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The theory on the Coulomb blockade in ultrasmall double junctions with external circuits is
proposed, which self-consistently describes tunneling currents and charged states of islands without
resorting to the stochastic technique. The island Hamiltonian in the theory contains the chemi-
cal potential (charged state) of the island to be determined self-consistently through the current
continuity conditions. A general expression for the tunneling current is obtained together with self-
consistency equations for the charge state of the island. Current-voltage characteristics are discussed
analytically at zero temperature in the limits of high and low impedance environments. Coulomb
gaps and the difFerence in current-voltage characteristics between symmetric and asymmetric double
junctions (Coulomb staircases) were also analytically discussed in connection with the concept of
neutral and charged islands. At finite temperatures current-voltage characteristics and the number
of charges on the island under equilibrium configuration are calculated numerically for various junc-
tion parameters and temperatures. The theory describes resonably well the fundamental features of
the ultrasmall double junctions with external circuits.

I. INTRODUCTION

Single-electron tunneling in ultrasmall tunnel junc-
tions has attracted a great deal of interest in recent
years. The controlled transfer of electrons one by one
is based on the Coulomb blockade of tunneling, which
rnanifests itself as the charging energy of a single elec-
tron becomes larger than the energies of thermal and
quantum Quctuations. Various phenomena due to the
Coulomb blockade have been extensively studied both
theoretically3, 5—zs and experimentallyz2

—14 and devi
exploiting them have been also presented.

It has also been shown that the Coulomb blockade
of tunneling is strongly afI'ected by the external circuits
connected with the tunnel junctions (electromagnetic en-
vironment effect). s s In a single junction, the Coulomb
blockade is severely suppressed unless the impedance of
the external circuit is much larger than the resistance
quantum R~ = mh/e2 (high impedance limit). In this
case the change of elementary charge e is almost smeared
out by the charge Quctuations on the electrodes directly
coupled to the external circuit. As Devoret et al.
showed, in the single tunnel junction with capacitance
C coupled to the external inductance I, whose total
impedance is Zt(cu) = i C w/tuI —(w —i8) ] (b' m +0),
the average charge Quctuation induced on the junction
electrodes is given as

(~') =
I

coth — her
e ) o )

e' hurI, ( 1 +-I
2 @, E exp(PEAL) —1 2 y

where mI, = 1/gIC is the frequency of the environmen-
tal mode, E, = e2/(2C) is the charging energy of a single
electron, P = 1/kT, k is the Boltzmann constant, and T
is the absolute temperature. If RuI, /E, )) 1, which cor-
responds to low impedance limit (I -+ 0), the charge
Quctuation exceeds e even at T = 0 since the zero point
energy of the environmental mode smears out the charg-
ing energy.

The result can be generalized to the case where the to-
tal impedance of the electromagnetic environment is ex-
pressed as the series of many LC circuits with frequency
~t —= 1/v ItCe and weight toe (/ = 1 2 . . )

1 ZGJ
Zt((d) = ) tUt— (1.2)

with P& mt ——1. Since an LC circuit is equivalent to a
harmonic oscillator, the electromagnetic environment can
be understood as an assembly of the harmonic oscillators
which serves the energy reservoir for the tunnel junction.
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This is nothing but the picture of Caldeira and I.eggett.
Equation (1.1) tells us that the Coulomb blockade can be
observed if Rul, /E, & 1 at T = 0, which is the condition
at which a tunneling electron can dissipate its energy E
by exciting the environmental modes ~L, . Therefore,
the Coulomb blockade can be recognized as the suppres-
sion of tunneling due to the energy dissipation. Taking
account of the electromagnetic environmental effect as
well as the thermal and quantum fluctuations is indis-
pensable for understanding the phenomena due to the
Coulomb blockade.

Concerning the double junction system, where the
charging effect appears in a different way for Q (total
charge) and q (island charge), the theory by Grabert et
aL was the erst along this direction. While Q changes
continuously and largely fluctuates unless heel, /E « 1,
the change in q only results from the tunneling as far as
the junction resistances are much larger than Bq. There-
fore, there is no charge fIuctuations on the island, and
the Coulomb blockade on the island can be observed ir-
respective of the environmental impedance.

Following this work, but in a more reined way, the
localization effect of electrons on the Coulomb block-
ade was studied. The localization of electrons in the
electrodes and leads, which gives rise to the increase in
the total impedance of the system, tends to stabilize the
Coulomb blockade. This can also be understood as a
direct consequence of the efFect of energy dissipation on
tunneling. In this theory, the charged states of the island
were treated. explicitly through the commutation rela-
tions between charges and their conjugate phases, so the
energy change by the tunneling of a single electron from
or to the island through the junctions was quite natu-
rally described. Although the theory correctly describes
current-voltage (I V) character-istics at low bias voltages
such as Coulomb gaps (I Vcharacteri-sties in the neu-
tral island), it cannot explain Coulomb staircases which
are the I-V characteristics in charged islands for asym-
metric double junctions. It is because the Hamiltonian
of the island. is of the form proportional to the square
of q, which implies that the most stable charged state
of the island is always neutral irrespective of the junc-
tion parameters. Grabert et al. avoided the problem
by assuming the presence of charged island states from
the beginning. They solved the master equation for the
probabilities of the charged states to calculate the tun-
neling currents. Charged states, however, should be de-
termined self-consistently with corresponding tunneling
currents through the current continuity condition.

In the present paper we propose the theory on the
Coulomb blockade in ultrasmall double ju.actions with
external circuits, which self-consistently describes tun-
neling currents and charged states without resorting to
the stochastic technique. In Sec. II, we derive the island
Hamiltonian which correctly describes charging effects on
the island. According to Ref. 21, the general expres-
sion for the tunneling current is obtained in Sec. III. In
Sec. IV the current-voltage characteristics are discussed.
Analytical results for low and high impedance limits and
numerical results for realistic cases are also shown here.
Section V is apportioned to conclusions and discussions.

II. HAMILTDNIAN DF THE SYSTEM

R= 80+ RT) (2.1)

where 'R0 is the Hamiltonian in the absence of tunneling
of electrons and 'RT is the Hamiltonian which describes
the transfer of electrons by tunneling through junctions.
Q0 consists of Q„and 'R which describe, respectively,
the electronic states of three electrodes and. the electro-
magnetic energy of the entire circuit, and thus is written
as

+0 +es + +em ~ (2.2)

Although Q, contains intra-electrode interactions due to
the electron-impurity and electron-electron scatterings as
well as kinetic terms, we neglect the interactions for the
moment,

i=1 k, cr

(2 3)

where a&' " (n&' ) is the creation (annihilation) operator
of electrons with wave vector k, energy c, (A, ), and spin cr

in the ith electrode.
In order to describe the dynamics of charge Q; (i

1, 2) on the junction capacitors under the electromagnetic
environment, let us introduce the variable p, canonically
conjugate to Q;, which corresponds to the magnetic Hux
induced in the circuit by self-induction of L. These vari-
ables satisfy the following canonical commutation rela-
tions:

[Q' ~'f = ' *,' [Q' Q'1 = l~' ~'] = ( )

Using these variables, 'R is of the form

(~~+~2)'+ C + Q2

P2, 1
Q

Ps, 2

e e
(2.5)

PI P2 P3

+Qi —Qi +Q2 —Q2

+1 +T +2 -RT
(I) (2)

FIG. 1. A voltage-biased double tunnel junction with ca-
pacitances C~ and C2 and tunnel resistances R~ and R&

(~) (2)

coupled to an external circuit with impedance Z(tu) = iuL

Following a model in Ref. 11, let us consider a voltage-
biased double junction system consisting of two tunnel
junctions in series coupled to an external circuit with
impedance Z(tu) as depicted in Fig. 1. In the following,
for simplicity, we consider only an inductance L as the
external circuit, i.e. , Z(tu) = iwL. The Hamiltonian of
the system is then written in the form
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which describes the magnetic energy due to the self-
induction of the external circuit, the Coulomb charging
energy stored in the junctions, and the works done by the
external bias voltage V. Here p;+i, /e = (p;+i —p;)/e,
where p; is the chemical potential of ith electrode (volt-
age across the ith junction). Note that eV = pz 2+ p2 i.
It is convenient to express Q as the term coupled to
the external environment and the other. Let us intro-
duce charges Q and q, and define their canonical phases
pand/ as

treated properly in previous works. ' The statistical
average of the number of charges on the island with re-
spect to R„(q/e)„which is a function of n„can be
determined self-consistently including the environmental
efFect and does not always become integral as seen below.

The second term in Eq. (2.1), which specifies the tun-
neling through two junctions, is of the form

(2.13)

Q; = Q+ (1 —r;)g, q,

Pi = Ki&p + 'Vie ~

(2.6a)

(2.6b)

~(') ~.T(') ', /a (')t ('+1)
CLg

k, k', cr

(2.14)

where r; = C/C, , g; = (—1)' (i = 1, 2), C~
C2, and C = CiC2/Cz. The new variables satisfy the
following commutation relations:

[Q v] = [q @] = i&

[Q, q] = [Q, @] = [p, Q] = [p, q] = 0.

(2.7a)

(2.7b)

The operator Q expresses the total charge of a double
junction with capacitance C carried by the external cir-
cuit and q expresses the (excess) charge on the island
with capacitance Cg. It is quite natural to assume that
Q has a continuous eigenvalue. Concerning q, however,
it is plausible to assume eigenstates such as

where T&'&, is the matrix element for the electron tunnel-
(~)

ing &om A: to A.' through the ith junction. 'R& describes
the tunneling process which annihilates an electron with
wave vector A," on an (i +'1)-th electrode and creates an
electron with wave vector Ie on an ith electrode. An in-

stantaneous change of Q; accompanied by tunneling is
consistently specified by the factor e"~'~" in Eq. (2.14).
In fact, the commutation relation Eq. (2.4) yields

(2.15)

which means that the charge on the junction is changed

by e due to the tunneling of a single electron through the
ith junction.

q ~q) = me ~q), (2.8)

where

+em +env + +c y (2.9)

+env 2L 2C
Q, = (q/e —n, ) U,

(2.10a)

(2.10b)

where m is the integer, since the change in q only results

&om the tunneling as far as the junction resistances RT(&)

are much larger than Rq.
In terms of these variables Eq. (2.5) is rewritten as

III. TUNNELING CURRENT

Since the tunneling current of the double junction sys-
tem can be obtained by the current continuity condition,
let us first consider a current flowing through the ith
junction I;. With the aid of Heisenberg's equation of
motion for Q;, the current operator for the ith junction
is given as

(3.1)

apart &om any constant shift in '8 . Note that

2

U= (2.11)

Within the lowest order in A&, the tunneling current
through the ith junction is expressed as

is the charging energy of a single electron on the island
and

0

«(7' & (t)]) (3.2)

nc
—@21+~1eV

2U
(2.12) where 0(t) = e' + ~" 0 e

is the noninteger charge ofFset which will be determined
self-consistently together with the tunneling current un-
der a certain bias condition for a given set of junction
parameters. Q „ is equivalent to the Hamiltonian of the
electromagnetic environment in a single junction system
with capacitance C embedded in the external circuit with
inductance L. It should be noted that n self-consistently
determined reflects the electromagnetic environment ef-
fect. On the other hand, 'R, is the Hamiltonian which
specifies the charged state of the island and has not been

( )= Tr (exp( —Pgo)
Tr exp( —P'go)

3
(') t (')+o = +o ) ) P'~ii,

,

i=1 k, a

(3.3a)

(3.3b)

Inserting Eqs. (2.13) and (3.1) into Eq. (3.2) and writ-

ing the virtual time evolution by 'Ro as 0 (t)
e' '~" Oe ' ~'~", Eq. (3.2) becomes
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+OO

I; =i — dt —. A~('"(t), RT(' (o)
—OO

x exp i ' "t (3.4)

E, hp(uL,J(c) = cosh (coshtscc —)) —s)ohtcc~c~)2

(3.9)

Here
&n order to calculate Eq. (3.4), it is convenient to use the
Matsubara Green's function defined by e

C g ) (3.iOa)

X';(c):——(T 'Rx (c)Wx (0)), (3 s)

2c 1 - . pi+ad i
Ii —IIIl —Xi ico( + 18 ) (3.6)

where

where w = it is the imaginary time and T denotes the
imaginary tiine ordered operator. Then, Eq. (3.4) is ex-
pressed as

1

QLC
(3.10b)

X (s. s):) —(T 's; 4) )/s *—s; ss/s)/s
C

are, respectively, the charging energy of a single electron
felt by capacitance C and a &equency of the environmen-
tal mode described by 'R „.The other is the correlation
function of @ defined by

hP

X,(iver) = d7. e' ' X;.(r),
0

(3.7)

exp ——w —2g, q e —n, wi
C

(3.11)

( ) T —i ~i e(p(7.) jh i~; e(p(0) jhe
env

= exp (~,J(~)), (3 8)

where ( ),„„denotes the ensemble average over eigen-
states of 'R,„„and

(ur = 2vrl/(hp) (E = 0, +1, , +oo) and b m +0.
Equation (3.S) contains two kinds of phase correlation

functions. One of them is the correlation function of p
(Ref. 11) defined by

where ( ), denotes the ensemble average over eigenstates
of Q, . The factor in Eq. (3.11), U[1 —2q, (q/e —n, )]
(v ) 0), describes the change in charging energy on the is-
land with the charged state ~q) caused by a single-electron
transfer through the junctions, assuring the energy con-
servation relation together with the factor in Eq. (3.8).
Grabert et al. did not introduce the correlation func-
tion of @, since they eventually treated the variable q
classically. Therefore the energy conservation relation
was introduced into the expression of current by hand.
Using Eq. (2.8), Eq. (3.11) is expressed as

&~(& ~') =

U) sxp /3U(m —o—,)' ——
[~[c~[

—2s);(m —o,)c))
) exp (—PU(m —n, ) )

(3.i2)

Using these correlation functions, 4;(w) becomes

A;(~) = —h X~(~, ~,)&g(7., g;)nT(') (~),

where

(3.13)

g, (h c) — (T hi)(c)-(*))(O))

—%OP~ W

hP - i~„—[e,(k) —p;]/h
' (3.i5)

2

u~ (7.) = ——) T„'„, g; ~(k) ~)g;+i ~(k') —~)
Ql

(3.14)

2
with u = (2v + l)a/(hP). Assuming that T&'&,

2T('), Eq. (3.14) reduces to

reBects details of the electronic states of electrodes on
both sides of the ith junction through the Matsubara
Green's function of the electron,

(h) 1 Rg f 7l 7I'r )
o(z ( ) = (.l ~

cosec (3.16)
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erhere B~ = Re/(4e ttt;(0)itt er('0) T *') aatt 0ti(0)
are, respectively, the tunneling resistance of the ith junc-
tion and the density of states in the ith electrode. Ef-
fects of the electron-electron and electron-impurity inter-
actions within the same electrodes only give rise to the
simple T dependence of tunneling resistances as far as
only the lowest order in 'RT' is taken into account.

Noting that

(2) 1 i—ttte~ (r) = „)e ' " —2— t0 l~-I)
tr T

(3.17)

(Ohmic dissipation), the tunneling current Eq. (3.6) is
expressed as

1 1
( 0tra ) 5[er —art[ rtre* ' Fe(r, a;)5t(r;0;))ea"

tr 0
iCug —+P, ,+1 i/h+ib

(3.18)

Since it is not so convenient to handle Eq. (3.18), let us derive the real-time expression for I;. Noting that X;(w)
has no singularity except for poles at w = EhP (8 = 0, +1, . . ., +oo), Eq. (3.7) can be written as

OO

X,(i(ut) = ih —dt e "Xg(it, g, ) g'~(it, ~,)n~('l(it+ h) —f~(—it, K;)ct~(*l(it —b)
0

(3.19)

for ug ) 0, where we de6ned

f~ (~, K;) = X~ (~, v.;) exp( —U~/h), Pg(~, )7;) = Xg (7-, g;) exp(U~/h), (3.20)

and the following relation was used: X~(w+ hP, r.;)P~(7 + hP, g;) = P~( ~, K,;)X~(w, q—;) for ~ & 0. Substituting
Eq. (3.19) in Eq. (3.6) and using Eqs. (3.8), (3.11), (3.16), and (2.12), we arrive at

I; = (.) ~,-eV+ 2Ug, — —C, eV
T

(3.21)

where

ih + (n vrt )' -( ) . . t q4';(eV) = — dt
~

cosech
~

X( l (it, m, ) sin — m, eV + 2Ug;—
g hP hP)

(3.22)

with

P~t t(it) = —(Pae(r, 't, a;) —We( it, ii)) . (2.22)—,

Let us consider the average number of island charges.
It is given as

q 1 1
n ~ + — + — tanh pU(1/2 + hn, )e c 2 2 [

—taahttU(1/2 —b )), a (3.26)

+ sinh(2PUbn, )
cosh(2pUbn, ) + cosh(2pU( j —1/2) ) '

(3.24)

where [xJ is the greatest integer less than or equal to x
and

&~. = n. —[n. + 1/2J . (3.25)

As expected, the average number of island charges is
given as a function of n for a given set of bias condition,
junction parameters, and temperature. In particular, at
sufBciently low temperatures relative to U/k, Eq. (3.24)
may be written as

I = II ——I2, (3.27)

which leads to the self-consistency equation with respect
to n,

since the summation in Eq. (3.24) is dominated by the
term with j = 1. As easily verified, if n happens to be
an integral or a half-integral value, Eq. (3.24) gives the
result, (q/e), = n,, at any temperature. In Fig. 2, (q/e),
is shown as a function of n, for T = 0 and U/kT = 10.
We can thereby interpret [n, + 1/2J as the number of
charges on the island under equilibrium configuration at
sufBciently low temperatures unless n is a half-integral
value. The paint where n takes a half-integral value
is the transition point around which (q/e), increases or
decreases by one.

In order to determine n we have to utilize the current
continuity condition
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0"oL
V

O;(eV) satisfies C;(—eV)~ .~ „. = —4, (eV). There-
fore, if n, is a solution of Eq. (3.28) for a given bias volt-
age V, n —is a solution of Eq. (3.28) for —V. These
results guarantee that I V-curves traced by Eq. (3.29)
are symmetrical with respect to the origin (I = V = 0).

IV. CURRENT-VOLTAGE CHARACTERISTICS

2 -1 0
n,
(a)

2 -2 0
nc

(b)

FIG. 2. (q/e), as a function of n, for (a) T = 0 and (b)
UlkT = 10.

let us discuss the tunneling currents obtained above
in more detail. First we derive the analytical expressions
for the currents in the high and low impedance limits at
zero temperatures, and discuss I-V characteristics. Next
we show the numerical results at 6nite temperatures.

q
(pi)(;~ —r2r. i)eV + 2U

e c
—ri42(eV) + r2C i(eV) = 0, (3.28)

( V —C' ( V) —C' ( V)) (3.»)1

eBg
where the ensemble average by 'R, involved in C'i(eV)
and 422(eV) must be evaluated using n, determined by

q. (3.28).
Noting that the ensemble average by Q satisfies the re-

lation (f(q)), ~„.~ „=(f(—q))„where f(q) is an arbi-
trary function of q, we can easily prove that the function

where r, = R&(')/Rn and Rn = RT, + R& . Eliminating
(q/e) f'rom Eqs. (3.21) and (3.28), we finally obtain the
tunneling current of the double junction system,

A. Zero temperature

As seen from the behavior of (q/c) at very low temper-
ature, the zero-temperature limit of the ensemble average
by 'R, takes diferent forms whether n becomes a half-
integral or not. We cannot assume whether n becomes
a half-integral or not before taking the zero-temperature
limit, since n, is finally Axed to solve the self-consistency
equation (3.28). Therefore, the ensemble average by Q,
should be evaluated retaining the same temperature de-
pendence as in Eq. (3.26). Only after that can we obtain
the correct expressions at zero temperature.

Within the same order as the low-temperature expres-
sion for (q/c)„ the ensemble average by R. in (3.22) is
evaluated as

qsin — n;eV + 2Usi; — = (i —pn{n, )) sin —. (e eV i 2Usi;n) )e

+ ) ' ' sin —(eeV+ 2Usi; (n+ e))),
. pR(n. ) + o Wr (n.)

where n = [n, + 1/2J and

(4.1)

pR(n, ) = —(1 —tanhPU(1/2+ bn, ) tanhPU(l/2 —bn, )),1

2
1

pr(n, ) = —(tanhpU(l/2+ hn, ) —tanhpU(1/2 —hn, )) .
2

(4.2a)

(4.2b)

Applying the short-time expansion to Eq. (3.23) in the high impedance limit we get

(it, K, ) = i sin ~—-( ). . . t'KE, )
(4.3a)

In the low impedance limit, on the other hand, Eq. (3.23) reduces to

r'U ')
(it, K;) = i l s~nt ~—,

—
gh )'

since J(it) 0. Using Eqs. (4.1) and (4.3), Eq. (3.22) becomes

@;(eV) = e;eV+ 2Usi; (n ~ Ps(n, )) —(i —Pn(n)) iVP (e;eV + 2Us2n, ,Es'i)
'Yn(n ) + n'Y&(n. ) iV ( V 2U ( ) @('))

2

(4.3b)

(4.4)
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with

K,.E for the high impedance limit
U for the low impedance limit. (4.5)

Here we introduce

z —y x+y
P 1 P( y) 1 P( +y)

R' x, y + (4.6)

which reduces to

W(~ ~) = (*—»gn(*))O(I*I —~)

at zero temperature, where O(z) is the step function. Inserting Eqs. (3.26) and (4.4) into Eq. (3.21), we obtain

(4.7)

1
(.) (1 —p~(n, ,))Wp(r;eV + 2Ug, n, E(*))

eR~

+ )- '"(".)+ "(".) W (...V+2U„,(.+.) E())
2+=+1

(4 8)

for the current through the ith junction in the low-temperature limit, giving the tunneling current in the double
junction system as

2

I = ) (1 —pR(n, )) Wp r;eV + 2Urjn, E '
eRg .

) pR(n. ) + ~pl(n. )
(

(,))2cr=+1

with the current continuity condition

(4.9)

) [rqWp(rqeV —2U(n+o), E ) —rqWp(K2eV + 2U(n+o. ), E )]2 1 QR A~

+r2lVp KqeV —2Un, Eg~ —rqWp K2eV + 2Un Eg 0 4 10

In the following, let us consider I-V characteristics at T = 0 in the high and low impedance limits separately.

JIiyh impedance 'limit: heel, /E (( 1

At zero temperature, Eq. (4.8) reduces to

1 1
~(*') 2

+&/2

r, W(eV + 2(l —r, )g,E,n', E,), (4.11)

from which we And conditions for the Coulomb blockade
of tunneling at each junction:

time. This leads to ~eV~ ( E and n' = 0. The former
gives a Coulomb gap,

eV —E, eV+ E&n'&
2K2E 2K2E

for i = 1, (4.12)

eV+ E, eV —E fori =2.
2KyE 2K] E

The tunneling current of the double junction is sup-
pressed when both conditions are satisfied at the same

for the double junction in this limit. The latter means
[n, + 1/2J = 0, i.e. , no charge is stored on the island
(neutral island). Note that n, cannot be uniquely de-
termined only by that equation. When the tunneling
is blocked, the voltage across the ith junction is equal
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to CV/C; under the neutral island. Prom this, together
with p;+q, , ——K,eV+ 2Ug;n„we get n, = 0.

Hereafter we examine I-V characteristics only for pos-
itive V, since the current-voltage characteristics are sym-
metric with respect to the origin as mentioned above. As
the bias voltage V exceeds V, the tunneling current be-
gins to Bow. Note that at T = 0, Eq. (4.10) reduces to

obtained at T = 0, since (q/e), varies continuously keep-
ing steplike structures as shown in Fig. 2.

2. Loggi imJ2edunce limib hoor, /E )& 1

In this limit, Eq. (4.8) becomes

) ese, W(eV —2esE, (n+e), E,)
cr=O, —1

) esesW(eV + 2esE4n+e), E,), , (4.12s)
a.=O, —1

if n is a half-integral, and

r2viW(eV —2r2E, n, E,) = rir2W(eV + 2r Ei, n, E,),
(4.13b)

if otherwise.
In the symmetric case, when the characteristic time

constants of the junctions are equal, i.e., r~K2 ——r2+z,
the charged state of the island is always neutral, n = 0,
irrespective of bias voltage and charging energy. There-
fore, there is no Coulomb staircase and the tunneling
current in the junction system is simply given by

) W(n;eV +2elgUn', U) .
T

(4.19)

Conditions for the Coulomb blockade of tunneling at each
junction are

eV 1 , eV 1——&n'&eq +-
2U 2 2U 2

for i = 1,

V, = min[e/(2Ci), e/(2C2)] (4.20)

eV 1 , eV 1——&n'& —e2 + — fori=2,
2U 2 2U 2

which are satisfied simultaneously if n' = 0 and ~eV~ (
min(U/Ki, U/ K)2. According to the same argument as
in the high impedance limit, we obtain n = 0 and the
Coulomb gap

iv-R~(e) (V & &./e) (4.14) for the double junction in this limit, beyond which
nonzero tunneling current Bows. Noting that Eq. (4.10)
reduces to

In the asymmetric case, when riK2 g r2tci, on the other
hand, we obtain from Eq. (4.13) discrete voltage steps

VH eRg n
R' )C, —R"C,

= V, + x, (415)

(n = 0, +1,+2, . . . ,), with

) [r2+iW(« —2U(n+o }/~i, U/Eni)
cr=O, —1

—r, K,W(ev+ 2U(n+~)/~. , U/~, )] = 0

if n is the half-integral, and

r2rciW(eV —2Un/ri, U/ri)

sgn(n) = sgn Ez Cs —En C )
(2) (~) (4.16) —r, ~2W(eV+ 2Un/K2, U/K2) = 0 (4.21b)

1 1
~ ——&n &~+ —

)
2 2

(4.17)

Tunneling current is then given by Eq. (4.14) with these
voltage steps and shows steplike structures (Coulomb
staircases). Note that V~ determines current in the volt-
age range which corresponds to

if otherwise, we get

V eRg
L

(2) (&)RT C2 —RT Cg

Tg P2

rl r2

(4.22)

2
n—

2

~c
2

(4.18)

Results obtained are the direct consequence of an incre-
mental charging of the island by unit charge e due to the
difference in RC time constants of the junctions.

As will be seen below, the tunneling current at kT ((
E continuously varies smoothly linking the current steps

while V z/2 determines current only at this point which

corresponds to
(n = 0, +1,+2, . . . ,), with

sgn(n) = sgn En Cs —E 4,s),(2) (X) (4.23)

provided that RT C2 g RT, Ci. Tunneling currents at(2) (1)

these voltage steps are given by

Rp ( C~)
(4.24)

As in the high impedance limit, there is no Coulomb
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4

E, /RT = 100
E /RT 10

staircase if R& Cq —— RT, Cq and then the tunneling(~) (~)

current is expressed by Eq. (4.24) for the voltage range
V & e/Cg.

3

a

r
r

0
3 4

V/{ e/G'~)

FIG. 3. Current-voltage characteristics of a symmetric
double junction with R& ——R& and C& ——C& at tem-(I) (~)

peratures E,/kT = 100 (solid lines) and 10 (dashed lines).
Curves (a) and (b) are for the environmental impedances,
Ml, /E, = 0.01 and 1, respectively.

B. Finite temperatures

At finite temperatures we need numerical calculations
even in the two extreme limits. Figure 3 shows the
current-voltage characteristics for the symmetric junc-
tion with RT, ——RT and Cq/Cq ——1 for E,/kT = 100
and 10. We choose here the impedances of external cir-
cuits as (a) Rul, /E, = 0.01 and (b) ~I,/E, = 1, which
nearly correspond to high and low impedance limits, re-
spectively. Coulomb gaps are clearly seen for both (a)
and (b) for E,/kT = 100. In (a) and (b), Coulomb gaps
are nearly equal to E,/e = 2e/Cg and 2U/e = e/Cg, re-

12
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10

8

6

4 n"

3

A 2
Cb

V

0
0

12

4 6
V/{e/C~)

0
10

0
0

4
(b) Lo

4 6
V/(e/C~)

8 10

10 3 w

&-q/8&
-n,

8

6

4Z

3
~\

A 2

V

4 . 6
V/(e/Cg)

0
10

FIG. 4. Current-voltage characteristics (solid lines) and the
number of charges on the island (dashed lines) of an asym-

metric double junction with BT, /RT
(1) (2)

at temperatures E,/kT = 100, 20, and 10. (a) and (b)
are for the double junctions coupled to the limits of high
(Rul. /E, = 0.01) and low (Kul. /E, = 1) impedance envi-
ronments, respectively. Curves for E,/kT = 20 and 10 are
offset for clarity (I = 0 at V = 0).

0
0 4 6

V/(e/Cg)
10

FIG. 5. (—q/e), (solid line) and n, (dashed line) a—s
functions of bias voltage for the asymmetric double junction
with the same as junction parameters in Fig. 4 at temper-
ature E /kT = 100. (a) and (b) are for the limits of high
(Rul. /E = 0.01) and low (haul, /E = 1) impedance environ-
ments, respectively.
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lytically discussed in connection with the concept of neu-
tral and charged islands. At finite temperatures current-
voltage characteristics and the number of charges on the
island under equilibrium configuration were calculated
numerically for various junction parameters, environmen-
tal impedances, and temperatures. The theory reason-
ably describes the fundamental features of the ultrasmall
double junctions with external circuits.

Throughout the paper we have only considered induc-
tance Z(~) = ill, as the external environment. This is
just for simplicity. As already noted, ' ' we can easily
extend the discussion to the general case only by replac-
ing Eq. (3.9) by

FIG. 9. Number of charges on the island of double junc-
tions. 3unction parameters, environmental impedance, and
temperature are the same employed in Fig. 8. The crossover
of charged states of the island from positive through neu-
tral to negative is clearly seen depending on the sign of

d~ ReZt(ur)J r
p cd Rq

hPcu
x coth cosh uw —1 —sinh w v

2

with

of the charging can be clearly seen in Fig. 9. Since an
electron tunnels through &om the third electrode to the
first electrode for V ) 0, the net change in the number of
electrons tunneling into the island increases (n ) 0) for

R& /R& ) 1, and decreases (n ( 0) for R& /R& ( 1.

V. CONCLUSIONS AND DISCUSSIONS

In this paper we have proposed the theory on the
Coulomb blockade in ultrasmall double junctions with
external circuits which self-consistently describes tunnel-
ing currents and charged states of the island without re-
sorting to the stochastic technique. First we derived the
island Hamiltonian, which comes kom charging energy
on the island and work done by external bias and con-
tains the chemical potential (charged state) of the island
to be determined self-consistently through the current
continuity conditions.

According to the previous work, the general expres-
sion for the tunneling current was obtained together with
self-consistency equations for the charged state of the is-
land. Current-voltage characteristics were discussed ana-
lytically at zero temperature in the limits of high and low
impedance environments. Coulomb gaps were obtained
analytically in both limits. The difference in current-
voltage characteristics between symmetric and asymmet-
ric double junctions (Coulomb staircases) were also ana-

(5.2)

for the general external impedance.
In this paper we have not considered the efFect of the

external charge modulation which can be realized by a
gate electrode facing the island. The gate electrode is
a fundamental element of the single electron tunneling
devices. In this case, an extra charge Qs, which is not
CgVg (Cs is the gate capacitance, Vg is the gate voltage),
appears on the gate electrode as a dynamical variable.
In principle, we need the same treatment for Qs as we
did for Qi and Q2. More specifically, it is not trivial to
identify a phase ys which is canonically conjugate to Q3.
Therefore, the starting point is the Lagrangian formalism
with a constraint, by which we can successfully show
what the y3 is, the e periodic variation of I-Vg charac-
teristics, and the new aspect of the environmental efFect
in somewhat complicated external circuits. This will be
reported elsewhere. Furthermore, it is straightforward to
generalize the present theory to the cases where junction
systems contain superconducting electrodes. This will be
also reported elsewhere.
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