustrated in Fi . 1. In F'~ ~

The numerical results for the elastic behavior of domain walls und d'ff' t
~ ~

un er i eren spin arrangement and wave-vector
1

' 'g. . In Fig. 1 the two curves in the middle corresponds to elastic energies of 2D Bloch
walls in 3D systems when the wave vector is parallel and perpendicular to the direction of the dipole p in the middle of
the wall. They correspond to the "longitudinal" and the "transverse" branch, respectively. At small wave vectors, the
longitudinal (transverse) elastic energy is proportional to q (q ).

get t eresu t
The Ewald sum technique can also be applied to calculate the elastic energy of an isolated 1D wall in 2D magnets wean iso a e wa in magnets, we

D,"(q)=g p~g[(G+q), (6+q) E, [(q+G) /4e] 6,6 E (—6 /4e)I/a
G

++[1—cos(q.R))[4e R R;P&(eR ) 25, eg, (—eR )"]+a,elm .
R

Here Ei(x)= J „"ds exp( —s)/s is the airy function. In
the small-q limit, Ei(q)~in(q), the elastic energy is pro-
portional to q ln(q). This is stiffer than the ordinary
elasticity.

The elastic behavior of the 1D walls is also illustrated
in Fig. 1. The top (bottom) curve corresponds to a 1D
Neel (Bloch) wall separating magnetization parallel (per-
pendicular) to the plane. The lower curve is negative, as

1.5—

f

I I I

2D, q parallel p

-----2D, q perd. p

--------1D, M in plane

— ———-1D, M along z

I I I
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FIG. 1. Dipolar contribution
to the bending energy of domain
walls for 2D Bloch walls and 1D
walls. p is the dipole moment

gp&. a is the lattice constant.
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is discussed above. We next turn our attention to the
effect of the elastic energy on thermal fluctuations in the
presence of external pinning potentials.

III. STATISTICAL MECHANICS

In this section we discuss the finite-temperature prop-
erties of an elastic interface in the presence of an external
pinning potential. The total energy of the system is

E =gD (z)~5c
~

—
A,icos(2~5cz) .

It consists of the elastic energy and a periodic pinning
term which comes from the discreteness of the lattice.
This pinning term represents a simpler example of more
complicated pinning problems such as those due to exter-
nal impurities.

In the limit of small 5c~, one can expand the pinning
potential and obtain an approximate energy of the system
as

E = AN++—[D»(q)+6]I5c~l +O(5c ),
q

where, at zero temperature, h=k2m. . The pinning po-
tential thus provides for a gap which reduces the Quctua-
tion of the walls to finite values. At finite temperatures,
approximating the cosine term in E by a cumulant expan-
sion, ' the average pinning potential provides for an
effective gap 6=2m A, exp(( —2m (5r) )). 5 becomes
zero if the average self-consistent {(5r ) ) exhibits infinite
fluctuation. A key signature for a finite-temperature
roughening transition comes from the finite-temperature
fiuctuation ((5r) ) of the interface in the absence of the
pinning potential. If ((5r ) ) is logarithmically divergent
in the absence of the pinning potential, then b becomes
zero at a finite temperature and a roughening transition is
possible. This can be seen from the above by a self-
consistent argument as follows. When the divergence is
logarithmic, Dyy Q at small q; in the presence of a
gap 6,

((5r) ) =kT+1/E =Tx ln(D»(l/a)/6)
q

for some constant x. Substituting this into the expression
for 5, we obtain a self-consistent gap equation
b.=2m A,{D»(1/a)/6) " . Collecting terms, we get

[2+gD (1/a) —2n xT]1/(1 2n xT)—
vv

A finite gap exists only if T (Tx =1/(2m x). This pro-
vides for an estimate of the roughening temperature. If
the dependence is less than logarithmic a gap is possible
at all temperature. On the other hand, if the divergence
is more than logarithmic, no gap is possible at any finite
temperature.

For ordinary 2D interfaces, the elastic energy is pro-
portional to q . {(5r) ) ~ J d q/q is indeed logarith-
mically divergent. When the elastic energy is proportion-
al to q, {(5r) ) ~ J d q/q is not divergent. Because of
the increased stiffness, a two-dimensional wall in bulk
materials never roughens. On the other hand, for an ar-

ray of walls in 1D, ((5r) ) ~ Jdq/q is logarithmically
divergent again, indicating a roughening transition. This
self-consistent way of looking at the Quctuation
represents one approach to the problem.

To obtain a deeper appreciation of the problem we
shall explore a different approach of focusing on the
finite-temperature partition function of the interface with
the energy E. The quantity of interest is the partition
function

Z =exp( pE—) =f gd5 rq exp( E(5—r)/kT) .

For ordinary 2D interfaces, the partition function for the
roughening problem is related to that for the 2D
Coulomb gas. ' From this physical properties of the
roughening transition were deduced. We shall focus on
the long-wavelength limit and shall neglect the exchange
contribution which is proportional to q . For practical
quantitative calculations of finite-temperature physical
properties, the exchange contribution can be important.
In this paper, we shall focus on demonstrating the possi-
bility of a roughening transition. In 2D the partition
function for the arrays of 1D dipolar domain walls is

Z= f Qd5c, exp( —PD»(q)I5c, I')

Xexp PA,g cos(2m. 5cz )
R

Following by now familiar steps, we expand the second
exponential as a power series in A, as

Z= f ~d5c y Pageos(2~5c
n R

X exp( PD»(q)15c —Iq)/n! .

Performing the Gaussian integration over 5c, ' Z be-
comes the partition function of a collection of 1D
Coulomb gas:

Z =exp( 13Fo)—
X g (PA, ) exp —gij e, @~V(ij ) /I! .

m, Ie. I

Here

V(R)=2d f dq[1 —cos(q R)]/((2m) pzg q ) .

For R &d,

V(R ) = Vo(R ) =5(x ) ln(y)d /{(2~) p~g ) .

For R~ &&d, V(R) ~ ~R~ ~. The Coulomb gas on difFerent
chains are decoupled. The 1D Coulomb gas with loga-
rithmic interaction has been studied in the context of the
Kondo problem. ' Renormalization-group equations
were derived for the coupling constants A, and T/g.
These equations are derived by performing a scaling
transformation and demanding that the form of the parti-
tion function remain the same after the coupling con-
stants are renormalized. They are equally applicable here
until the length scale reaches d. In the limit A, —+0 quali-
tatively different scaling behavior for the coupling con-
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stants occurs depending on whether the temperature is
above or below the roughening temperature
Tz =8n n. Ij~g (1+2PA, )/d for an n la-yer system. I.ow
T in the original system corresponds to a high tempera-
ture in the Coulomb Quid, it becomes metallic and the
efFective coupling T/g scales to zero. High T in the orig-
inal system corresponds to a low temperature in the
Coulomb Quid, opposite charges form bound pairs. It
remains insulating and the efFective coupling T/g scales
to infinity. The position correlation function ((5r ) )
can also be calculated in the Coulomb gas mapping.
Below (above) roughening it is finite (infinite) as q~0,
corresponding to the presence (absence) of a gap.

The limit by d is analogous to finite-size systems which
does not exhibit a genuine mathematical singularity. Yet
we expect qualitative changes in growth behavior as Tz
is crossed.

To get a feel for the magnitude of the Tz, note that
2m(pzg) =10 K. Thus Tz =n 100 K(ao/d). Thus the
transition seems experimentally accessible.

For a single 1D wall, the elastic energy is proportional
to q ln(q). It is stiffer than ordinary situations. Never-
theless, the wall still roughens at any finite temperatures,
consistent with the d —+ ~ limit of the above result.

In conclusion, we have investigated finite-temperature
Quctuation of magnetic domain walls in ultrathin mag-
netic films and explore the interesting physics that results
from the competition of the long-range potential and
1ow-dimensional Quctuations. While previous experimen-
tal work indicates that domain walls exhibit large Quctua-
tion in 2D, further systematic studies on samples with
well characterized parameters is necessary to confront
theory with experiment. It is quite likely that the elec-
tron wave function is of the order of six monolayers' so
that experimental systems less than six monolayers can be
modeled by an effective single layer spin with some
effective local moments. In this paper we have performed
explicit calculations on 2D and 3D systems. Similar cal-
culations can also be carried out for films of finite thick-
ness. For an n-layer system, because the exchange J is
much larger than the dipolar interaction constant g, we
expect the spins on diferent layers to line up so long as
n (J/g. The system can then be modeled as a 20 system
with the

effective

dipolar coupling between diferent
columns of spins at di6'erent xy positions multiplied by n.
The possible efrects of long-range potentials on the
roughening and pinning transition have been discussed
previously, but with elasticity that is appropriate
only for 3D systems.
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APPENMX A

In this appendix we consider the elasticity of Qat
domain walls. This calculation is not as trivial as one
would think because there are second derivatives of
di8'erent quantities and there is a cancellation so that the
energy change is zero in the zero wave-vector limit when
the whole wall is rigidly transported. Thus Goldstone's
theorem is obeyed.

We first consider a Bloch domain wall along the y
direction with spins pointing up and down along the z
axis on opposite sides of the wall. For this case P=m. /2.
The polar angle 0 of a spin at site r is thus given by
8(r)=f [x —c(r)]. f is continuous function that is 0 and—m at x =+00, changing between the asymptotic values
over a range w around c. For example, when only the ex-
change and anisotropy is present, f =n I 1—tanh[(x —c ) /w] ] /2. f assumes more complicated
forms when the dipolar interaction is included. We con-
sider the domain-wall energy changed as c is changed by
5c =cocos(ky). We focus on the dipolar contribution,
the other contribution is easy to deal with. The dipolar
energy from Vd; can be written as a sum of two contribu-
tions. The first term is E, =icos(8; —

8J )/r;~. The
second term is Eb = —3+sin8; sin81y;~ /rj. Since

sin8, sin8 =0.5[cos(8;—81 ) —cos(8, +81 )],

Eb =E, Ez where E—, &=1.5 Jy cos(8;+8J )/r . We as-
sume the continuum limit and approximate the sum over
i and j by integrals.

To calculate the energy change as c is changed, we ex-
pand these energies as a power series in 5c and get

5c'5,' cos(8, +8, )= .cos(8. , +—8, )(5c,5.,8, +. 5c, a. ,8, )

—sin(8, +8 )(5c Bc 8, +5c 5,8, ) .

(A1)

Similarly
—5c'5,' cos(8, —8, ) =cos(8, —8,. )(5c,a, 8, —5c,a, 8, )'

+sin(8; 8, )(5c,'a,'8, —5c,'a', 8, )

There is a cancellation between the first and the second
term on the right-hand side. To see this, we transform
the second term by an integration by parts:

fy sin(8, +8 )5c; B,8, /r = —f8„;[y 5c, sin(8;+8 )/r jd„,8,

=f [5xy 5c; sin(8;+81)!r ]8„;8;—y 25c;(B„5c;)

Thus

Xsin(8, +8 )/r [d„,8, —y 5c, cos(. 8, +8 )/r j(5„,8, )
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fy sin(8, +8 )[5c, B,H, +5c B,H ]/. r =f [Sxy sin(8, +8 )/r ][5c,B„H;+5c B„H ]

—y 2[5c, (B„5c,)B„,H;+5c (B„5c )8 8 ] sin(8, +8 )!r
—y eos(8;+HJ)/r'[5c;(8;8;) +5c (8 8-) ] .

Similarly

—fy sin(8, —8 )[5c;B,H; 5c—B,H. ]/r = f [ —5xy sin(8; —Hi)/r ][5c;8„;8; 5c—B„~H. ~]

y—2[5c,(B„5c,)B„;8, 5c—(B„5c )B„H ]sin(8, —8 )/r'

+y cos(8; —8 )/r [5c; (B„,H;) +5c (B„H, ) ] .

Collecting terms, we get

Eb/1. 5= f (2/2)(y /r )[ —cos(8; —8. ) —cos(8;+8.)]5c;i)„;8;5cB„H +O(B5c)
—5xy /2r [sin(8;+8 )[5c;8„;8;—5c, B„HJ]+sin(8, —8 )[5c, 8„;8,—5c 8 8 ] .

There is a cancellation of the terms involving the cos fac-
tor so that now these factors occur only when products of
both B„O; and 8 0 occur. Those terms involving
0 (B„5c) is zero because 5c is only a function of y. Thus
they are not explicitly displayed above.

When the form of 5c is incorporated and the sum over
i,j is carried out, the first two terms of Eb depend on k
but the last two does not. The last two cancel one the
first two terms in the limit k =0. This cancellation can
be seen directly from Eq. (Al) with a slightly di8'erent in-
tegration by parts. When all the 5c are the same, the
second term of Eq. (A 1) is then

fy sin(8;+HJ. )[B;8;+8 8 ]/r

= fy /r sin(8;+8 )[8;+B.] (8;+8.) .

When we integrate by parts once, we obtain terms
difFerentiating the sin function and y; /r; . This second
class of terms is zero because it changes sign under the
interchange of i and j. Thus the second term of (Al) thus
becomes

f [—y cos(8;+8.)/r [(8„;8;)+(B„jHJ.)]

This term completely cancels the first term of (Al). The
cancellation can also be seen by explicit calculation. For
example for spin in the wall in the xy plane one has, for
c=0,
f [5xy sin(8, +8 )/r ]5c,zB,8, . .

=f d r 5x~y~ sin(m/2+8 )/r75c, z

= —2f dyj f dxj5x~y~ sin(n/2)/r75c 2

2f dy, y,2/r'5c, '—.

This just cancels out the other term.
In a similar manner, we get

2E, = f cos(8; —8 )5c;c)„;8;5c8 HJ/r +O(B5c)

+3x/2r [sin(8, —8, )[5c, i3„;8,—5c B„H~] .

Just as for Eb, the first term of E, is a function of k but
the second is not. These two terms cancel each other in
the zero k limit.

The terms of the order of sin(8, . +8.) =sin(28;) =0 for
8=0,n/2. For domains with spin along the z axis
separated by walls with spins along the y axis. Eb =0,

E= f (5c;—5c ) 8„;8,8„8 /y3 .

B„H is like a 5 function localized at the domain walls. In
the limit that the wave vector is less than w, the detail
form of f is not important, the result is Eq. (2) and below
is obtained.

A similar calculation can be carried out for a Neel wall
with all spins in the xy plane. %'e have
H=m. /2, $=f[(x —c(r))]. For the dipolar energy, the
first term is E, =g cos(P; —P )/r; . The second term is

Eb = —3+[sing, sing y;~+cosP; cosgjx;~]/r J,
sing, sing =0.5 [cos(P, —P )

—cos(P, +P. ) ].
Eb =Ei E2, where Ei &

—= 1.5 J —( —+y +xz) eos(P,.

+PJ)/r . Now expand as a power series in c. Cioing
through the same manipulation as before, we found that

f (y —x ) sin(P;+PJ. )5c; B,P, /r = f [[5x(y x)+2xr ]5c; sin(P, +&~)/r—]B„,P; y25c;(8„5c—;)

Xsin(P;++J. )/r [ri„,+; (y x)5c; cos—(P;+—@J)/r ](B„,+;)
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Collecting terms, we get

Eb/1. 5= f (2/2)/r [ —(y —x ) cos(P, +PJ )+(y +x ) cos(P, P—J )]5c,B,$,5c~()„p~+O(85c)

—[5x(y x—) 2x—r ]/2r sin(P;+P )[5c, ()„,P, 5c—, t),J(I)J]

+[5x(y +x )+2xr ]l2r sin(P; P—J)[5c;B„,P; 5c—j (3„/$/

In a similar manner, we get

2' = cos; J c7 Q7 7 cJ XJ J P +0 c

+3x/2r [sin(P, —P )[5c; (3„,$; 5c —B„JP ] .

For the special cases: /=0 at the wall. The only q-
dependent term is

Eb /1. 5 = —f 2y /r 5c;5cJ .

From this Eq. (2) is obtained.
For the case of the electric dipoles in lipid monolayers,

sometimes one is dealing with a mixture of two different
dipole densities but aligned in the same direction. If we
focus on the order parameter consisting of the difference
in dipole densities, it is still possible to apply the above
results. A negative dependence of q ln(q) was obtained
for the distortion of a line in the case. This reference
also quotes results for an array of lines, which we think is
incorrect.

APPENDIX B

Below, we give a derivation of the Ewald sum for the
dipolar interaction for the elasticity of the domain walls.
The dipolar interaction is the second derivative of the 1/r
Coulomb potential: Vd,"=g p&B;() 1/R; . We thus first
focus on sums of the form

We can then write the sum S(x,d, n) as follows:

gf(R+x)= gf(G)e' " Vf .
a,

(B2)

Here a, is the area of the unit cell, G's are the
reciprocal-lattice vectors to R's, and f is the Fourier
transform of the function f defined by

f(k)= fd re ' "f(r).

So, after breaking up the integral into two parts, and ap-
plying the above summation formula to the slowly con-
vergent part, we have

1

~& lx+R I"
e"y„„,(elx +Rl')I n/2

1 1 "e—tI~+&I't(n/z —i)dt . (Bl)
a lx+Rl" a 1(n/2)

Now we can see that if the integral is taken from some
nonzero number e infinity, then the summation over R is
very rapidly convergent. The rest of the integral, con-
sidered as a function of x, is slowly convergent and there-
fore its Fourier transform would be rapidly convergent.
We will use the Poisson's summation formula which
transforms sums on the real lattice to sums on the re-
ciprocal lattice:

S(x,d, n)=g 1

g lx+Rl" + ge' "f(G),
a,

(B3)

X
"e "'t '"dt

x2 (1/2) I ( 1/2) ()

from which, after p differentiations with respect to x,
one gets

The space dimension is denoted by d and the lattice vec-
tors by R; x is the d-dimensional vector separating the
two charges. We will first use the following identity:

where (I)„(z)=I) dt t"exp( zt), —

f(G)= 1
d~~

—iGr e
—tr ~(n/2 —1)

I (n/2) 0

—G /4t( /t)(d 2)t/( 2tt/1)dt—1

I (n/2) o

1

( 2)(p + (/2)
1 tx t(p —1/—2)dt

I (@+1/2) o

(d /2)

I (n/2)

(n —d)/2
G2 r d —n G

2 '4e (B4)

X
]( /2 —1)g]

r(n/2) o
'

or after substituting 2p + 1 by n: I (x)=j"t"e 'dt. The rapidly convergent part can also
be expressed as a I function. Finally, the Ewald sum can
be written in the following form:

1 1

lx +Rl" I (n/2)

For d =2 and n =1; the I
the sum Sbecomes:

+I (n/2 elx+Rl ) n'" '+ G d nG—
lx +Rl" (t«4

function is reduced to a complementary error function erfc(x) =2j"exp( t )dt/&m and—
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1~ lx+RI
1 pdz 1 Erfc(e~x+R~) n, 2

a, " [x+r/ z [x+R/ a, G G
6

e iGX

2E' a, e
(86)

DifFerentiating this twice with respect to x and setting x to zero afterwards, the result in Eq. (1) is obtained. In a similar
manner, the result in Eq. (2) corresponds to d =1and n =1.
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