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Coincidence electron spectroscopy of W(100) in the threshold-energy region
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The simultaneous emission of two electrons from W(100) after excitation by a normally incident pri-
mary electron is studied as a function of the primary electron energy (10—22 eV relative to the Fermi lev-
el) and emission angle. We found that the coincidence rate as a function of the primary electron energy
had a low-intensity tail in the region below 18 eV with an energy threshold at 11.5—12 eV. The most
probable angle between two scattered electrons was found to be about 80 at 20.6-eV primary electron
energy. The maximum sum energy of correlated electrons is found to agree with the energy conservation
law limit. Experimental results are in fair agreement with calculations based on a two-parabolic-band
approximation.

INTRODUCTION

The basic idea of a two-electron coincidence experi-
ment of the type one electron in —two electrons out (e, 2e )

is to measure the energy and momentum of a target elec-
tron participating in the collision event, when the energy
and momentum of the incident electron are known. This
yields information about the scattering process and the
initial state of the target electron.

Transmission electron (e, 2e ) experiments at high ener-

gy were carried out with thin films for studying the elec-
tronic structure of solids. ' The spectral momentum den-
sity of carbon, graphite, aluminum, and aluminum oxide
was measured and experimental results for graphite have
been compared with first-principles calculations. A fair
agreement between the theory and experiment was
shown. Two-electron coincidence spectroscopy was also
used to study the generation mechanisms of secondary
and Auger electrons, as well as for the determination of
the production pathways of secondary electrons.

In order to study the electronic structure of the solid
surface and low-energy electron scattering dynamics by
means of (e, 2e ) spectroscopy, we used an electron coin-
cidence spectrometer in the back-re6ection geometry. In
our previous papers we have shown that true coincidence
events can be observed in the reQection geometry experi-
ment with low primary-electron energy. ' The threshold
energy of the appearance of correlated electrons was
found to be approximately four times the work function
of the sample surface. When the work function is
changed by means of adsorbate deposition, the energy
threshold follows these changes.

In this paper we present further experimental results
obtained with an improved (e,2e) spectrometer yielding
higher sensitivity. This was achieved by using multichan-
nel plates (MCP's) as electron detectors with apertures
larger than those of the channeltrons used in Ref. 6. We
measure the coincidence-event (CE) number as a function
of incident electron energy and of applied retarding po-
tential, as well as the angular distribution of correlated
pairs. The coincidence technique allows us to select only
those time-correlated pairs of emitted electrons which are
produced by one primary electron. The detected corre-

lated pairs, however, can in principle be created both in
single electron-electron scattering events and in a multi-
scattering process. From now on we shall refer to the
detection of a correlated pair produced in a single scatter-
ing event as the true coincidence event (TCE) and to that
of a correlated pair created in a multiscattering process
as a secondary-electron coincidence event (SECE). A
simple kinematic model of the creation of correlated elec-
tron pairs is formulated and the calculations are com-
pared with experimental results. Fair agreement is
found.

EXPERIMENTAL SETUP

The coincidence spectrometer used in our experiment
is schematically shown in Fig. 1. An electron gun sup-
plies 5 —100-eV electrons, the electron beam diameter be-
ing not more than 3 mm. We used two MCP-based
detectors which had two parallel grids each for the ener-
gy analysis of electrons leaving the sample. The detectors
and the electron gun lie in the same plane passing
through the sample surface normal. The angular position
of the detectors and of the gun could be varied from 30
to 80' relative to the surface normal. The MCP's used in
the experiment had an effective area of about 27 mm in
diameter. To increase the low-energy-electron detection
efticiency, an accelerating potential of about 300—400 V
was applied between the MCP entrance and the nearest
(second) grid. The distance between the sample and the
first grid (i.e., the path length traveled by scattered elec-
trons in the field-free region) was about 90 mm. In this
geometry, the solid angle inside which electrons were
gathered was -0.07 sr, which allowed us to increase sub-
stantially the experimental accuracy compared to that in
Ref. 6, where we used two channeltrons as detectors. A
tungsten single crystal, 4X8 mm in size, was mounted
on two tungsten rods and could be heated up to 2000 C
by resistive heating for cleaning. The construction of the
holder allowed us to turn the crystal in the azimuthal
plane. The surface purity and its perfection were moni-
tored by measuring relative intensities of diffraction max-
ima. The intensities of the following diffraction beams
were measured: (01) from the tungsten surface, ( —,

'
—,')
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FIG. 1. Schematic view of the two-electron
coincidence experiment in the reflection
geometry. MCP is the microchannel plate and
Uz is the retarding potential applied to the
grids. The right-hand panel is a time-of-flight
difference spectrum, showing difference in ar-
rival of the "start" and "stop" electrons. Zero
point is shifted by a delay in the "stop" chan-
nel.

from the lattice of adsorbed carbon and ( —,'0) from the lat-
tice of adsorbed oxygen. A typical value of the (01) beam
intensity relative to the background was 5 —10, while ( —,

'
—,
'

)

and ( —,'0) spots were not observed after high-temperature
flashes. The W(100) sample had been oriented in such a
way that the (01) diffraction beam was in the detector
plane. The residual gas pressure during the measure-
ments did not exceed the 10 "-mbar range. During the
measurements the sample was periodically heated up to
70—1000'C to remove adsorbed gases from the sample
surface. The magnetic field of the earth had been re-
duced by about 100 times using Helmholtz coils and a p-
metal screen inside the vacuum chamber. The primary-
electron beam current Io was kept at such a level that the
count rate of each of the detectors was in the range of
5 X 10 —10 s '. This corresponded to a primary current
below 10 ' A.

The technique of measuring true coincidence events
was briefly described in Ref. 6. One of the electrons of a
correlated pair entering one of the detectors creates a
start pulse for a time-to-amplitude converter (TAC). The
second electron of the pair entering the other detector
produces a stop pulse for the TAC. At the output of the
TAC appears a signal which is proportional to the
difference between the times of flight from the sample to
the detector for the two electrons belonging to the pair.
The coincidence-event number as a function of the elec-
tron time-of-flight difference is stored in a PC memory.
A typical time-of-flight distribution of the coincidence
events is shown in Fig. 1 (right-hand panel). The distri-
bution maximum corresponds to equal times of flight of
the two correlated electrons. The position of the max-
imum in Fig. 1 is shifted relative to the origin of coordi-
nates by a certain value corresponding to the time delay
introduced into the "stop" channel of the registration cir-
cuit. The full width at half maximum of the time-of-
flight distribution for E = 16 eV is about 90 ns. Uncorre-
lated start-stop events may have any time interval be-
tween start and stop (because in this case start and stop
electrons are produced by different primary electrons)
and thus appear as a "white noise" background in Fig. 1.

EXPERIMENTAL RESULTS

The number of coincidence events as a function of the
primary-electron energy (relative to the Fermi level) is

shown in Fig. 2. The coincidence-event number was nor-
malized to 10 start pulses. The detectors are placed at
the angle of +40 to the sample surface normal. The
primary-electron direction was normal to the surface.
The experimental errors shown in Fig. 2 correspond to
one statistical deviation. The solid and dashed curves in
Fig. 2 represent the results of a model calculation for the
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FIG. 2. CE number as a function of the incident electron en-
ergy. Dots with bars: experimental data for a symmetric ar-
rangement, angle of incidence 0=0, detection angles tl =40,
t2 = —40. Solid and dashed lines: calculated curves. Parame-
ters of calculation: potential well bottom Eb = —10 eV, poten-
tial well top E, =4.6 eV, energy position of the top of occupied
d band Ed m» = —1 eV (solid line), Ed m» = —2 eV (dashed line).
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TCE relative number as a function of the primary-
electron energy and will be discussed later. The most
significant difference between the distribution in Fig. 2
and that shown in Ref. 6 is the presence of a low-energy
"tail" in the region below 18 eV. The coincidence-event
appearance threshold in Ref. 6 had been determined as
E,„=18 eV using linear extrapolation of the energy
dependence in the low-energy region. Let us note that, if
only the energy conservation requirement were taken into
account, ignoring the momentum conservation require-
ment, the energy threshold for the emission of two elec-
trons into vacuum would be equal to twice the work func-
tion value, i.e., it would be E,h =9.2 eV. The distribution
shown in Fig. 2 demonstrates that the observed threshold
value is shifted down to about E,h = 12 eV. It can be seen
from Fig. 2 that the coincidence-event number below
—12 eV is zero within one statistical deviation. Howev-
er, we have no independent experimental result to
confirm that this threshold value corresponds to a "phys-
ical" threshold rather than to the sensitivity of the mea-
surement. The normalization of the CE number to 10
start pulses used in Fig. 2 means that the CE number is
normalized to 10 scattered electrons entering the detec-
tor aperture. The ratio of the number of elastically scat-
tered electrons to that of the inelastically scattered
changes with the primary-electron energy. The elastic-
re6ection component of the scattered electron current
was measured with a retarding potential applied to the
second grid of the detector. It was found that the frac-
tion of the elastically rejected electrons decreases as the
primary-electron energy increases (from about 40% at
E = 12 eV to about 27%%uo at Ez =20 eV). This decrease is
insignificant compared with a sharp increase of the CE
number. This comparison shows that the normalization
of the CE number to the total number of electrons scat-
tered in the detector direction or to the number of elasti-
cally scattered ones cannot make any significant
difference in the energy position of the CE detection
threshold.

An important feature of single scattering of a primary
electron on a valence electron is the energy distribution
between the two electrons of the resulting pair. The total
energy of electrons of the pair is equal to the primary-
electron energy minus the valence-electron binding ener-

gy relative to the Fermi level. Figure 3 presents schemat-
ically the range of possible values of the energy (E& and

Ez) of electrons belonging to the pair created as a pri-
mary electron with the energy Ez is scattered on a
valence electron at the Fermi level or near it (i.e., its
binding energy being close to zero). In this case, if the
primary-electron energy is higher than the CE appear-
ance threshold, the interval of possible energy values of
one of the electrons of the pair is from E&=eg to
E& =E —eP, the energy of the other being Ez =E E, . —
In Fig. 3 this requirement is fulfilled in the narrow shad-
ed area, the width of this area being proportional to the
energy region of valence electrons taking part in the
scattering.

If retarding potentials U~& and U+2 are applied to the
detector grids then only that fraction of the correlated
pairs can be detected for which the following inequalities
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FIG. 3. Diagram showing the range of possible values of the
energy E

&
and E2 of electrons belonging to the pair created by a

primary electron with the energy E~. The narrow shaded area
corresponds to excitation of valence electrons from the levels in
the Fermi-level vicinity. The lightly shaded area defines possi-
ble values of correlated electron energies, when retarding poten-
tials U» and U+2 are applied to the detector grids.

are valid: E, —eg&eUz& and Ez —eg&eU+2. It means
that in Fig. 3 energy values of the electrons of the corre-
lated pairs occur in the lightly shaded area limited by
three straight lines: E& =eUz&+eP, Ez =eU+2+eP, and
E, +E2 =E~. In a special case when the valence-electron
binding energy is zero, the hypotenuse of this right-
angled triangle corresponds to the range of energy of the
correlated electrons.

Figure 4 presents the CE number as a function of the
retarding potential applied to the second grids of both
detectors at the primary electron energy E =20.6 eV
and in the above-described experimental geometry (both
detectors are at +45 relative to the normal to the sample
surface). The relative CE numbers plotted on the experi-
mental curve are normalized to the storage time at a con-
stant primary-electron current, the error bars corre-
sponding to one statistical deviation. The values of the
retarding potential U~=U~, =U» are plotted on the
abscissa axis. The solid line represents model calcula-
tions and will be discussed later. As the retarding poten-
tial increases from zero, the CE number changes
insignificantly in the region Uz & 2 eV, which shows that
the correlated pairs comprise a relatively small amount of
electrons whose kinetic energy in the vacuum is less than
2 eV. As the total energy of the electrons of a pair is con-
stant and cannot exceed the primary-electron energy, it
follows that the correlated pairs also contain relatively
few high-energy electrons. From the total-energy conser-
vation requirement we expect that at the retarding poten-
tial values Uz &(E~I2—eP) je the number of detected
CE's should be zero as one of the correlated electrons al-
ways has the energy E & E~ /2. For the primary-electron
energy E =20.6 eV and with the work function of
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FIG. 4. Number of true coincidence events as a function of
retarding potential applied to detector grids. Angle of incidence
0=0', detection angles t& =45, t2 = —45', retarding potentials
U&& = U&2= U&. The arrow indicates the energy-conservation-
law limit ( Uz =5.7 V). Parameters of calculation are the same
as in Fig. 2. The right-hand scale is the secondary-electron rate
(dashed curve).

CE number at the primary-electron energy E& =20.6 eV
and normal incidence. The angles of the detectors were
changed simultaneously so that t =t, =t2. The CE num-
ber is normalized to the acquisition time for every experi-
mental point at the same (fixed) primary-electron current,
i.e., in fact, to a quantity proportional to the primary-
electron number. The angular distribution of the CE
number exhibits a maximum at the detection angles
t, = —t2 =(30—40)'. The curve in Fig. 5(a) was obtained
at zero retarding potential on the detector grids, while
the curve in Fig. 5(b) was measured at the retarding po-
tential Uz =3 V applied to the grids of both detectors.
Both the energy position of the maximum and its full
width at half maximum changes insignificantly with the
elimination of the lowest-energy electrons (by applying
the retarding potential).

It can be seen from Figs. 5(a) and 5(b) that the most
probable scattering angle in vacuum is 80' —86'. The
most probable scattering angle in a previous experiment
at the primary-electron energy of 30—45 eV and for a
different scattering geometry was found to be 60' —75'.
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FICx. 5. Angular distribution of correlated electron pairs.
Angle of incidence 0=0', detection angles t& = t2, ~t; ~
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Open dots with bars: experimental data for E~ =20.6 eV, (a)
UR =0, (b) U& = —3 &. Solid line: model calculation. Parame-
ters of calculation are the same as in Fig. 2.

tungsten -4.6 eV taken into account, the upper limit of
the curve in Fig. 4 should be observed at UR =5.7 V (as
shown by an arrow in Fig. 4), which is in quite good
agreement with the experimental data.

We show further in Fig. 4 that the CE number depen-
dence on the retarding potential is quite different from
the usual dependence of the count rate of a single detec-
tor versus retarding potential applied to the grid of this
detector (see dashed curve). In the latter case, for each of
the registration channels the retarding potential curve ex-
tends from zero to Uti =E /e as no limitations are im-

posed on the energy of the electron detected in the other
channel.

Figures 5(a) and 5(b) show angular distributions of the

THEORETICAL MODEL OF SINGLE SCATTERING

We consider a simple kinematic model of scattering of
a primary electron with the energy E and momentum k
(the atomic system of units is used for simplicity where
e =m = l and angles are in radians) on a valence electron
with the energy E, and momentum k„(Fig. 6).

The basic assumptions of the model are as follows.
(I) The valence electron has an equiprobable direction

of the momentum k, in space, i.e., is uniformly distribut-
ed over a sphere of radius k, in momentum space.

(2) The primary electron, after elastic scattering, is also
uniformly distributed over a sphere of radius k~, i.e., its
velocity direction in space is isotropic. The latter as-
sumption stems from the necessity for the primary elec-
tron to be elastically scattered into the back hemisphere
before the electron-electron scattering event itself may
occur. This point had been discussed in Ref. 6 and exper-
imentally corroborated in Ref. 7.

(3) We assume that the cross section of the scattering
event is independent of energy in the entire region of in-
terest. We calculate the probability of detection of corre-
lated electrons from purely kinematic considerations.
This means that the probability for an electron to be scat-
tered in a certain solid angle is equal to the ratio of this
solid angle to the full solid angle of scattering.

The aim of our calculations is to evaluate the probabili-
ty for the two electrons to enter simultaneously into the
solid angles of detectors d A& and d 02 in vacuum, or into
corresponding solid angles and in the solid. We consider
further the scattering event inside the solid using trans-
formation relations for the di8'erential solid angles when
an electron crosses the solid-vacuum interface. Besides,
we take into account that not all of the valence and pri-
mary electrons uniformly distributed in k space can take
part in scattering events, but only those whose k vectors
satisfy certain kinematical requirements of scattering.
The selection rules for the k vectors result from the ener-
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through the normal to the sample surface. In vacuum
their momenta are k& and k2, respectively. Their veloci-
ties are directed at the angles t, and t2 to the normal in
vacuum, or Q& and Q2 in the solid. It is convenient to
consider scattering of the electrons relative to the direc-
tion of the total momentum k of the two-electron system.
In Fig. 6(a) the total momentum is directed at the angle Z
to the surface normal. In this case the scattering has
complete azimuthal symmetry relative to the Z' axis,
which is chosen to coincide with the total-momentum k
direction. Now we can go to a description of the scatter-
ing in one plane. From now on any momentum is con-
sidered as a scalar and any direction is given by a corre-
sponding angle.

Going back to the scheme in Fig. 6(a), we consider
scattering of a primary electron traveling after an elastic
scattering event into the back hemisphere at the angle P
to the direction of the total momentum of the system
consisting of the primary electron and a valence electron.
The valence electron travels at the angle V to the total
momentum direction. After the electron-electron scatter-
ing event, a pair of electrons appears, which travel, re-
spectively, at angles Q,z and Qzz to the total momentum
direction and at angles Q& and Qz to the normal to the
surface. Refraction of the electron trajectories at the in-
terface changes the velocity directions and in vacuum the
scattered electrons travel at angles t, and t2 to the nor-
mal in the directions of the detectors.

The number of electron pairs created by one primary
electron may be written as

d'I
FIG. 6. Kinematical scheme of single-step scattering of the

primary electron on the valence one. (a) Kinematical diagram
of primary and valence electron scattering and escaping from
the solid. (b) Energy and momentum conservation laws deter-
mine that momenta of two scattered electrons k& and k2 are end-
ing at the circle with the radius r. k~ and k„are the primary-
electron momentum and the valence-electron momentum before
scattering, respectively, k is the total momentum of the two-
electron system, k& and k2 are the momenta of two scattered
electrons, and n is normal to the sample surface.

gy and momentum conservation laws and the require-
ment that after the scattering event the electrons of the
pair should travel within the solid angles de6ned by the
detectors. So the probability for the valence electron to
take part in scattering and be detected is equal to the ra-
tio of the corresponding volume in k space to the full
volume of valence-electron states. For the primary elec-
tron the probability of scattering in a certain solid angle
is equal to the ratio of the corresponding area on a sphere
of k~ radius in k space to the whole surface of the sphere.

A. Detection probability for the electron pair

For simplicity, we discuss below a special case when
both scattered electrons with the energy E& and E2 and
momentum k& and k2 travel in the same plane passing

here d 0, and d Q2 are acceptance apertures of hypotheti-
cal detectors inside the solid, E is the energy of one of the
electrons of the pair, Eo is the total energy of the pair, 1V

is the number of valence electrons, W is the probability
for the electrons of the pair to occur (and to be detected)
in the solid angles determined by the detectors, W, is the
probability for a valence electron to participate in a
scattering event, the electrons being scattered into the
solid angles d 0& and d Q2 and in the differential energy
intervals, and W is the probability for the primary elec-
tron to participate in a scattering event, the electrons be-
ing scattered into the solid angles de, and dQ2 and in
the differential energy intervals dE. W; and 8'z depend
on polar angles Q,z and Qzz and they do not depend on
azimuth angles because of the azimuthal symmetry of
scattering relative to the Z' axis (which is chosen to coin-
cide with the total momentum of the correlated pair). To
calculate the number of detected correlated pairs of elec-
trons we have to integrate expression (I) over solid angles
of detectors EQ& and EQz and over the full energy range
of detected electrons AE and EEo (where b,E is the ener-

gy range of detected electrons and hE~ is the energy
range of the total energy of the pair). The last value de-
pends on the valence bandwidth because there is only one
reason for creation of the pairs with different total energy
Eo: namely, the scattering of primary electrons on
valence electrons with differing binding energies.
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B. Transformation of solid angles

Using the requirement of conservation of the tangential
momentum component, it is easy to obtain expressions
describing the solid-angle transformation when electrons
pass from the solid to vacuum. It allows us to go to the
description of the scattering events inside the solid.
From the conservation of the tangential momentum com-
ponent at the interface it follows that

1/2

sint; where i =1,2 . (2)
i b

Q,. = arcsin

The direction of the total momentum of the system inside
the solid can be obtained from the ratio of the total-
momentum k components normal and tangential to the
surface, respectively.

k, sinQ&+kz sinQz
Z = arctan

k( cosQ(+k2 cosQ2
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The expression for the polar-angle transformation as we

go from the vacuum to the solid is obtained by
differentiating (2):

(E, —E, )

(E —E ). (4)

We chose the differentials of the components of detector
solid angles both in the polar plane and in the perpendic-
ular direction to be equal to dt (the detector apertures are
circular).

C. Planar scattering

Now let us consider the scattering event itself resulting
in scattering of one of the electrons into the angle dQ,

where dt is a differential of the detector polar angle, and
E, and Eb are the top and the bottom of the potential
barrier on the solid-vacuum interface (see Fig. 7) (this will
be discussed later).

An opening angle dt of a solid angle of the detector in
the plane perpendicular to the polar plane is transformed
into an azimuth angle in the plane normal to the total-
momentum direction in the following way:

kdt
where i = 1,2 .

DENSITY OF STATES

FIG. 7. Density of state of the valence band of tungsten in
the two-parabolic-band approximation. The top and the bottom
of the potential barrier relative to the Fermi level are E, =4.5
eV and Eb = —10 eV.

and of the other one into the angle dQz. The total
momentum of the two electrons and their total energy are
conserved in the scattering event:

EO=E +E,=Ej+E2,
k& COSP +k COS V =k

~ COSQ ~z +k2 COSQ2z =k (6)

k sinP+k, sinV=k, sinQ, z+k2 sinQ2z =0,
where Q,z =Q, —Z and Qzz =Q2

—Z. For fixed values
of Eo and k describing the state of the two-particle sys-
tem a range of possible values of E„Q&z and Ez, Qzz can
be found. Solving Eqs. (6), it is easy to show that the end
points of the vectors k, and k2 lie on a circle of radius
r =+(Eo—k /4) with the center in the middle of the
vector k [see Fig. 6(b)].

The equations describing the circle are

+ —,'(k cos Q;z+4E —2k )' if k; & —,'k cosQ;z

k, = '

k cosQ,z —
—,'(k cos Q;z+4E —2k )'~ if k; (—,'k cosQ, Z,

(7)

where i =1,2. The endpoints of the vectors k, and k2 are at the opposite ends of a diameter of the circle. Thus the final
state of the system in the scattering plane is determined by only one independent parameter: either by the energy of one
of the scattered electrons or by the direction of one of them.
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D. Di8'erential scattering probability

Let us determine the detection probability for a pair
after scattering of one of the electrons with the momen-
tum k, into a polar angle dQ, and of the other electron
with the momentum k2 into a polar angle dQ2. This
probability is determined by the ratio of the arc dl cut by
a polar component of the solid angle on a circle of radius
r to the total length of the circle. The length of this arc
can be written as follows:

dl, = dk l

dQ;
dQ; where i =1,2 .

where dl;„=min(dl„dlz) and dUz
=min( d U,z d U2z ) ~ Expression (9) describes the proba-
bility of scattering of a primary+valence electron pair
characterized by the total energy Eo and total momen-
tum k, resulting in the electrons going out at the angles
Qiz and Qzz relative to the total-momentum direction
or, which is the same, at the angles t, and t2 to the nor-
mal in vacuum, into solid angles with the linear opening
dt.

The energy value E, and E2 of the electrons of the pair
with fixed total energy and total momentum are unambi-
guously related to the scattering angles. The energy in-
crement dE& for the electron with the momentum k& and
dE2 for the electron with the momentum k2 can be
defined as

The probability for each of the electrons of the pair to
be detected within the angle d U,z (or d U2z ) is propor-
tional to the value of this angle, because of the azimuthal
symmetry of scattering relative to the direction of the to-
tal momentum. As we consider only scattering in the
plane passing through the normal to the surface, the az-
imuthal angles of the vectors k, and k2 ought to differ by
~ radian.

The probability for the pair to be detected is equal to
the smallest of the two detection probabilities for the
electrons of the pair; therefore the probability of scatter-
ing into solid angles d

&
and d 2 can be written as

dl;„dU8'=
2~(E k'(4)'"—

trons is fixed (Qi), a change of the second electron
scattering angle in the interval (Q2, Q2+dQ2) leads to a
change of the total momentum k, and accordingly to a
situation when both the primary and the valence electron
involved in the scattering have difFerent velocity direc-
tions. The angles Q, and Q2 in this case must be con-
sidered as independent parameters, varying in the limits
set by the detector apertures.

Solving Eqs. (6) it is possible to obtain an unambiguous
relation between the momentum directions of the pri-
mary, valence, and scattered electrons:

k' —k,'+k„'
V= arccos

k ki cosQiz+kp cosQ2z

P = arcsin
k, sinV

where V and P are the angles of the valence- and
primary-electron momenta to the total momentum before
scattering [see Fig. 6(a)].

Then the angle increments d V and dP are given by the
following expressions:

dV= dQ, + dQ, ,
aV av

dP= dV,dp
(12)

8' is equal to the ratio of the fraction of the equipoten-
tial surface of the primary electrons fulfilling the scatter-
ing requirements relative to the total surface S of the
sphere of the radius k:

where a V jaQ, and a VyaQ2 are partial derivatives of ex-
pression (11).

8' is equal to the ratio of the volume in k space in the
valence state region participating in the scattering to the
total volume of valence states V, . Taking into account
(11) and (12) we find

W', = ~2~dVsinVk, dE~
1

dk) dk2
dE, =k, dQ„dE2=k2 dQq,

1 2
(10)

W = ~2~dI'sinPk
~

1
(14)

dE=min(dEi, dE2) .

If we integrated (1) over the acceptance angles of the
detectors, the fact that the smaller of the two acceptance
angles restricts the final probability would be taken into
account automatically.

E. Probability for valence and primary electrons to take part
in the pair creation

Now we must determine the probability of valence
electrons being involved in scattering, S;. Correlated
pairs with various total momenta may enter the apertures
of the detectors. Thus, if the direction of one of the elec-

To obtain the coincidence rate per one isotropically
elastically scattered primary electron, one should in-
tegrate (1) over all possible energies of the electron pair
and over the detector apertures. The limits of integration
over the energy of the electrons of the pair depend on the
detection conditions, the work function of the surface,
and on the retarding potential applied to the detectors
grids. It is convenient to choose the integration step tak-
ing into account the electron energy increment in a unit
angle increment [Eq. (10)]. In fact, this is the integration
over the interval of possible values of the total momen-
tum of the system, and the integration over the total en-
ergy of the pair is the integration over the valence band.
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F. Model of the solid

Characteristics of the solid enter the calculation
through the parameters of the surface potential barrier
and the character of valence states. We assume that the
surface potential barrier is a step function and denote the
energy positions of its bottom and top relative to the Fer-
mi level as E~ and E„respectively. Thus, E, —E~ is equal
to the work function.

All the electrons involved in the scattering process are
assumed to obey the quadratic dispersion law. To take
into account, if only roughly, the complicated structure
of the tungsten valence band with its 6s Sd
configuration, we have used the two-parabolic-band ap-
proximation shown in Fig. 7.

The kinetic energy of all the electrons inside the solid
is referred to the bottom of the potential barrier and of
those in vacuum to the top of the barrier. The s band is
entirely occupied from the bottom of the potential barrier
to the Fermi level. The d-band electrons occupy the
states from Ez;„and Ez,„. Normalization in Eq. (13)
is made to the volume (V, ) of occupied parts of the s and
d bands.

In our recent paper we used a slightly different model
of the valence-band structure of tungsten to calculate the
angular dependence of the correlated pairs and the same
kinematical model of scattering. The main points by
which the previous model of the valence-band structure
differs from the present one are (a) the kinetic energy of
s-band electrons is related to the bottom of the s band
and the kinetic energy of the d-band electrons to the bot-
tom of the d band (in the present case the kinetic energy
of electrons in the solid is related to the bottom of the po-
tential barrier which coincides with the bottom of the s
band), and (b) previously, we used the eff'ective mass of
valence electrons as a parameter to fit the experimental
data, while in the present case the mass of valence elec-
trons is assumed to be equal to the free-electron mass.
Thus it is possible now to use only two independent pa-
rameters to fit the experimental results for tungsten. The
question on the reference level for the kinetic energy of
valence electrons is still open. In the present case we
found a fair agreement of experimental and calculated
curves under the assumption that the zero kinetic-energy
level is approximately equal to the zero of the muon-tin
potential.

DISCUSSION OF THE RESULTS

A comparison of the model calculations and the experi-
mental results allows a better understanding of the main
features of electron scattering and emission of correlated
pairs.

We assumed the tungsten work function to be eg=4. 6
eV. As fitting parameters we used the potential barrier
depth E& and the energy position of the top of the occu-
pied d-band valence states E&,„. A satisfactory agree-
rnent between calculated and experimental curves can be
obtained if we choose Eb = —10 eV and Ezm»= —1 eV.
These values agree with those obtained in the tungsten
band-structure calculations, where the muon-tin-

potential value was 11.8 eV and the d-band top lay at ap-
proximately —1 to —1.5 eV. We do not consider it
worthwhile to try to achieve a better fit, because, first, the
description of the tungsten valence band by a combina-
tion of two parabolic bands is a rather crude approxima-
tion, and, secondly, the kinematic scattering model we
used is also a very simple approximation.

Now, what are the main features of coincidence spec-
troscopy in back-reAection geometry?

In Ref. 1 we considered a simple case of a primary elec-
tron traveling from the inside of the solid to its surface
and scattering on a valence electron, which was assumed
to be at rest. It was shown that the minimum primary-
electron energy for emission of both electrons into vacu-
um equals four times the work function of the material
(in this case both electrons are emitted tangentially to the
surface). If we now take into account the valence-
electron finite velocity and also the surface potential bar-
rier depth, then we obtain a primary-electron threshold
energy value of about E,&

=12 eV relative to the Fermi
level for the case of electrons detected at angles t; =+40
(see the full curve in Fig. 2). The calculated values were

multiplied by a scaling factor to make the ordinates of
the experimental and calculated curves match at the
point E = 15 eV, because we calculated only the relative
number of the TCE's versus primary-electron energy and
did not calculate the scattering matrix element. The cal-
culated curve was normalized to one elastically scattered
electron, while the experimental one was normalized to
the total number of scattered electrons. As the ratio of
the number of the elastically scattered electrons to the to-
tal number of scattered electrons depends only slightly on
the primary-electron energy, the agreement between the
two curves in Fig. 2 may be considered satisfactory.
Near the CE appearance threshold the primary-electron
scattering occurs on the fastest valence electrons in the
vicinity of the Fermi level. As the energy E increases,
the deeper-lying valence bands become involved, but the
probing of the valence band is not proportional to the ex-
cess energy over the threshold. For example, valence
electrons with the energy —1 eV begin to be involved in
the scattering at E =16 eV. In Fig. 2 the initial increase
in the E =12—16-eV region corresponds to scattering on
s-band electrons. At energies higher than E =16 eV
scattering on d-band electrons begins to occur.

Figure 8 shows the number of coincidences as a func-
tion of the primary-electron energy for different work
function values. The increase of the work function and
its decrease were achieved by oxygen and cesium adsorp-
tion, respectively. The curves calculated according to the
present model are also shown in Fig. 8 for comparison.

The calculated dependence of the relative TCE number
on the retarding potential (Fig. 4, full line) was obtained
by changing the integration limits when expression (1)
was integrated over energy in such a way that for each re-
tarding potential value the requirement of the kinetic en-
ergy of scattered electrons in vacuum being higher than
the retarding potential was fulfilled: E

&

—E, & e Uz,
E2 —E, &eU~. Thus the calculated dependence was ob-
tained for comparison with the experimental curve mea-
sured with the same retarding potential at the grids of
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The experimental dependence in Fig. 5(b) obtained at 3
V retarding potential at the detector grids is in a better
agreement with the calculated dependence than the one
presented in Fig. 5(a) obtained at zero retarding potential.
The cause for this is, probably, the presence in the latter
case of pairs with lower total energy, as a result of inelas-
tic scattering. The shift of the maximum of the angular
distribution in the direction of smaller scattering angles
in Fig. 5(a) is due to detection of pairs including one
low-energy electron. These pairs are not detected when a
retarding potential is applied. Unfortunately, because of
the experimental geometry limitations we could not go
below the scattering angle of +30 . Taking into account
that the analyzer apertures were 14', it can be said that
the calculated angular distributions reproduce the Inain
features of the experimental angular distributions.

FIG. 8. CE number as a function of the incident electron en-

ergy for three diferent values of the work function of the
W(100) crystal [for a clean crystal and with Cs or 0 adsorbed on
its surface (Ref. 6)]. Solid lines present the results of calcula-
tion. Parameters of calculation are the same as in Fig. 2 with

the exception of the work function values.

both detectors. The experimental dependence is normal-
ized to a quantity proportional to the incident electron
number, while the calculated one is normalized to one
elastically scattered electron. But as the coefficient of
elastic scattering has not changed during the experiment,
the relative changes of the experimental and calculated
curves can be compared.

As was mentioned in the discussion of the experimental
dependence in Fig. 4, and the calculated dependence sup-
ports this, there is a relatively small number of pairs with
a large difference in the energies of the electrons belong-
ing to one pair. In other words, there is a relatively small
number of pairs in which the energy of one of the elec-
trons is less than approximately 2 eV. At a primary-
electron energy of 20.6 eV the bulk of the pairs has an en-
ergy in the range of 8—13 eV. This, as well as the CE
number energy dependence, is evidence in favor of the
suggestion that the pair creation occurs mostly as the re-
sult of scattering of 20.6-eV primary electrons on valence
electrons near the Fermi level. The total energy of the
electrons of the pair in this case is the maximum possible.

In Fig. 5 measured angular dependencies of the relative
CE number are compared with the calculated ones. The
experimental data are normalized to a quantity propor-
tional to the incident electron number, while the calculat-
ed curves are normalized to one elastically scattered elec-
tron. So there is no difficulty in comparison of the
curves. Calculated and experimental curves are in satis-
factory agreement. The calculations predict the lower
angle limit of the angular TCE dependence at the scatter-
ing angle of about +30' relative to the surface normal, or
of about 60 between scattered electrons in vacuum. This
minimum possible angle of scattering corresponds to the
maximum total momentum k for the electron pair, i.e., to
the case when the primary electron and the valence elec-
tron at the Fermi level travel parallel to each other.

The role of multiple electron scattering in the correlated
pair creation

It is obvious that any electron-electron scattering event
creates a pair of electrons. Not all of these pairs can exit
from the solid because of additional elastic and inelastic
scattering. The additional elastic scattering of any of the
electrons of the pair changes the momentum of the pair
while the additional inelastic scattering event changes the
energy (and momentum) of the pair. The probability to
detect a pair of electrons was measured to be about
4. 10 per one inelastically scattered electron detected
by the "start" detector at 20 eV energy of primary elec-
trons. %'e refer now the number of the pairs to one
inelastically scattered electron because the elastically
scattered electron cannot be considered as one of the
electrons of the pair. Approximately one-half of detected
electrons are inelastically scattered primary electrons at
Ez =20 eV. If we assume that the second electron of a
pair (detected as a "stop" electron) is distributed isotropi-
cally, its probability to be detected is equal to the ratio of
the detector solid angle to the full solid angle, or
0.07/4=5. 5X10 . This should be an underestimation
because the momentum conservation law does not allow
electrons to be scattered in every direction, but even this
value is higher than the measured one by an order of
magnitude. It is clear from this estimation that at 20 eV
primary-electron energy there is an effective channel that
decreases the number of pairs to be detected. Since for
electron energies in the range 10—20 eV the inelastic
scattering rate is substantially higher than the elastic one,
we expect inelastic scattering to be responsible for this
loss.

As has been mentioned above, the true coincidence
event is a detection of a pair of electrons created in a sin-
gle scattering event and without undergoing any other
scattering. In fact, we measure by coincidence spectros-
copy both true coincidence events and secondary-electron
coincidence events. The "cascade" creation of secondary
electrons leads to appearance of secondary electrons with
different energies. Some of them, whose energy is higher
than the threshold energy, can create correlated electron
pairs. Both elastic and inelastic scattering of any elec-
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trons of the pair lead to a loss of the momentum or ener-

gy correlation between electrons of the pair. We elimi-
nate easily the accidental coincidence background origi-
nating from the random character of an electron emis-
sion. The selection of the TCE's from SECE's originating
from additional elastic and inelastic collisions is more
difficult because all these scattered electrons are produced
by the same primary electron and therefore they are time
correlated.

Let us consider the role of SECE's at the energy of in-
cident electrons close to the threshold energy of TCE ap-
pearance. In accordance with our kinematic model of
scattering, the threshold of TCE's is determined by the
energy and momentum conservation laws. If correlated
electrons are undergoing additional scattering the
momentum conservation law for incident and correlated
electrons vanishes, and the energy threshold of TCE's
should be equal to twice the work function. We see from
the experimental results that there are not any coin-
cidence events, in the limits of experimental errors, in the
energy region from the double work function value up to
12 eV, approximately. The latter value corresponds to
the calculated threshold energy in the kinematic approxi-
mation. We can assume from this that the experimental
energy threshold corresponds to the single scattering one
of the true coincidence events and the role of SECE's be-
comes not so important in the energy region of the CE
threshold.

CONCLUSIONS

In the present work we report new experimental data
concerning coincidence spectroscopy of tungsten and dis-

cuss them and the data obtained earlier in the framework
of a simple kinematic scattering model. The tungsten
energy-band structure is described by a two-parabolic-
band model which has only two fitting parameters: the
depth of the potential well Eb and the energy position of
the d-band top Ed,„. We found that with E= —10 eV
and Ed,„=—1 eV relative to the Fermi level, a satisfac-
tory 'agreement between the experimental and calculated
curves can be achieved. This agreement is observed for
the main features of various dependencies: for the energy
threshold of the electron pair appearance, for the thresh-
old energy shift accompanying variations of the surface
work function, for the shape of the coincidence-rate
dependence on the retarding potential, and for the shape
of the angular distributions. The fact that dependencies
so different in their character can be satisfactorily de-
scribed by the same model argues in favor of the physical
relevance of these parameters.

The kinematic scattering model is unable to describe
the details of electron-electron interaction but it gives a
certain basic knowledge about the characteristics of
electron-electron scattering in a particular material and
may serve as a basis for planning further experiments and
data processing.
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