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We study nonequilibrium noise in the transmission current through barriers in one-dimensional
Luttinger liquids and in the tunneling current between edges of fractional quantum Hall liquids.
The distribution of tunneling events through narrow barriers can be described by a Coulomb gas
lying in the time axis along a Keldysh (or nonequilibrium) contour. We show that the charges
tend to reorganize as a dipole gas, which we use to describe the tunneling statistics. The dipole-gas
picture allows us to have a unified description of the low-frequency shot noise and the high-frequency
Josephson noise. The correlation between the charges within a dipole (intradipole) contributes to
the high-frequency Josephson noise, which has an algebraic singularity at ur = e'V/h, whereas the
correlations between dipoles (interdipole) are responsible for the low-frequency noise. We show
that an independent or noninteracting dipole approximation gives a Poisson distribution for the
locations of the dipole centers of mass, which gives a Hat noise spectrum at low frequencies and
corresponds to uncorrelated shot noise. Including interdipole interactions gives an additional 1/t
correlation between the tunneling events that results in an ~ur~ singularity in the noise spectruin.
We present a diagrammatic technique to calculate the correlations in perturbation theory, and show
that contributions from terms of order higher than the dipole-dipole interaction should only affect
the strength of the ~~~ singularity, but its form should remain ~cu~ to all orders in perturbation
theory. A counting argument also suggests that the leading algebraic singularity at uJ should be
oc ~ur —&uz~

s to all orders in perturbation theory.

I. INTRODUCTION

The noise spectrum in a two-terminal conductor in the
absence of an applied voltage is proportional to the con-
ductance and to the temperature. This result was found
experimentally by Johnson in 1927 (Ref. 1) and explained
theoretically by Nyquist in 1928 (Ref. 2). Such a relation
between equilibrium noise and conductance can be seen
as a consequence of the Quctuation-dissipation theorem.
The noise in the presence of transport (nonequilibrium
noise) can also be related to transport coefficients for
noninteracting systems, 3' but now these transport coef-
Bcients, in the most general case, cannot be determined
Rom conductance measurements alone. For interacting
systems one should expect an even richer behavior, as
different features in the noise should appear as a conse-
quence of correlations due to interactions. In general, the
shape of the noise spectrum is determined by the dynam-
ical properties of the system, which contain information
about the excited states. Thus the noise spectrum is
a powerful probe which allows us to study dynamics of
strongly correlated systems.

Interacting electron systems at 1D form strongly cor-
related states —Luttinger liquids whose properties are

well understood. However, it has been very diKcult to
realize 1D Luttinger liquids in experiments. This is be-
cause even a small amount of impurities cause the lo-
calization of the 1D electrons and destroy the Luttinger
liquids. Recently, it was realized that another strongly
correlated 1D state —Chiral Luttinger liquid exists on
the edges of fractional quantum Hall (FQH) liquids. Due
to its chirality (i.e. , all excitations move in the same di-
rection) and the lack of back scattering, a chiral Luttinger
liquid cannot be localized by impurities. Thus it is possi-
ble to realize, in practice, extended 1D systems through
FQH states. Recently Milliken, Umbach, and Webb ex-
perimentally studied the tunneling between two edges of
filling &action 1/3 FQH states. They found that the
tunneling conductance has a power law dependence on
temperature which is a characteristic property of (chi-
ral) Luttinger liquids. Their finding is consistent with
the theoretical prediction o Ix T for the v = 1/3 FQH
state. In this paper, we will study the noise spectrum
in the tunneling current between (chiral) Luttinger liq-
uids. The noise spectrum carries rich information about
dynamical properties of (chiral) Luttinger liquids, which
will help us identify such strongly correlated states in
experiments.

Recent studies of noise in noninteracting systems re-
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veal that the noise spectrum contain features that come
&om the statistics of the tunneling particles. These
statistics-dependent features are not contained in the
dc conductance. For Luttinger liquids, the tunneling
particles sometimes carry &actional statistics and &ac-
tional charges. It is then very interesting to study the
noise spectrum for tunneling between (chiral) Luttinger
liquids, especially those features that come &om the
strongly correlated properties of (chiral) Luttinger liq-
uids (such as fractional statistics and fractional charges).

Two kinds of noise may appear in tunneling at a finite
voltage V, the shot noise and the "Josephson" noise. The
shot noise can be understood from a classical picture in
which the average tunneling current is viewed as a result
of many tunneling events. A tunneling event represents
a single particle (which can be an electron or a charged
quasiparticle) that tunnels through the junction. The
spectrum of the shot noise is determined by the correla-
tions between tunneling events. In this paper, we always
assume that the tunneling time is much shorter than the
average spacing between two tunneling events. Under
this approximation, we will ignore the retardation and
model the tunneling by an instantaneous tunneling oper-
ator I'g&g~+ H.c., which transfers particles between two
reservoirs. The Josephson noise is related to the fact that
the two systems connected by the junction have different
chemical potentials. The quantum interference between
wave functions on the two sides of the junction may cause
a singularity at f'requency w = e*V/6 in noise spectrum
(here e* is the charge of the tunneling particle). Such
features near the Josephson frequency ~~ = e*V/6 are
called Josephson noise. In this paper, we will develop
a language for nonequilibrium noise in 1D Luttinger liq-
uids which covers both the shot noise and the Josephson
noise.

We start with the Keldysh formalism, in which the tun-
neling events are described by a Coulomb gas of charges
on a Keldysh contour. Under certain conditions the
charges at different branches of the contour pair into
dipoles (in this case the Coulomb gas is said to be in
the dipole phase). The dipoles correspond to the tunnel-
ing events in the shot-noise picture. The noninteracting
dipole approximation leads to a Poisson distribution for
the separation of dipoles, which results in a white noise
(i.e. , a frequency independent noise) at low frequencies.
However, for a finite voltage across the junction, we find
that the dipoles have a nonzero dipole moment which
leads to a long range I/t interaction between dipoles.
The dipole-dipole interaction gives rise to a nontrivial
distribution of the tunneling events which induces a ~w~

singularity in the low-&equency noise spectrum. The
dipoles have finite size and the intradjpole structures are
found to be responsible for the high-frequency Joseph-
son noise, which appear as an algebraic singularity of the
form ~w —~J~ ~ in the noise spectrum within pertur-
bation theory.

The full expression for the singularity at zero frequency
in the noise spectrum due to the dipole-dipole interaction
is found to be

~-- (~) = 4~v(2~ —1)'
~ I I~I (1), (It, l'
k~~)

where Iq is the average tunneling current and g contains
information on the interactions in the Luttinger liquid
(or filling fraction of the FQH states, in the case of chi-
ral Luttinger liquids). Because of the nonlinear depen-
dence of Iz on wp, the strength of the singularity in
the noise spectrum at zero frequency will also have a
nonlinear dependence on erg[( —') oc w& ]. The par-I~ 2 4(g —1)

ticular case of noninteracting e/ectrons can be obtained
with g = 1, where one recovers the ~ur~ singularity that
appears to order D in the transmission coefBcient D.
The correlations in the case of noninteracting electrons
come &om the Pauli principle, which enters very simply
in the formulation used in this paper through the lan-
guage of bosonization.

The paper is organized as the following. In Sec. II, we
will review the bosonization scheme for 1D fermionic sys-
tems. In Sec. III, we calculate the noise perturbatively.
In Sec. IV, we use the nonequilibrium (Keldysh) scatter-
ing operator as a means to obtain a joint probability dis-
tribution for tunneling events. The tunneling events can
be mapped into charges of a Coulomb gas, which tend to
reorganize as a dipole gas. A noninteracting dipole ap-
proximation leads to uncorrelated noise. Dipole-dipole
interactions and correlations will be discussed in Sec. V,
which lead to an ~ur

~

singularity in the low-frequency noise
spectrum. In Sec. VI, a diagrammatic technique is pre-
sented that accounts for the correlations in a systematic
way. We show the existence of the ~w~ singularity at zero
&equency to all orders in perturbation theory. A count-
ing argument also suggests that the leading singularity at
sr~ should remain of the form ~w

—ug~2g to all orders
in perturbation theory.

II. TUNNELING IN 1D LUTTINGER LIQUIDS

In this paper, we will study the e8'ect of particle in-
teractions in the noise spectrum of a 1D conductor. The
results for 1D systems of interacting particles, or 1D Lut-
tinger Liquids, can be directly used to study noise in the
tunneling current between two edge channels in the frac-
tional quantum Hall (FQH) regime. Figure 1 displays the
geometries we are considering here. Figure 1(a) shows a
1D channel connected to two reservoirs, with a weak link
or tunneling barrier in the middle of the channel. Figures
1(b) and 1(c) show two configurations in which we can
observe tunneling between edge channels. The config-
urations can be accessed experimentally using metallic
gates placed on top of the 2D electron gas. Applying
a negative gate voltage depletes the electron concentra-
tion underneath the gate, causing the two branches of
edge states to get closer, and thus enhancing the tunnel-
ing between the channels. Because in this configuration
both edges form the boundary of the same QH liquid,
there can be either electron or quasiparticle (carrying
fractional charge) tunneling. By applying a sufficiently
large gate voltage, one can obtain the situation in Fig.
1(c), where the edges form the boundaries of two discon-
nected QH liquids, and thus only electrons can tunnel
from one edge to the other.
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The presence of a weak link or a potential barrier in
the channel gives an additional term in the Hamiltonian
which can be expressed in terms of the bosonic 6elds
P and 0. For a potential barrier located at x = 0 the
perturbation is oc gt(t, x = 0)@(t,x = 0), which can be
written (keeping only the most relevant term) as

Z,„,= rS(x) e*"l")+H.

L R
ij

o— L

For a weak link, one can also show that the perturbation
1s

Z,„,= rS(*) ."~&")+ H.

Gate

x
l

(c)

Using a rescaling P = 2~gg and 0 = —0, the La-

grangian densities for the small barrier and weak link
problems are, respectively,

l: = —[(8,0) —(0 0) ]
— I'b(x) e'~g ~' ) + H.c. (7)8'

FIC. 1. Schematic drawing of the geometries for tunneling
in 1D Luttinger liquids. A channel connected to two reservoirs
is shown in (a), with a potential barrier or weak link in the
middle. The geometries for tunneling between edge states are
shown in (b) and (c). By adjusting the gate voltage Vo one
can obtain either a simply connected QH droplet (b), or two
disconnected QH droplets (c). For the geometry in (b) both
electrons and quasiparticles (carrying fractional charge) can
tunnel from one edge to the other, whereas for the geometry
in (c) only electrons can tunnel. The tunneling current It,
depends on the applied voltage between the right and left
edges.

Both the interacting 1D systems and the FQH edge
states are best described in the bosonized language.
In the case of the interacting 1D system, the electron
operator can be written as

in(k+ ~+8)

OCiCi

(2)

where the P and 0 fields satisfy the equal-time commu-
tation relations,

[P(t, x), 0(t, y)] = —i —sgn(x —y) .

The canonical momenta associated with P and 0 are then
114, = —0 0 and IIe = —8 P, respectively. The dynamics
of P and 0 are described by the Hamiltonian density,

~ = —[(a,4)' —(a.y)'] —ra(*) .*~""+ H. (S)8'
Now, for the FQH edge states, we can write the right

and left moving electron and quasiparticle operators as
@RL(x, t) =: e+'&~" r~ i):,where g is related to the
FQH bulk state. For example, for a Laughlin state with
filling fraction v = 1/m, we have g = m for electrons
and g = 1/m, for quasiparticles carrying fractional charge
e/m. The PR L fields satisfy the equal-time commutation
relations,

[4'R,L(t x) O' R,L(t, y)] = +i'ir sgn(x —y) .

The dynamics of pR L is described by

1
CR L = —clxkR, L (+t v~x)4'R, L

where v is the velocity of edge excitations (which we will

set to 1). The same algebraic decay of the electron oper-
ator occurs in the edge states of the FQH effect, where
we have a chiral Luttinger liquid with the exponent g di-
rectly related to the bulk state (for a review see Ref. 13).

The tunneling between left and right moving branches
can be written as Ht„„——I'4'&4~+ H.c. We can write,
in terms of p = pR + pL, the following total Lagrangian
density:

l: = —[(B,P) —(0 P) ]
—I'b(x) e'4 ~~ ' +. H.c. ,8a

'R = —g(0 P) + —(0 0)
2K' g

(4)

where the effect of interactions enters through g. For
repulsive interactions g ( 1, whereas for attractive inter-
actions g ) 1. For noninteracting electrons g = 1. The
electron propagator has a power law decay envelope, with
the long-range behavior dominated by (gt(t, 0)@(0,0)) oc

g
—(u+~ ')/2

with P satisfying [P(t, x), Bqg(t, y)] = 4vrih(x —y).
The Lagrangian for P in Eq. (11) is exactly the same

as the one for 0 in Eq. (8) and, with g + 1/g, the same as
the one for P in Eq. (7). It is this Lagrangian in Eq. (11)
that will be the basis of our work. A voltage difference
between the two reservoirs at the ends of the 1D channel,
or between the edges of the QH liquid, can be easily
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introduced in the model by letting I' ~ I'e ' ', where
»dp: »dJ:e*V/5, with e' = e for electron tunneling and
e* = e/m for quasiparticle tunneling.

Notice that in order to obtain the coupling term, we
assume that we only have contributions from x = 0 for
the tunneling operators. This is the case when the width
of the barrier is narrow. Also, if the barrier is narrow,
the time spent in the tunneling is small compared to the
spacing between tunneling events. Indeed, in this case we
can speak of tunneling events that occur at rather well
defined time coordinates.

Using this language, the average tunneling current
through a barrier in a one-dimensional channel and be-
tween edge states in the FQH regime was calculated. s 0

The current has a nonlinear dependence on the applied
voltage between the terminals, with the power depen-
dence on the voltage intimately related to the exponent
g in the electron propagator. For the case of tunneling
through a single barrier in a 1D channel, or nonreso-
nant tunneling between FQH edge states, one finds that
Iq V ~ at zero temperature. In this paper, we will
study the noise in this current, starting with a pertur-
bative calculation and then moving to a formalism that
grasps nonperturbative contributions.

however, there is no difference between the results for
expectation values obtained with either the equilibrium
or the nonequilibrium formalism. This is the case in the
calculation of the current-current correlation, where the
lowest order contribution is the zeroth order:

(j(t)j(0)) = e* (pl(il'e ' ' e'~~( )

.I e i~P» —i~gg(t))(. 1 i~gg(0)

I e i~—gp(0)
) I p) (12)

The nonzero contributions come from the terms that,
when applied to Ip), transfer zero total charge, so we
can write

(j(t)j(0)) = e' lI'I
I

e ' ' (Ole' e '
Ip)

(14)

+ awo t
(p I

vmot a~gp—(t) xv gp(0)
I p)

e*2II I2 (e
—'~ot + e

—'~0») eg(014(t)&(0)I0) (13)

The P field correlation is (Olp(t)P(0)lp) = —21n(b + it),
where b is an ultraviolet cutoff scale. The current-current
correlation is then given by

III. PERTURBATIVE CALCULATION

We can show that the tunneling current operator is
It(t) = j(t) = ie*I'e'dg~( ' )+ H.c. For example, in the
case of tunneling between edges [such as in Figs. 1(b) and
1(c)], we simply use that It ———.&[NI„H]=,&[NI», H]
(where N~ I, are the total charge operators on the R, L
edges) and the commutation relations to obtain the ex-
pression for Iz. Similarly, we can find the same for the
case of a 1D interacting system. The noise spectrum can
be obtained by calculating two-point correlations involv-
ing the operator It(t).

Notice that, as the problem under consideration is in-
trinsically nonequilibrium, one should use the Keldysh
(or nonequilibrium) formalism in computing expecta-
tion values of operators. This is the case here, where
if we treat the coupling term perturbatively and intro-
duce an adiabatic turning on and off of the interaction,
the state at t = —oo difFers from the one at t = oo; the
charge transfer in one direction due to the applied volt-
age clearly makes the two states at Woo different, as the
total charge in one edge branch (or reservoir) decreases
whereas in the other the total charge increases. This
problem could, in principle, be circumvented by includ-
ing another term in the Hamiltonian that would close the
circuit and bring the charges that tunneled through the
barrier back to the reservoirs (a "battery"). Such a way
of thought is relevant to clarify the distinction between
the equilibrium and nonequilibrium formalism, and how
they can be connected, in principle. However, in prac-
tice, adding the restoring charge coupling in the Hamil-
tonian only would make the problem more cumbersome
and poorly defined, which makes the nonequilibrium for-
malism a natural choice.

For perturbative calculations of zeroth and first order,

which displays clearly oscillations at frequency 1
»dp/2vr = e*V/h, . This implies that the noise spectrum
will also display structure at this f'requency. The noise
spectrum is calculated from the current-current correla-
tion:

«" '((j(t) j(0)))

lr I [c+ (»do +»d) + c—(»do + td)

+C+ (»d 0 —»d ) + C (»d p —»d ) ]

where

»dl
g e I I t)(~td)I (2g)

The c~ (»d) will appear again in the next section, where we
shall obtain their finite temperature version. The noise
spectrum to order II I

is then given by

s( ) = *'ll'I' [I — oI" '+
I

+ oI" ']
I'(2g)

= e*I» [ I1 —»dltdpl" '+ ll+»d/»dpi" ] (17)

where we used the perturbative result to order II'I for
the tunneling current It ——&(2, e*lI'I »dpI' 2gj

From the expression for S(»d) above, we can deduce
some features of the noise to order II'I . First notice that
for»d ((»dp we obtain S(»d) 2e*I», the classical shot-
noise result, independent of g. Notice also the singulari-
ties at u = +no. In the particular case of noninteracting
electrons (g = 1), we have S(»d) = 2e*I» for l»dl
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and S(ur) = 2e*Iq~ml/mo for ~u~ ) uo, which agrees, to
lowest order in the transmission coefficient D (lowest or-
der in ~r~ ), with previous results for the noise spectrum
of noninteracting electrons. To get the term in D we
need to go beyond this zeroth order perturbation theory,
as we will do later in the paper. The sharp edge of the
noise spectrum at w = e*V/5 for g = 1 finds its origin
in the Pauli principle, which is the sole factor responsi-
ble for correlations in the noninteracting case. In our
model, particle statistics enter automatically in the way
we construct the electron-quasiparticle operator &om the
boson fields and their commutation relations. In the fol-
lowing sections we shall see how the low-&equency noise
spectrum is modified. once we go beyond this perturbative
calculation.

IV. THE JOINT PROBABILITY DISTRIBUTION

As we have previously mentioned, when the tunneling
barrier is narrow so that the time the charge spends in the
tunneling process is small compared to the times between
two consecutive tunnelings, one can speak of well defined
tunneling events at certain specific times. In this section,
we will find a joint probability distribution for the times
for these tunneling events.

The term e'~~ in the Hamiltonian (where we use p =
I

~g) transfers charge from one edge branch to the other
[say, in the case of the geometry of Fig. 1(b) and 1(c),
&om the R to the I edge branch]. The term e '~& does
the converse (from L to R). We will map the problem
to a Coulomb gas in a 1D space, associating a charge
+ to the term e'~~ and a charge —to e '~~. I et Z =
(O~S, (—oo, —oo) ~0), where S (—oo, —oo) is the scattering
operator in the contour from t = —oo to t = oo, and back
to t = —oo (the Keldysh formalism contour). In terms of
the usual scattering operator S, we can write

Z = (OiS( —oo, oo) S(oo, —oo)ip)
= (OiSt(oo, —oo) S(oo, —oo)ip) .

In this form, the contributions &om the forward (t
—oo -+ oo) and return (t = oo ~ —oo) branches are eas-
ily identified in terms of the more commonly used (equi-
librium) scattering operators. Clearly, since S is unitary,
Z = 1. Now let us expand Z perturbatively in I'. We
will use the scripts t and b to denote the top (or forward)
and bottom (or return) branches, and + and —to de-
note whether the inserted operator is e'~~ (+) or e

(—). q+ will denote the number of times that e'~~ or
e '~4' appear in the top and bottom contours (see Fig.
2). With this notation, we can expand the scattering
operator as

S(oo, —oo) = Kjt +
2

Q' (Q+
dt. T —i&up t, + iP@(t;+)

~ h ~

j=l

and

S(—oo, oo) = St(oo, —oo)

dtb+ g~b
—T —xcup t ~+ ipse(t „+) p t, —p@( )

k l e

where T stands for reverse time ordering. Notice that in the operator S,(—oo, —oo) = S(—oo, oo) S(oo, —oo) the T
ordering occurs to the left of the T ordering, so that we replace both by a T. ordering operator such that times ln the

op branch are ordered increasingly, times in the bottom branch are ordered decreasingly, and times in the bottom
branch are always ordered after the ones in the top branch (see Fig. 2). Using T„wecan write S.(—oo, —oo) as

O~+,et, ah+, nb

drab+ dtb-
k l

k=1

(Q+
XTc

—i~p t,'. + iPP(t,'+ )
I ~ h

j=l
i~p t,'. —iPgb(t' )

h 4 h

k=1

—iu)pt„+ ig@(t„+)
gb

i~pt, —ipse(t, )

In order to calculate the bracket

(()~T, [e'&I 2;=+. &(",+)—2,=. &(" )+Ex=+. +(is+) —Ei=. 4(~& ) 1) ~0) (20)

we use

(P~T (
s4'(~) a'4'(i'))

~P)
—m'(oI&. (&( )&(~'))lo) (21)

and the contour-ordered two-point correlation,
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' —2 in(8+ i~t, —t2~)
—2ln(S —qt, —t, ~)(0]T-(4(ti)4(t2)) ]0) =

& 21„y,(.. .,)]
, —21n[8+i(t, —t, )]

both t,i and t2 in the top branch
both ti and t2 in the bottom branch
ti in the top and t2 in the bottom branch
ti in the bottom and t2 in the top branch.

The bracket in Eq. (20) contains the contributions from
all pairs of charges, which interact via a two body po-
tential that is determined by the T ordered two-point
correlation. The phase terms due to wo (e ' 't for a +
charge, and e' ' for a —charge) correspond to an under-
lying background, which tends to polarize the gas, leaving
(in the case of positive wo, for example) more + charges
than —ones in the top branch, and more —charges than
+ ones in the bottom branch. An illustrative picture of
the unbalance created by the applied voltage V (nonequi-
librium) is shown in Fig. 3. One can think of V as an
"electric Beld" that polarizes the Coulomb gas, leaving
an unbalance of + and —charges in the t and 6 con-
tours, which gives rise to a net current in one direction
or the other [excess of +(—) charges, or R -+ I (I ~ B)
tunneling], depending on the sign of V.

The expression for Z obtained as an expansion in I' is
exact so far. Also, the map into a Coulomb gas model
is now complete. An expansion similar to the one we
present here appears in the study of dissipative quantum
mechanics models in a periodic potential. ' There the
charges are grouped in terms of the so-called sojourns and
blips. We Bnd the idea of keeping the + and —charges
more intuitive, as is the idea of having the nonequilibrium
voltage be thought of as a "field" that polarizes the gas
and changes the densities within the t and b contours.
This language, as we will show, makes it easier for us
to go beyond the independent blip approximation, and
study correlations.

We will now focus in showing how the expression for
Z can be used to deBne a joint probability of tunneling
events. In the limit of a narrow barrier, as we pointed
out previously, one can speak of rather well deBned tun-
neling times or tunneling events. In this limit we can
interpret the times that enter in the perturbative expan-

sion of Z as the times for real tunneling events, and the
sums and integrations as the means of including all tun-
neling histories in a partition function. Notice that it is
very important that we understand that this interpreta-
tion has a meaning only when the tunneling barrier is
narrow.

Also notice that only the tunneling times in the for-
ward or top branch can have a physical interpretation as
a tunneling of a real charge (we only observe increasing
times, with the return branch being just a mathemat-
ical tool). The correct joint probability distribution of
tunneling events should be obtained by integrating oi;t
all t +'s. This is a difIicult task, and we shall appeal
to a more intuitive picture that will allow us to sort out
the most important contributions. This more intuitive
picture can be extracted from the Coulomb gas model
depicted in Fig. 4.

The first step we take is to recast the sum in terms
of dipole conBgurations, as opposed to a sum of charge
conBgurations. The dipole is determined by a center of
mass coordinate t, and a dipole strength p. There are
four types of dipoles, as shown in Fig. 5. The type of
dipole depends on which branches the + and —charges
are located at. We call a t dipole one in which both
charges are in the top branch. A b dipole is one where
the charges are in the bottom branch. In a c+ the +
charge is on the top and the —on the bottom. In a c
the converse is true, the —is on the top and the + on
the bottom. This distinction is important, as we will see
it later.

For a given charge configuration labeled by
(Q+, Q, Q+, Q j we associate a dipole configuration
(n&, ng, n+, n },where the n's are, respectively, the num-
ber of t, 6, e+, and e dipoles. The n's and Q's are related
by

t
Q+ ——n, +n+,

b
Q+ ——ni, + n

Q' =nt+n
Q =nb+n+ .b

top

Rewriting Z in terms of the n's instead of the Q's be-
comes a simple combinatoric task, which gives

bottom

FIG. 2. An insertion of an operator e '~@ ' corresponds to
the insertion of a charge + on the contour at time t. Simi-
larly, an insertion of an operator e '~~~ ~ corresponds to an
insertion of a charge —at time t. The time t is ordered
along the contour shown, and there is a distinction between
charges placed on the top and bottom branches. For illus-
tration, in the example shown we have for the number of +
and —charges in the t and b branches Q+ ——3, Q = 2,
Q+ ——2 and Q = 3. Only terms that have zero total charge

b b

Q = Q+ + Q+ —Q —Q can give a nonzero contribution to
z.

FIG. 3. The applied voltage V between the terminals or
edges creates an unbalance of charge between the top and
bottom branches. Since + and —charges correspond, respec-
tively, to tunneling from R ~ L and I ~ R, an excess of
charge in the top branch correspond to net tunneling in one
direction.
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A, g t YLg, 7l, + tA

lI lg++Q +9++9
Q'!Q'! Q' ' Q' '

f ' ) ( b ) fx
l

+
l l l l

+
l l l

nt!nb!n+!n ! x INTEGRAL&nt) Ent) (nb) & "b)

7l t &A'b t tL+ &YE

(—].)"~+"~ ll'l'!" +"~+"++"-l
x INTEGRAL,
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where

INTEGRAL = t"' b"' c"+ c" (23)

OO —t4pp pt= dp . , b=
(~+ ilail)"

'

OO —$~0pe

(b ~*=&)"

e—'c420 p
dp

(~ —ilail)"
'

(24)

One can check that t + 6 = c+ + c, so that summing
over all nt and nb in Eq. (22) can be shown to yield:

,-!r! &.,+. l ) - (ll'I'c+)"' (ll'I'c-)"
(25)

n+I n !
A+ )A

where the INTEGRAL term contains the interactions
between the charges integrated over all positions. The
erst approximation we will make is what we will call the
"independent dipole" approximation. The attraction be-
tween opposite charges tends to bind them together, and,
if the fugacity of the gas (measured by ll l ) is small,
we can to lowest order neglect the interaction between
dipoles. The only interactions entering in the calculation
of Z are the intradipole interactions. The INTEGRAL
term in the dipole approximation can be factored as a
product of the contributions of individual dipoles.

tion between the position of the two charge components
of a dipole. The intradipole noise is in the high-frequency
range, centered at cd = cdp = e*V/h. The contribution to
the noise that we obtain with the Z in Eq. (25) is in
the low-frequency range (w (( (dp) where the positions
of the charges and dipole centers are not distinguished.
The reason why we summed over the dipoles of type t and
6 is that they do not contribute to the noise beyond the
intradipole order. These types of dipole correspond to
tunneling in one direction shortly followed by tunneling
in the opposite direction, which contribute to noise in the
time scale of the dipole size, included in the intradipole
contribution.

With the interpretation above in hand, we can use Eq.
(25) to argue that, in the dipole approximation, the tun-
neling events in either direction are independent, with
a distribution that is Poisson-like with two parameters:
lI'l c+ and lI'l c . The probability of tunneling in one
direction in an infinitesimal time At is P+ ——lI'l c+ At,
the probability of tunneling in the opposite direction is
P = lI'l2c At, and the probability of no tunneling
event in this time is I —(P+ + P ).

This two-parameter Poisson distribution can be used
to reproduce the results obtained for the tunneling cur-
rent to first order in perturbation theory. The tunneling

to& ~+

bottom

R ~+
(

~+

~+

FIG. 4. The charges that form the Coulomb gas can form
a dipole phase. In this phase, the expression for Z can be
recast as a sum over dipole strengths and positions, instead
of summing over the locations of the + and —charges.

Let us now interpret this expression. As we men-
tioned above, only events occurring in the forward or top
branches can be observed. Therefore, the occurrence of
a dipole of the c+ type implies a tunneling event in one
direction occurring at the vicinity of the center of mass
coordinate of the dipole. Conversely, a dipole c implies
a tunneling event in the opposite direction. The statis-
tical distribution of these center of mass coordinates of
dipoles appears in the noise. The uncertainty of the lo-
cation of the charges comprising the dipole with respect
to the dipole center of mass also contributes to the noise;
this intradipole contribution, however, is already partly
taken care of in the first order perturbative calculation of
noise, which can be seen to be nothing but the correla-

FIG. 5. The four types of dipole, classified according to
the position of the + and —charges comprising it. In the c+
dipole the + charge is on the top branch and the —charge
is on the bottom. In the c the —charge is on the top and
the + is on the bottom. In the t dipole both charges are on
the top branch, and in the b dipole both charges are on the
bottom branch. Notice that only the c~ dipoles contribute to
a net current, as they create an unbalance of charge between
the top and bottom branches. The t and b dipoles contribute
to the noise, but not to the current.
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OO e—%capo p
c+((dp) = c (—(dp) = dp

8 —i' »
2g —1

I'(») 8((up) . (26)

We can obtain the finite temperature results for cg by a
conformal transformation:

f
OO —ggpo p OO —%4/0 p

dp . , m '
dp .„,(27)

T

current is simply given by Ii ——e*lI'l (c+ —c ), i.e. , the
net rate of tunneling in one direction. To obtain an ex-
pression for Iq in terms of V, we need to evaluate c+ and
c

The last integral can be approximated by the total charge
that tunnels (e'), since the pulse is narrow compared to
7. We then have S(f) = e' P e ' " q, and, thus,

lS(f)l = e' ) e ' e' "
q q„

nn'

The uncorrelated tunneling implies that (q q„~)= (q) +
((q~) —(q)2)8 i. After summing over n and n' we obtain
that lS(f)l = e* N((q ) —(q) ), where N = 8/v is the
number of time slots. Now (q) = lI'l (c+ —c ) v and
(q2) = lI'l2(c+ + c ) v, and for small tunneling times
compared to the time between tunneling (q) « 1, so
that we can neglect (q)

2 and obtain

which gives

c+(~p) = c-(-~p)
We can connect the white noise amplitude to the tunnel-
ing current using Eqs. (28) and (29), and obtain

(j )&y = 2e'Iz coth 4f .
2T (34)

x 1+ tanh (28)

I = 4e'll'l2(~g )2g
27rT' 2m T)

x sinh (29)

where B is the p function. Using these expressions for
c~, we obtain

Ie'Vl (e'V j

(35)

If we write It. ——GV = G~p/e' and take the ~p -+ 0
limit, we obtain (j )a& ——4TGA f, which is nothing but
the Johnson-Nyquist equilibrium (V = 0) result. The
nonequilibrium white noise can then be cast in a simple
relation to the equilibrium Johnson-Nyquist noise, which
is

The charge transferred in a small interval of time 7 is
+e* (with probabilities lI'l c~w), or 0. We can write
j(t) = g„jp(t—nw) q„,with q„=+1,0. Here, jp is a
narrow current pulse that fits a slot of time w (the width
of the pulse should determine a cutofF frequency above
which the spectrum is no longer Hat). We can then write

0
S(f) = dte '') j,(t —~—&)

0

e—n=) e '"q„
n —nT

du e ' "jp(u) .

which is the same expression found by first order pertur-
bation theory in Ref. 6. For T = 0, in particular, we find
that Ig e*lI'l2V2g

We now turn to the noise properties derived from this
dipole approximation. Because the distribution in this
approximation is Poisson-like (and, therefore, uncorre-
lated), we should expect the noise to have a Hat f'requency
dependence, i.e., white noise. We are left with the prob-
lem of determining the amplitude of the noise. For this
purpose, we will follow a calculation similar to one pre-
sented by Landauer. is Let (j2)~t be the component of
the noise power spectrum that falls in the frequency in-
terval Af. Let also S(f) = j dt j(t) e ' ",where 0 is
a time interval. These quantities are related by

(..) l,. 2S( )I' ~fe~~ 0

The expression above for T ~ 0 gives (j2)~y = 2e'It 4f,
which is the classical expression for shot noise. Quan-
tum corrections to the shot noise only come to order
ll'l and higher, and thus do not appear in the inde-
pendent dipole approximation (order lI'l2). Also notice
that the expression connecting equilibrium and nonequi-
librium noise '2z coth('2& ) is independent of g and thus
independent of interactions to lowest order in lI'l. This is
consistent with the fact that the independent dipole ap-
proximation is a lowest order perturbative result, so that
the assumptions necessary for the Buctuation-dissipation
theorem are satisfied.

The dipole approximation, therefore, captures the un-
correlated part of the noise. In the next section we shall
see how correlations come about.

V. BEYOND THE INDEPENDENT DIPOLE
AP PROXIMATION

In this section, we shall improve the dipole approxi-
mation. We have seen that the location of the centers of
mass of two dipoles is uncorrelated in the approximation
of the preceding section. In. order to observe correlations
one must include in the model the interactions between
distinct dipoles. This is the next order correction to the
INTEGRAL term in Eq. (22).

Consider two dipoles as shown in Fig. 6. We take
them, for the sake of illustration, to be both of the c+
type. The INTEGRAL term can be written for this case
as
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e ' '"' e ' '"'
[h + i(t2+ p2/2 —ti —pi/2)] g [b —i(t2 —pz/2 —ti + pi/2)] ~

dt1dt2dP1dP2
(b —zpi) g (h —ipz) g [b + z(t'2 —pz/2 —ti —pi/2)] g [b —z(tz + pz/2 —ti + pi/2)] g (36)

For dipole separations that are large compared to dipole
sizes (~t2 —ti] && ]pi ~, ~pz~), we can expand the expression
in the integrand to obtain

e—~~OP1 e—%@pope

dt i ~t2 d'p i ~p 2

x 1+2g, (37)
t2 —ti 2

which after the p1 and p2 integration yields

f c+c+
dtidt2

~
c+c+ —2g

t2 —t, z)

{c+/c+) {c+/c+ )

= c+c+ dt1dt2 e ('~-'»' . 38

This can be generalized to any two types of dipole to

(d1 /d1 ) (d2/dg )

d1d2 dtld~2 e (39)

where d1 2 can be any of t, 6, c+, or c, and d12 stands
for the derivative of d12 with respect to uo. Using a
similar argument to the one we used to obtain the finite
temperature expression for c~(uo), we can obtain the
finite temperature version of the dipole-dipole interaction
by simply substituting t2 —ti by sinh[vrT(t2 —ti)]/(mT)
and using the T g 0 results for c~(uo). Nevertheless,
we will just concentrate for the rest of the paper on the
T = 0 problem.

From Eq. (39), we read that the dipoles interact
through a 1/tz potential. This dipole-dipole interaction
gives rise to a nontrivial distribution of tunneling events,
which show up in the noise spectrum as a cusp at zero
&equency. Before proceeding to obtain the explicit form,
including the strength of the singularity, we must under-
stand when this picture that the charges can be assem-
bled in pairs starts to breakdown, and correlations not
contained in this dipole picture become important.

The assumption we made in order to obtain correla-
tions as in Eq. (39) was simply that the dipole sizes were
small compared to the separation between dipoles. The
mean dipole separation is related to the average current

t)+ p)/2

~+

t2- P2/2

FIG. 6. Two dipoles will interact because of the relative
position between the charges that comprise them. The figure
shows two dipoles with center of mass positions t~ and tq and
strengths p~ and p2.

I

Iz, and is given by e*/Iz T.he dipole size can be taken to
be the d'/d in Eq. (39), since it is this term that enters in
the interaction between the dipoles, and thus measures
the distance between the + and —charges that form the
dipole. (Notice that, because the charges in the Coulomb
gas are +1, the distance between the + and —charges
equals the dipole strength. ) The expressions for t and b
depend on the cutofF scale b, whereas c~ are finite as we
take b —i 0 (we can show that c+ + c = t + b, and that
the divergences in t and b, which are purely imaginary,
cancel each other). We then have that t'/t and b'/b must
both scale as b, and c+/c~ = (2g —1)~0 [using Eq. (28)
and setting T i 0]. Therefore the dipole approximation
is good as long as ufo « e*/Iz, or Iz « (e* /h)V.

In the case of tunneling between edge states, this is
the limit of a small tunneling current as compared to the
Hall current. In the case of the 1D channel, this limit
corresponds to a small tunneling current as compared to
the current for the noninteracting case. Because of the
nonlinear I-V characteristic of the tunneling current in
1D Luttinger liquids (Iz oc V2 i), the cases g ) 1 and
g ( 1 are quite distinct. For g ) 1 the dipole phase
exists for small applied voltages V, whereas for g & 1
the dipole phase exists for large V. Now, one can still
use the results of the dipole phase to study the noise in
the case of g ) 1 and large V, and the case of g & 1
and small V, by resorting to the duality g ++ 1/g that
connects the two configurations shown in Figs. 1(b) and
1(c). The idea is that as one increases the applied voltage
between the R and L edges in the configuration shown
in Fig. 1(c), the tunneling current Iz increases asymp-
totically, tending to the Hall current. Deviations from
the Hall current correspond to defects, " or tunneling in
the direction perpendicular to the Hall current, which is
exactly the direction of tunneling shown in Fig. 1(b).
Similarly, one can go Rom the situation in Fig. 1(b) to
the one in Fig. 1(c) by decreasing the applied voltage
between the R and I edges. The bottom line is that, by
wisely choosing which current direction to focus on, one
can most often place the problem in the dipole limit for
either one configuration or its dual with g ++ 1/g. The
regime in which the dipole picture fails is then at the
crossover between the two configurations, where the gas
will be in a plasma phase.

Now that we understand when the approximation is
valid, let us look at its consequence in the noise spec-
trum. At zero temperature we only have either one of c+
or c dipole types, depending on the sign of ufo [see Eq.
(26)]. For concreteness, let us take wo ) 0, so that c+
dipoles survive. Since t'/t, b'/b 8, the main correlations
come from the interactions between c+ dipoles (for volt-
ages small compared to I/b), so that for large times the
density-density correlation for c+ dipoles (which equals
the current-current correlation) is given by

, —2g(2g —1)'
(C+(t) p+(0)). - (~+)' .„(4')
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S„„((u)= 4vrg(2g —1)'
~

—
~

, (I, l'
(41)

which gives a noise spectrum S(w) = 4~g(2g
2

1)2 —' e ~~~" /A„where A, is a short time scale cut-
42p

off (of order wo ) for the 1/t2 correlation. The leading
singularity at low-&equency is then

bution to the noise spectrum perturbatively in Sec. III,
which for zero applied voltage is S(tu) oc ~w~ . At low
&equencies, the intradipole noise will be dominant for
g (. 2, while the interdipole noise will be dominant for
g ) 2. Notice that, in the equilibrium case, an expansion
for Z like the one in Eq. (19) could be carried out with
only one branch, since in equilibrium there is no need for
the two branches of the Keldysh contour.

Since Iz oc V ~, the strength of the singularity has a
nonlinear dependence V ~~ ~ on the applied voltage.

For the particular case of noninteracting electrons (g =
1) one can write —' = ', where D is the transmis-
sion coeKcient. The noise spectrum singularity is then
S„„s(ur)= '

~w~, which recovers the result of Ref. 11.
The eKects of correlation due to the Pauli principle enter
automatically in our formulation of the problem through
the bosonization.

To finish this section, let us consider the case of equilib-
rium noise within the interacting dipole approximation.
For g ) 1, the tunneling current vanishes for V = 0. In
the case of g ( 1, however, we have to invoke the dual
picture (g -+ 1/g) in order to use the dipole language.
In any case, the ~w~ singularity due to the dipole-dipole
interaction vanishes for V = 0. The reason can be viewed
very simply: the nonequilibrium voltage was responsible
for the polarization of the dipole gas, and the dipole-
dipole interaction gave the 1/t correlation. At equilib-
rium, the average dipole strength vanishes, and the in-
teractions in this case must come &om induced dipole, or
"van der Waal's" attraction, which for our log potentials
goes as 1/t . We can show that the low-frequency be-
havior of the noise no longer has the ~w

~

singularity, but
has leading contributions from w and ~w~ . The leading
singularity is then oc ~w~ . The contributions calculated
above are only the interdipole correlations. We should
also account for the intradipole correlations, because for
V = 0 the singularity at the Josephson frequency falls
to w = 0. We already calculated the intradipole contri-

VI. DIAG R.AMMATIC TECHNIQUE

The dipole gas picture we used to expand Z can be
justified in more formal manner. In this section, we shall
present a systematic way to expand Z diagrammatically,
which is used in one-dimensional dissipative quantum
mechanics models. In this expansion, we can identify
the terms we included in the dipole picture. The ex-
pansion is the formal support for the more intuitive and
physical picture of the dipole gas. We will erst present an
introduction to the diagrammatic expansion, followed by
the calculation for the equilibrium case and implications
for the nonequilibrium case.

A. Introduction to the diagrammatic expansion

We start by returning to the expansion of S(—oo, —oo)
in terms of the bare charges in Eq. (19). We will focus
on the expectation value of the T ordered product. I et
us use a slightly difFerent notation, using t's to denote
the positions of + charges and 8's to denote the posi-
tions of —charges. I et us take some configuration of
charges labeled by t,. and s~, with some of them on the
top and some on the bottom branch (this way we do not
have to worry about the superscripts for top and bottom
branches, since we can keep track of where each charge
is by its index). Using this notation, we can write for the
T bracket,

(II;, [~+ (t' —t ) .(t* t')]II;, [~+ ( *
— ) .( * )]&

E ~., [~+ *«.—,)--«.. .)]
(42)

where Q = Q+ + Q+ ——Q + Q, and n (t, t') = kl
depending on the ordering of t and t' along the Keldysh
contour.

Consider now integer g's, such that 2g is even and the
expression above does not change if we take [h + i(t-
t')n, (t, t')] ~ [bn (t, t')+i(t —t')]. The expression for the
T bracket can be simplified with the aid of the following
identity which can be proved using partial &actions or
properties of determinants:

M~ =
Z' —QJ't 2

(44)

1

bn, (t;, s, ) + i(t; —s, )
' (45)

The presence of the regulators b in the expression for the
T bracket slightly complicates how we apply the identity
to the problem. By naively de6ning

i(j ~ 2 i(g ~ 2

~&2

where M is a matrix de6ned by

we would obtain terms in the numerator to order b and
higher that would not match the numerator of the ex-
pression for the T bracket. This corresponds to a difFer-
ent choice of regularization, and we shall return to this
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point later. The leading term (order ho), however, is ex-
actly the same, and we proceed with the program, writing
(detM)~s for the T, bracket.

Now notice that the terms M,~ correspond to the inter-
action between + and —charges, and that the expansion
of the determinant will be comprised of all ways of com-
bining + to —charges in pairs such that each charge only
appears once in the expansion. Let us then associate a
graph for any such dipole combination, as shown in Fig.
7. When we raise the determinant to the power 2g, the
effect is to obtain all different ways to connect the + and
—charges with lines, such that each charge is connected
by exactly 2g lines (see Fig. 7, where we illustrate the
case of g = 1).

The graphs so obtained give us a systematic way to
account for the contributions to Z. The terms in the ex-
pansion where all charges are connected to one and only
one other charge, as in Fig. 8(a), are the independent
dipole terms. Notice that each line in the graph that
connects two distant charges roughly corresponds to 1/t.

When there are four charges, the lowest order in 1/t that
can be obtained &om the expansion comes &om taking
two dipoles and using one line kom each to connect it
to the other, so that there are two lines connecting the
dipoles [Fig. 8(b)j. In this way, we obtain a I/t~ term
which corresponds to the leading dipole-dipole interac-
tion. This systematic way to expand Z can be used as
the formal support for the dipole picture developed in
the previous section.

B. Equilibrium case

To illustrate the power of the formalism described in

the previous subsection, we will consider the equilibrium

case at zero temperature. According to the dipole ap-

proximation, we expect that the current-current correla-

tion should go as 1/t4 for g ) 2. In this section, we will

show this is the case for any integer g & 2.
In equilibrium, we no longer need to use the Keldysh

contour. Instead, to simplify the calculations we will

work in Euclidean space, and we will take the P 6eld

des M = M„M

II 2 +1 =2

II 2
+

=2
+

det M 2
Il 2 +1 =2

+1 ..2

(c)

..2
+

FIG. 7. The expression for ~he correlation between many
charges can be expressed as a power of the determinant of
a matrix M. The matrix element M,~ can be represented
diagrammatically as a line connecting a + charge at position t,
to a —charge at position s~, as shown in (a). The determinant
contains different ways of pairing the charges (b). Finally,
when raising the determinant to the power 2g (done in this
figure for g = 1), we generate difFerent ways of connecting the
charges such that exactly 2g lines leave each + charge and
exactly 2g lines arrive at each —charge, as shown in (c).

FIG. 8. The graph corresponding to independent dipoles
is shown in (a), with all lines leaving the + charge arriving
at the —charge (here we use g = 2 for illustration). One

of the graphs contributing to the dipole-dipole correlation is

shown in (b). Each leg connecting the two dipoles contributes
to order 1jt, so that the dipole-dipole correlation is of order

1/t .
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correlator to be (0~$(t)P(0) ~0) = —1n(t + b ). This
differs from the original choice of correlation function
only in that we have used a different cutoff. The choice
given here corresponds to left and right movers scat-
tering off each other instead of left movers with left
movers, as in the original choice. However, for a sin-
gle impurity, left movers and right movers should really
be equivalent, so this choice should not make any impor-
tant difFerence in the results. More importantly, in both
cases we choose to regulate the correlator (0~$(t)$(0)~0)
consistently, no matter where it appears in the expres-
sion for P in Eq. (42). It may appear that whenever

two tunneling events with the same charge interact, we
could just ignore the cutoff in the numerator of P, since
(e'~~i le'~~i l) = (t + b ) is not singular as b goes to
zero; recall that p = ~g. However, the h's in this cor-
relator will be multiplied by other correlators that are
singular as b goes to zero, so it turns out that the answer
depends on how we regulate the numerator. Because we
are using the Coulomb gas picture, for now we will choose
to keep the b's in the numerator.

With our choice of regulator, the expression P for the
bracket needed to evaluate S(—oo, —oo) becomes

P= & H,„(g[(&' —4)'+ ~'1 II;(,(pl(s' —s~)'+ ~'] 't
(46)

In this equation, the positive charges are at the t; and
the negative charges are at the 8, . Because we are in
Euclidean space, we no longer have to use time ordering
when we evaluate the integrals over the t; and s;.

To simplify the expression for P for any integer g, we
will use the same procedure as in Ref. 19. We will write
P = AB, where A equals P with the b's in the numerator
set to zero, and B is the correction due to the b's in the
numerator of P. Then,

edges. Thus B introduces an interaction between like-
charged particles.

In the graphs of A and B, it is important to keep track
of the number of vertices, V, the number of edges, E,
and the number of factors of b in the numerator, f. If-
we are calculating the charge-charge correlation function,
and we insert 2N additional charges, then the number of
vertices is V = 2N + 2. For any connected graph of A,
we then have E = (2N+2)g and f = 0. Once we include
the effects of B, f is no longer equal to 0, but E + f is
still given by

(47) E+ f = (2N+ 2)g. (5o)

M,, (h) =
t; —8, +ib' (48)

then A is given by

and B is equal to sums over products of b2/(t; —t~) and
8 /(s; —s~), where any one of these expressions can occur
at most g times in a product. B comes from writing each
correlator in the numerator as (t, —t~) 1+ h /(t, —t~)
and factoring out the (t; —t~) part.

We can again use the identity in Eq. (43) to simplify
the expression for A. If we define the matrix M(b) as

Also, it is important to note that any connected graph is
also 1PI. This way of describing the bracket, P, works
similarly in Minkowski space.

Next, we will evaluate the connected correlation func-
tion of (O~e'~&i le *~&i'l~o) for any integer g ) l. (The
case when g = 1 was considered in Ref. 19.) This
calculation will also work for the correlation functions
(O~e+'&&~~le+*~&i'l~o), so that these results can be used
to And the leading dependence on t —8 of the current-
current correlation functions.

At the (2N)th order in perturbation theory, we have

A = [detM, , (b)detM, , (—h)]s.

As explained in the previous subsection, if we represent
each charge by a point and each factor of

& +,& by
a directed line, then we obtain all the different ways to
connect the positive charges to the negative charges so
that each charge is connected by exactly 2g lines, (half of
which are pointing toward the line, and half away from
the line).

We can also give a graphical interpretation of B. Once
we have a graph from A, to take into account the fact that
the numerator is also regulated, we obtain our graphs for
P by joining any number of pairs of similar charges with
the pair of edges 1/(t; —t~)2 or 1/(s; —s~. ) . Each of
these edges is accompanied by a factor of b, and any pair
of charges can be joined by at most g of these pairs of

II I2++2

!~! dt's dsqAB, (51)

where A and B depend on t, s, the tA. 's and the 8I, 's. To
obtain the connected correlation function, we just need
to consider the connected graphs in the expression on the
right-hand side of the above equation.

To evaluate the integrals, we will perform contour in-
tegrals where we complete the contour in the upper half
plane. Thus, for each vertex, tz, we will be evaluating
residues for all the poles occurring at t~ = sg + ib. (Here,
we are using t~ and si, to stand for any type of vertex. )
We note that in B, it appears that we will have poles
on the real axis. However, we know that the original
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expression for AB does not have any poles on the real
axis. This means that if we sum over all the graphs for
B, these poles cancel, which implies that as long as we
integrate over the variables in each of these graphs in the
same order, we can just ignore the poles on the real axis.

We can describe the process of evaluating residues dia-
grammatically, as explained in Ref. 19. If the multiplicity
of the pole at t~ = sp +ib is equal to one, then there is
only one edge, e~p, that joins t~ to sp and represents this
kind of pole. In this case, when we evaluate the residue,
we just "collapse" the vertex t~ and the edge e~A, . This
means we remove the vertex t~ and edge e~I„and then re-
connect all the other edges that were originally connected
to t~ to sI, instead. If the other end point of any of these
edges was also connected to sk, the edge becomes 1/(icb),
for some integer c. Otherwise, it remains an edge. Con-
sequently, the total number of edges decreases by at least
one, and the sum of edges and factors of b in the numer-
ator decreases by exactly one. Also, the graph remains
connected and 1PI.

When the multiplicity, m, of a pole is greater than one,
then instead of collapsing only one edge, we must collapse
all the m edges that correspond to the pole. In addition,
we must take m —1 derivatives with respect to t~. Each
of these derivatives increases the number of other legs
connected to t~ by one, so we obtain m —1 new legs. Once
we have created these m —1 new edges and collapsed both
the vertex and the m edges corresponding to the pole, we
again 6nd that the number of edges decreases by at least
one, and the sum, E + f, still decreases by exactly one.
Again, the graph remains 1PI.

Now we can count the number of edges and factors of b
that remain after we have done all the integrations. The
original graph with 2N+2 vertices has E+f = (2N+2)g.
After we integrate over the 2N inserted charges, this sum
becomes

E+ f = (2N + 2)g —2N, (52)

and the only two remaining vertices are t and s. Because
the graph must still be 1PI, we must have at least two
edges connecting t and s. Since the total number of edges
always decreases by at least one, we also have

2 & E & (2N + 2)g —2N. (53)

We will let lN = (2N+ 2)g —2N. Last, because the final
answer must be symmetric in t and s, after we sum over
all the graphs we can only have even values for E.

Putting all of this together, we find that the correlation
function of (0~re'»~~lr*e '~~~'l ~0) must have the form

where the aN~'s are constants that are determined &om
integrating the explicit graphs. In order to interpret
these results, for the equilibrium case it is helpful to
renormalize the coupling. We will replace each I' and

I'I'* + ) (IT') +
~

aN2¹1
1

N4 gf~ —4(t )4
+ + ~1V (t )j~ I

't (54)

I" with res l and r*h's l. This just takes into account
the self-interaction of the charges and a rescaling of the
time variables.

The correlation function is then

g2g —2
rr* + ) (rr')'""

~

~N,t» - ( (t —s)2N=l
g2 pl ~ —2

+
(

)+.. + (55)

This general form is true to all orders in I'. Also, note
that the derivation of this result did not depend on the
sign of the charges at t and s, so we will obtain a sim-
ilar expression for two positive charges or two negative
charges at t and s. For large times, (or small cutoff b)
the leading behavior is

OO OO

, ) .(rr') +'uN2 + —,).(rr*)
n, =l N=1

(56)

This expression appears to go as 1/(t —s) instead of as
the 1/(t —s) predicted by the dipole picture. However,
as we shall show shortly, if both the denominator and
numerator are regulated in the same way, as in Eq. (46),
then a2N ——0 for all N, so the leading behavior does go
as b /(t —s) to all orders in perturbation theory.

Before showing that aN2 ——0 for all N, we will erst
use the previous calculation to describe a systematic way
to determine the leading behavior of each graph. First,
we note that a final answer of 1/(t —s) corresponds to
a graph with n legs joining the vertex t to the vertex s.
If we remove these n legs, the graph breaks into two dis-
connected components, one containing t, and the other
containing s. Because the integrations consist only of col-
lapsing vertices and edges and also making extra copies
of edges, these n legs must have come &om l legs in the
original graph, where l & n. In addition, because the
process of integration does not change the connectedness
of the graph, when the / legs in the original graph are re-
moved, it will break into two disjoint, connected graphs,
one containing t and the other containing s. An example
of this is given in Fig. 9. We also note that since each
graph is 1PI, to break it into two we must remove at
least two edges.

This all implies that the only graphs that can have a
leading term of 1/(t —s) are those that are broken into
2 when two legs are removed; the only graphs that can
have a contribution of 1/(t —s)4 are those that are broken
into 2 when two, three, or four legs are removed, and, in
general, only the graphs that can be broken into two con-
nected pieces when 2, 3, . . ., or n legs are removed can
contribute a term of order 1/(t —s) . A simple counting
argument shows that when l legs are removed, the max-
imum net charge either of the two resulting graphs can
have is l/2g. Because the net charge is always an integer,
when l is equal to 2 (and g is greater than 1) this means
that the net charge must be zero.

Thus, we can classify the graphs according to what
their leading behavior is, and we can determine which
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graphs will contribute to any particular term in the ex-
pansion in Eq. (55). To make contact with the pre-
vious subsection, we remark that for the insertion of
two charges, the only configuration that breaks into two
graphs when two lines are removed is precisely the one
shown in Fig. 8(b).

To arrive at a useful way of estimating graphs (which
should also apply in the nonequilibrium Minkowski space
formalism), we observe that every time we evaluate a
residue of a pole at tk ——8~ + ib, we are taking tI, to
be very close to 8~. If we then evaluate an s~ = tl +ib
residue, we evaluate 8~ close to tI, so in turn that means t~
is also close to tI. Following through on this observation,
we see that for the Anal result, all the points are either
evaluated close to t or close to 8, and whether it is t or
8 depends on whether, when we remove the n legs, the
point is in the graph connected to t or to s. Thus it
appears that the only contributions to the integral come
&om all the ways to take some of the vertices close to t
and the remaining vertices close to 8. The exponent of
the leading contribution will then be determined by the
net charge of each of the two resulting subgraphs. This
is exactly what was done in Sec. V for the case of two
dip oles.

We now return to calculating the coefficient, aN2, of
the 1/(t —s)2 part of the charge-charge correlator. From
the previous discussion, we know that this should come

P = PiP2Ig, (57)

where

II, ,=o [(p' —q~)'+ b']'

(58)

II,",,= +i, ;(, (p' —p~)'+b' '
(q' —q~)'+b' '

NII,",,= +i [(p' —q')'+ b']'

(59)

and

&om all ways of forming a neutral multipole around t
and a neutral multipole around 8. As long as t —s &) b,
we can assume that all the charges in each multipole are
much closer to each other than t and 8 are to each other.
We will let to. . . t i and so. . . 8 be the charges close
to t and t +y. . .t~ and s +2. . . s~ be the charges close
to 8. To simplify the notation, in most of what follows
we will let t equal t and 8 +i equal 8. Next, we will

change variables so that t,. = p; + t, 8, = q, + t for the
charges close to t and t~ = p~ + 8, 8~ = q~ + 8 for the
charges close to 8. Then the expression for P becomes

I= , (t — + p; —p, )'+ b' (t — + q; —q, )'+ b'

, [(t —s+ p; —q, )'+ b'] [(t — + q; —p, )'+ b']
(60)

Pi and P2 just look like the original integral, but for a
smaller number of charges, so they contain the intramul-
tipole interactions. The expression for I contains all the
interactions between the two di6'erent multipoles. In the
numerator, the positive and negative charges of the Grst
multipole interact with charges of the same sign in the
second multipole, and in the denominator the charges
of the erst multipole interact with the charges of oppo-
site sign in the second multipole. Because the multipoles
are both neutral, and because every factor in Eq. (60)
depends on t —8, both the numerator and denominator
have the same number of factors of t —8. Once we divide
through by t —8, similar counting tells us that the num-
ber of times p;/(t —s), q;/(t —s), and 82/(t —s) each
appear in the numerator equals the number of times each
of these appear in the denominator. If we expand I out
for large t —8 and count all the terms that contribute to
order 1/(t —s), we find

I = 1+,2 ) .(p;p, + q*q, —p'q& —
p~ q') (61)

~)2

2gI =1+, , ).(pa, +q;q, p'q, -S,q*)— (62)
~$2

The important feature of the 1/(t —s) part is that it is
odd under changing the signs of the coordinates of all the
charges in only one multipole. Meanwhile, PiP2 is even
under such a sign change, so once we integrate over all
the coordinates, the 1/(t —s) part vanishes and we are
left only with the 1/(t —s) (which should vanish once
we sum over all configurations of the charges) and the
1/(t —s) parts. Thus, the coefficients, a2~ should vanish
to all orders in perturbation theory and the charge-charge
correlation functions, (0~1'e'~~&'l I'*e '~~~'l ~0), should go
as a4b /(t —s), for some constant a4. It is considerably
more difficult to evaluate this constant.

One Anal remark is that if we had regulated only the
denominator, then the previous argument would not have
gone through: the b /(t —s) 's from the denominator
would no longer be canceled by the b2/(t —s) 2's &om the
numerator, so that a2N. would be nonzero. In this case,
the correlation functions instead would go as 1/(t —s)

where p, and q; run over all the charges in the first multi-
pole and p~ and q~ run over all the charges in the second
multipole. Then

C. Implications for the nonequilibrium case

Even for the nonequilibrium case, we can use our anal-
ysis of the graphs in the preceding subsection to guide
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us in determining which graphs should give the lead-
ing contributions to the current-current correlation func-
tions. To calculate the singularity at u = 0, we can use
the same neutral multipole expansion as in the end of
the previous section. The only changes to Eqs. (58,
59, and 60) for the intramultipole and intermultipole
interactions are that we must now use the nonequilib-
rium regulators which depend on the o.,(t;, sz)'s. Also,
Eq. (58) for the multipole Pi will now be multiplied by

o
e' '"' g. o e ' '~' and Eq. (59) for P2 will be mul-

tiplied by Q,- +i e' '"' Q +i e ' ''i*. Consequen ly,
PqP2 no longer remains unchanged when all the signs
of the vertices in one multipole are reversed. Therefore,
according to Eq. (62) the contribution to the current-
current correlation function when one multipole is close
to vertex t and the other is close to vertex s goes as

(a)

J I

18=0
I urn

dpk
I

1=0
1+m+1

dqi PiP2 ) (p;p, +.q;q~

2g—p;q, —p, q;)
( )2, (63)

where p; and q, are in the first multipole and p~ and
qz are in the second multipole. Also, we only take the
connected graphs in the multipoles Pq and P2. Thus,
to all orders in I', the correlator goes as I/(t —s) +
O (I/~t —s~ ). This means that, at low frequency, the
noise spectrum should have a singularity that goes as ~u~
at every order in I'. Here, we are assuming that for g ) 1
the neutral multipoles are all bound, just as they are in
the equilibrium case.

In the nonequilibrium case, we also expect singularities
at M = +cdo and possibly also at w = neo for other
integer values of n. To And the leading behavior at these
singularities we use the fact that the expression for P in
Eq. (42) can be expressed as a product AB. As in the
preceding subsection, A is a determinant, and B contains
the corrections that naively go as [I + O(8)j. For the
nonequilibrium case, A was de6ned at the beginning of
this section as det M,.~, where

1

hn, (t, , s, ) + i(t, —s, )
' (64)

FIG. 9. A sample graph with g = 2 that gives a contribu-
tion of 1/(t —s) after it is integrated. The final graph with
four legs is shown in (a). It is obtained by integrating over
the vertices tq, t2, t3, sq, s2, and sq in the graph shown in
(b). The four final legs in the final graph come from the four
boldfaced legs. In (c), the two disjoint graphs (or multipoles)
resulting from removing the four boldfaced legs are shown.

XQ470 4 —'LQ4)P 8

(t —s) 2Qg (65)

as long as all charges within a multipole are close to one
another. This will give the singularity ~cu + Qwo~ ~

The graphs for the A de6ned here are identical to those
in the previous subsection, except for the choice of reg-
ulator. This means that all of our previous counting ar-
guments should apply. However, the form of B is now
much more complicated than before, so it is not clear
whether it modi6es the counting in the same simple way
as before. Because the expression for P in Eq. (42)
and the expression for A both contain the information
about which branch each charge is on, and since the only
difference between the two expressions is the choice of
regulator, for convenience we will choose to work with
A = det M;~ instead of with P. (In the equilibrium case,
we have seen that picking a different regulator does not
change the types of terms that can appear in the Anal an-
swer; it just changes the value of the coeKcient in front
of each term, possibly setting some to zero. In case of
a discrepancy, the choice of regulator should reflect the
physics at hand, so it is useful to keep in mind that in
P the interactions in the Coulomb gas are regulated and
in A the fermionlike propagators in the matrix M are
regulated. )

For det M,~, our counting and classification of graphs
proceeds as before. This implies that if we can break
the graph into two connected multipoles with charge Q
and —Q, respectively, then the graph will give a leading
contribution of
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For example, the graph in Fig. 9(b) will give a contri-
bution as in Eq. (65) with Q = 1 and g = 2. Without
performing the integral, we cannot determine whether
ag (which can depend on 8 and wo) is nonzero. How-
ever, &om this line of reasoning, we can conclude that
the I'I'*~w + wo~ ~ singularity should only receive cor-
rections that go at least as ~cu + wo~ at all higher
orders in I'I'*. Similarly, at higher multiples of ~o we ex-
pect the singularities to be even smoother because they
go at least as ~(u + Q(uo~ @s

As a check on these calculations, we note that we can
apply the same analysis of the graphs and similar count-
ing arguments even at g = 1. In this case, every con-
nected graph is just a simple polygon with alternating
charges at the vertices. It is straightforward to see that
when any such. graph is divided into two disjoint, con-
nected parts, each part can only have a total charge of 0
or +1, and exactly two lines must be cut. Therefore, the
only singularities we can obtain are ~w~ and ~w+uro~, with
no higher order corrections. These results agree with
those in Ref. 11 and give strong evidence that our method
of analyzing the graphs works even for the nonequilib-
rium case.

VII. CONCLUSION

In this work, we defined a framework for the study
of equilibrium and nonequilibrium noise in 1D Luttinger
liquids. The interactions give rise to correlations that
are manifest in the noise spectrum. The correlations are
responsible both for algebraic singularities in the noise
power spectrum and for the nonlinear dependence of the
strength of such singularities on either the applied volt-
age between the terminals of the 1D system or the tem-
perature. The information carried by both the form of
the singularities and their strength can help us identify
Luttinger liquid states in experiments.

The picture of the tunneling in terms of the Coulomb
gas (and its dipole-gas interpretation) is attractive be-
cause it gives us an intuitive way to think about the tun-
neling in the Keldysh formalism. This picture provides a
unified description of the low- and high-&equency noise:
correlations between different dipoles define the structure
of the noise near zero frequency, whereas correlations be-
tween the two charges within the dipole should contribute
to the noise near the Josephson frequency wg = e*Vjh.
Using formal diagrammatic techniques we have justified
this interpretation, and, for integer g, we have obtained
exact answers for the form of the singularity in the equi-
librium case.

One particularly striking result we obtained is that the
form of the leading singularity at zero frequency (oc ~w~)
is the same for strongly correlated Luttinger liquids as

well as for noninteracting systems. The effects of corre-
lations in the case of low-frequency noise is present only
in the strength of the singularity, with a strong nonlinear
dependence on the applied voltage that is proportional

~4(g —1)

Although our Coulomb gas picture and the accompa-
nying formalism has enabled us to calculate the form
of the singularities to all orders in perturbation theory,
beyond the order ~I'~ it is too cumbersome to find the
strength (i.e. , the coefficient in front) of these singulari-
ties. We would also like to point out that the structure
of the noise far away from the frequencies nwJ, at higher
orders in perturbation theory, is unknown; the informa-
tion we are able to obtain is limited solely to &equencies
near the singular points. One exception is the exactly
solvable case of g = 1, where we find that the noise spec-
trum must have the form a+ b~w~ + c~tu+ up ~, where a, b,
and c can be calculated from the nonequilibrium voltage
and the transmission coefBcient. Thus, in this case, we
recover the results for noninteracting electrons. Indeed,
the framework we presented can be used with g = 1 for
studying coherence effects which appear in the noise for
noninteracting electrons and are due to the Pauli prin-
ciple, because the statistics enter in the formulation we
use through the bosonization.

There are two points in this work that need further
exploration. The erst is the apparent fine point of bet-
ter understanding the role of the short distance cutoff in
our calculations. We need either to determine whether
the nonequilibrium noise is sensitive to our choice of reg-
ulator or else to show that our choice of regulating the
fermionlike propagators instead of the Coulomb gas is the
physical one. The second, and more important, question
is to understand nonpertubative effects. For example,
one expects that the position of finite voltage singulari-
ties should depend on I'. In the case of tunneling between
edge states, when we increase the current, the frequency
should shift from e

&
to —'

&
as we go from the configu-

ration in Fig. 1(c), where the electrons are tunneling, to
the one in Fig. 1(b), where the quasiparticles are tunnel-
ing. This is not reHected in our perturbative calculations.
However, we have evidence that within our Coulomb gas
picture this shift can be explained by nonperturbative ef-
fects, and we hope to address this issue in a future paper.
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