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We present calculational studies of the electronic and geometric structure of an ordered monolayer
deposition of Bi on III-V(110) surfaces. The technique which we have applied to these systems relies on
the complete self-consistent solution of the Kohn-Sham equations for both the electronic and ionic de-

grees of freedom. An ab initio pseudopotential method, within the local-density approximation, is used
in a supercell approach. From a given initial set of atomic positions, a conjugate-gradient technique is
used to achieve the equilibrium geometry by moving along the Born-Oppenheimer subspace. The calcu-
lated relaxed geometries of the clean and Bi-covered (110) surface of GaAs, InP, and InAs compare well

with available low-energy electron-diffraction and x-ray standing-wave studies, and the electronic band
structures agree with angle-resolved photoemission results. The orbital nature of states that might parti-
cipate in Schottky-barrier formation at Bi-covered surfaces is also discussed.

I. INTRODUCTION

At room temperature most metal adsorbates are
known to react disruptively with the III-V(110) semicon-
ductor surface. ' However, the growth of a monolayer (1
ML) of Sb or Bi has been found to result in a stable and
ordered (1 X 1) structure. Therefore III-V(110)-Sb (1
ML) and III-V(110)-Bi (1 ML) have served as useful pro-
totypical systems for studying both nontrivial surface
geometries and Schottky barrier formation. Many exper-
imental studies of the electronic and structural
properties of these systems have been undertaken.
Theoretical studies have so-far been limited to the clean
III-V(110} surface, "' III-V(110)-Sb (1 ML}, ' and
very recently GaAs(110)-Bi(1 ML). ' The absence of ab
initio, parameter free, theoretical studies of atomic and
electronic structure has been a hampering factor in the
analysis of angle-resolved photoemission data"' for Bi
overlayer systems, which have proceeded by assuming a
strong similarity with the Sb monolayer systems.

Proposed geometrical models for the Sb monolayer in-

clude Goddard's epitaxial continued layer structure'
(ECLS), epitaxial on top structure, ' relaxed Skeath's
(p ) structure, ' and overlapping chain structure. ' Al-
though scanning-tunnel-microscope micrographs are un-
able to distinguish' between the ECLS and p models,
recent low-energy-electron-diffraction (LEED) (Refs. 6
and 7) and x-ray standing-wave (XSW) (Ref. 8) analyses,
as well as ab initio theoretical studies, have coii6rmed
that the correct ground-state configuration of the Sb
monolayer is the Goddard's model (i.e., ECLS). The re-
cent LEED (Refs. 6 and 7) and XSW (Ref. 9) studies have
also confirmed the ECLS model for the Bi monolayer on
III-V(110).

To provide a consistent and accurate study of both
atomic and electronic structure of the Bi overlayer sys-
tem an adequate theoretical basis is required. The princi-
pal theoretical tool for calculating structural and elec-

tronic properties of solids and surfaces in recent years has
been the use of computational models employing the lo-
cal approximation of the density-functional theory.
Within this theory, the vast majority of e8'ort has concen-
trated on the development of the molecular dynamics or
Car-Parinello technique. ' However, there is an alterna-
tive approach based upon the self-consistent solution of
the Kohn-Sham equations ' for both electronic and ionic
coordinates. We have recently developed a reliable
method for obtaining the electronic and structural prop-
erties of atomic systems within this scheme.

In this paper, we discuss some of the theoretical and
technical aspects which we have developed' for our cal-
culations. We start (in Sec. II A) with a brief resume of
the Kohn-Sham equations within the supercell approach.
We then present an overview of our method of solving
these equations, for the electronic degrees of freedom (in
Sec. II B), and for the geometric degrees of freedom (in
Sec. II C). In Sec. III, we present the results of our cal-
culations as applied to GaAs(110), InP(110), and
InAs(110) clean surface systems and provide a compar-
ison with existing experimental and theoretical data. In
Sec. IV, we present the results of our calculations as ap-
plied to GaAs(110)-Bi(1 ML), InF(110)-Bi(1 ML), and
InAs(110)-Bi(1 ML) within the Goddard geometry (the
ECLS), and compare these results with any existing ex-
perimental data. We comment upon the structural trends
for these systems, and their formation energies. In addi-
tion, we discuss the orbital nature of states which might
be responsible for Schottky barrier formation at these in-
terfaces.

II.METHOD

A. Kohn-Sham equations

Consider a periodic system, with a unit cell consist-
ing of 2M interacting valence electrons and L ionic
cores at positions (Rt,I=1, . . . , LJ. According to the
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Hohenberg-Kohn theorem, ' the ground-state energy
Eo =E [no, R] is a functional of the ground-state electron
charge density no(r). An electronic charge density n (r)
(for the spin degenerate case) is given by

n(r)= f dk g l@k(r)l(2~}3 )Bz

2U M

(2~)
(2.1a)

G&9t such that lk+(x ~E,„, , (2.1b)

where the Cs vectors range over a ball of radius QE,„, (in
Ry units, for some cutoff energy E,„,) in the reciprocal
space R. In order to derive the ground-state charge den-
sity no(r) from the pseudodensity n (r), we must solve an
Nk XNk nonlinear matrix eigenvalue problem (the
Kohn-Sham equations ' at k in K space) for the
coefficients [pk+&]:

Here, v is the volume of the unit cell, and the integral
over the first Brillouin zone (1 BZ) in K space can be ap-
proximated by a finite sum over so-called special weight-
ed k points k with weight m . In the "pseudopotential"
theory [ f'k(r);i = 1, . . . , M ] are (doubly occupied)
single-particle (pseudo-) wave functions of a fictitious sys-
tem, which by Bloch's theorem may be expanded in a
plane wave basis set:

gl (r )
—g e i (k+G) ry('

G

Rc=XSc, (2.28)

(Broyden's Jacobian update) method. We label the
"update" iterates by p = 1, . . . , n„~. Within the
"diagonalization-update" algorithm, the time and
memory dominant step is that of the diagonalization. If a
conventional Householder method is used, then the
memory requirement per k-point scales as O(Nk) and
the CPU requirement as O(Nk). However, it is impor-
tant to realize that only the lowest M eigenvalues and
eigenvectors (i.e., those occupied) are required [cf. Eq.
(2.1d)] to compute no H. ence, it is expedient to use an
iterative technique which exploits this fact. We employ a
semiblock RM-DIIS (residual minimization by direct in-
version in interactive subspace) technique with some
modifications. In order to appreciate these, let us recap
the salient features of the conventional RM-DIIS
method.

The standard RM-DIIS algorithm to solve the PIXEL
eigenvalue problem Hle & =Ele & begins with a best ap-
proximation

l
e"'

& to
l
e & and E' " to E; a (one-

dimensional) vector space V'":—[ l
e ' "

& ]; a (one-
dimensional} vector space HV" ':—[H

l
e "'

& ]; and
then proceeds iteratively (with iterates labeled by
n, r, s =1, . . . , nDi, s), so that at the beginning of the nth
iteration we have a best approximation le'"'& to le &

and E'"' to E; a sequence of vectors V'"'
=[lu'"&, , lu'"'&] (forming the iterative subspace);
a second sequence of vectors HV'"'= j lHv"'&,
. . ., lHu'"'&]. We then continue by solving the n Xn
generalized eigenvalue problem (the direct inversion):

(2 le) whereX ~k+G, k+cx'4k+G' e 0k+G &

G'

and substitute the result into Eq. (2. lb) and then Eq.
(2.1a). The Kohn-Sham Hamiltonian matrix,

H(n, R)=D +V (n )+V (n )+V (R), (2.1d)

R =(e'"'lHle" & and S =(e"le"
& (2.2b)

for the lowest eigenvalue k, using conventional House-
holder diagonalization so that we obtain

is a function only of the ionic coordinates R, and the
Fourier transform 5 of the charge density n. In the pseu-
dopotential approach and local-density approximation
(LDA) H can be understood as a sum of physical terms:
D is the diagonal kinetic-energy matrix; V represents
the classical Coulomb (or Hartree) electron-electron ener-
gy; V is the electron exchange-correlation energy
within the LDA; and V is the pseudopotential part of
the Hamiltonian, representing the electron-ion Coulom-
bic interaction. Note that the off-diagonal Hamiltonian
matrix elements require consideration of reciprocal-
lattice vectors up to the kinetic-energy cutoff 2+E,„,.

B. Solution of electronic degrees of freedom

For a fixed set of ionic coordinates R, the ground-state
charge density no(r) must be obtained by solving the
Kohn-Sham equations (2.1a) at each of the special k
points for the (t. 's. Since, however, the Kohn-Sham equa-
tions are nonlinear (i.e., H is dependent upon P), then for
their solution one must proceed in an iterative manner.
We use a "diagonalization-update" technique, in which
the "update" is performed by a quasi-Newton-Raphson

(n+ i)
& y l

(r)
& d E(n+() (2.2c)

and, finally, we obtain

lu( +»& = A(~+')l/ (e("+» E(&+»)
& (2.2e)

lH""+"&=Hl '"+"& (2.2f)

for some "almost diagonal" matrix A'" " (which will be
discussed shortly). We may then proceed to the ( n + 1)th
iteration.

In order to find the lowest M eigenvectors
[Hle; &=E, le,. &(i =1, . . . , M)], we could proceed in a
sequential manner as follows. First use RM-DIIS to find
the lowest eigenvector le( &. Then use RM-DIIS to find
the next lowest eigenvalue le2 & but ensuring orthogonali-
ty of V'"' to the lowest eigenvalue le, & at each iteration r,
and so on. Now, if the maximum number of iterations
likely to produce a reliable eigenvector is nolis, then the

Next, we define the residual

l~(e("+",E'"+' }& (H E +")I""+"& (22d}
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naive theoretical computational cost of this exercise will
be 0(NnD«s) in memory and 0[M(nD«sN +nD«s)] 'n
CPU. We use the term naive here, because, in practice,
reading the matrix elements of H or calculating them
takes one or two orders of magnitude longer than it
takes to multiply H with a vector. Thus, the real CPU
requirement will be 0 [M (n D„st +n D„s ) ], where
z- 10-100.

We avoid this congestion by using a "semi-block" tech-
nique, in which at the nth iteration we have stored
our best approximations { l e, ~ ), . . . , l

eM~
' ) j and

{E',"', . . . , EM'j to the M lowest eigenvectors and eigen-

values {le, ), . . . , leM ) j and {E„.. . , EM j; M se-

quences of n vectors {V, , . . . , VM j, where V;
= { l

"), . . . , lu "') j (i =1, . . . , M); M sequences of n

vectors {HV'i"', , HV~'j, where HV("'= {l~u J")
& j with i = 1, , M The idea here being that

each of the V,'"' forms the iterative subspace
for the ith lowest eigenvector. In addition, the sequences
of vectors are required to satisfy (e,""'lu~I'') =li," for all
r =1, . . . , n and i,j = 1, . . . , M (i.e., we are demanding
that le,'"') is perpendicular to V'"' for jWi). We
then proceed as in the regular RM-DIIS case and
diagonalize each of the n X n generalized eigenvalue
problems formed within V'"'. We are
thus able to calculate {le~i"+ '), . . . , leM+") j,
{E E j and {lu'"+"

& . . . , lu'"+"& j It.
is now possible to obtain { Hu', "+"), . . . , lHu~ ")j
by using only a single call to each of the matrix elements
of H. Thus, the calculational cost of this technique is
0(nD, ssNM) in memory, but only 0 [M(nD«sN
+ n D„s ) ] in CPU (i.e., we sacrifice an order M in
memory for a gain of one or two orders of magnitude in
CPU).

This technique should be contrasted with the full-block
RM-DIIS algorithm, in which the iterative subspace
used at the nth iteration is %'"'=VI"'X XV~'—of
dimension Mn. This yields the same memory require-
ments as the semiblock method, but the diagonalization
now occurs over the whole of %'"', so that the CPU cost
is 0(Mn Di,sN + (n DiisM) ). If the number of iterations

nD&&s required to achieve convergence is large, then the
second term in this sum quickly becomes dominant. One
might imagine that the increased dimension of the itera-
tive subspace leads to a much smaller value of nDiis here.
However, in practice, we have found that the number
n D„s of iterations required for the semiblock diagonaliza-
tion is only very slightly larger (& 5%) than the number
required in the block case, so that we always find the
semiblock technique to be superior.

Our algorithm is initiated by choosing the sets

{le'i" ), . . . , leM'j and {E',", . . . , EM'j as close to the
exact eigenvalues and eigenvectors as possible. This is
achieved by a combination of two methods.

(i) For the first few iterations (i.e., p= 1 or 2) in the
electronic "update" cycle, we use a Lowdin first-order
perturbation type approach, in which a Q X Q
(Q «N;Q ~M) submatrix Cx of H is chosen (normally
so that the diagonals of Cx contain the Q smallest diago-
nal terms in H) and diagonalized.

(ii) For the remaining iterations (p ~ 2) in the electron-
ic "update" algorithm, the {le ")j are chosen as the ex-

actly calculated eigenvectors {le; ) j obtained from the
previous iteration, i.e., (p, —1)th iteration.

The accelerator or preconditioning matrix A'"+" in

Eq. (2.2e) is required to accelerate the convergence of the
iterative subspace. Thus, we wish to choose it so that (a)
the residual lR (e'" "+u'" ",E'" ")) vanishes or
nearly vanishes, and that (b) A'"+"lR (e'"+",E'"+"))
be easily calculable. Condition (a) is satisfied exactly if
A'"+"=(H—E) ', so that if 8= {lb; );i =1, . . . , Nj is
a complete orthonormal basis, then A'"+" can be ap-
proxirnated by

A(n+1) lb, &(b, l

= (,
'b IH —E'"+"lb )

' (2.2g)

C. Solution to geometric degrees of freedom

For a given ionic configuration R, once the solution
{/ok(r) j to the Kohn-Sham equations has been calculat-
ed, the ground-state charge density no(r) may be deter-
mined using Eq. (2.1a) and the total energy E[no, R]
may be evaluated using momentum space formula-
tion. ' Then within the plane-wave basis, the
Hellmann-Feynman forces F[no, R] given by

dE [no, R]
F1[no, R]=—(VE)I =—

I
(2.3a)

can also be computed straightforwardly in the momen-
tum space formulation. ' In order to find the equilibri-
um atomic structure, we, therefore, need to solve the 3I.
dimensional equation,

F[no, R]=0 (2.3b)

for R. Since this equation is highly nonlinear, it is neces-
sary to pursue an iterative solution. The principal
methods for solving such equations are the "one-
dimensional minimization techniques". ' These
deduce the solution Ro to Eq. (2.3a) by finding the
minimum of the ground-state energy E [no, R]. This pro-

where the prime denotes the omission of any terms where
the denominator is very small. The formula is exact for
the case lb; ) = le; ), and correspondingly more precise
the closer the set B to the {le; ) j. Wood and Zunger,
therefore, suggested using the basis obtained from the ini-
tialization procedure [i.e., (i) as described above]. We
have found that if the number of eigenvectors (M) being
calculated is reasonably high, then (at iteration n) an im-
proved preconditioning matrix A'"+" can be obtained
by replacing the M lowest vectors of 8 by the current
best estimates for the eigenvectors {le "+")

j (even
though the resulting basis is not completely orthogonal).
For the systems considered in this paper, we have
M/N-50/1500 so that we are diagonalizing about 3%
of the total vector space. We find that our improved
preconditioning algorithm reduces the amount of time
spent performing the diagonalization by a factor of 2 —4
over that used by Wood and Zunger.
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cedure is as follows.
Let us label the iterations in this process by X,

Q=1, . . . , ng„. Then at the 0th iteration, we have cal-
culated an atomic configuration R (our best approxima-
tion to Ro), the total energy E [no, R ], and the
Hellmann-Feynman forces F [no, R ]. Then to proceed
to the (0+1)th iteration, we (i) choose a direction d; (ii)
find the solution to which minimizes E[no, R +d t]
(i.e., a one-dimensional minimization in the direction d );
(iii) set R +'=R +d to and calculate E[no, R +'],
F[n, R +'].

Within this algorithm there are two points which need
to be addressed.

(a) How is the direction d chosen? For the first itera-
tion, we have the obvious choice d= —F[no, R]. If we
maintained this choice at all the iterates for the equilibri-
um geometry, then we would be using the so-called
"steepest-decent" technique. This method, however, is
not very efficient at providing a converged solution. We
find that a far more efficient method, which requires
minimal storage, and proves very robust, is provided by
the conjugate-gradient method. This technique is
specifically designed for the quadratic problem
[E(x)=a+bx+x Cx], where the directions ]d ] (for
iterations 0=1,2, . . . , ns„) are chosen to be "conju-
gate" to one another [i.e., (d ) Cd ~5 ]. The precise
form for d in (ii) is dependent upon the algorithm imple-
mented (Fletcher-Reeves, Polak-Ribiere, etc.—see Ref.
29). However, it is always chosen as a perturbation on
F(R ), of the form

to a bad estimate of the true value of the energy
minimum). If we approximate the energy E (R)
by a quadratic function of R [say E'(R) =a +bR
+ 1/2R CR] then the ininimum of E' in the direction d
is given by

bd+ RCdPo=R+s d where s =
0 dCd

(2.3d}

and a prudent choice for o. would be o. =s0. However, in
order to evaluate the expression in Eq. (2.3d), we would
need a good approximation to the Hessian matrix C. In
our technique, this is obtained by using the Broyden-
Fletcher-Goldfarb-Sh anno Hessian update formula,
with C initialized by running the program on a relatively
low (reciprocal space} cutoff energy E,„,=2 Ry. We find
that this gives an improvement in performance of ap-
proximately 25%%uo over that obtained by using a scalar up-
date approximation to the Hessian.

Finally, having calculated E(R) and E(R+o.d) and
evaluated t0, one can use the Kohn-Sham self-consistent
wave functions $0(R) and $0(R+ crd) to evaluate the ini-
tial trial wave function to $0(R+ tod) via

$0(R+ tod) -$0(R)+ to/cr [go(R+ crd) —go(R) ] . (2.3e)

This gives an excellent approximation to the actual self-
consistent wave function (especially when R or R+crd
are close to R+tod), and leads to an overall increase in
performance of about 70% over that obtained by say a
good analytic initial approximation.

0—1

d = —F(R )+ g y~d
X=O

(2.3c)
III. APPLICATION TO SURFACE GEOMETRY

A. Physical and calculational approximations

for some constants y. Despite the fact that the energy
function E [n 0,R ] from density-functional theory is not
quadratic in R, however, we still find that this algorithm
is robust and its application gives excellent convergence
to the equilibrium configuration R0 in less than L itera-
tions.

(b) How is the one-dimensional minimization per-
formed? The conventional method to use is that due to
Brent. However, this routine is highly extravagant in
the number of calls it makes to the function to be mini-
mized [E(R) in this case], which is the time dominant
step in a computer program using the density-functional
scheme. In our procedure, having arrived at the ith itera-
tion in the algorithm with the results for E(R) and F(R)
available, we calculate (ER c+rd) and F(R+trd) (for
some small increment cr ), and estimate the position of the
minimum t0 by fitting a polynomial of order 3 or greater.
We attempt to fit a fourth-order polynomial of positive
de6nite second derivative, or failing this a fourth-order
polynomial with a single rninimurn and maximal second
derivative. Such 6ts are always unique and have the ad-
vantage over third-order polynomials of being bounded
from below.

The choice of o. can be of some importance in the
deduction of an accurate value for the energy minimum
in a minimal number of steps (i.e., a bad choice of cr leads
to a poor polynomial 6t to the actual energy, and hence

We simulated an isolated material surface within the
supercell framework by choosing a unit cell to consist of
a sandwich of vacuum and material and vacuum. The
unit cells for the systems under consideration here were
orthorhombic (point symmetry group C2„) with volumes
16 times that of the bulk primitive (III-V) unit cell. In
particular, for clean III-V(110) surface systems, we chose
an atomic constituent of III9V9 arranged in a slab of nine
layers of III-V, while for the overlayer systems III-
V(110)-Bi(1 ML) (III-V = GaAs, InP, or InAs) we chose
an atomic constituent of III7V7Bi4, arranged in a slab of
seven layers of III-V, with two layers of overlayer (one on
either side of the III-V slab). This gave a vacuum region
equivalent to seven atomic layers for both clean and
covered systems.

The starting surface or interface geometries (with
which the calculation is initialized) were simply taken as
the continuation of the perfect III-V bulk crystal, ' with
an experimental cubic lattice constant of a =5.653,
5.869, and 6.058 A for GaAs, InP, and InAs, respective-
ly. Initial mean forces per atom were of the order 0.8
eV/A (with a maximum force of 7.0 eV/A) in magnitude.
Relaxation was performed on all the atoms in the unit
cell, and was stopped when the mean force per atom
dropped below 0.04 eV/A (leaving a maximum force on
any atom of 0.15 eV/A). Typically this required 8 —12
geometry iterations.
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The electron-ion interaction was considered in terms of
the ab initio norm-conserving pseudopotentials of
Bachelet, Hamann, and Schluter, including angular-
momentum components up to I =2 for the ions making
up the semiconductor slab, and up to I =3 for Bi ions
(the spin-orbit interaction being ignored). The electron-
electron interactions were treated using the correlation
scheme of Ceperley and Alder within the local density
approximation. The single-particle (electron) wave func-
tion was expanded in plane waves, up to a maximum
kinetic-energy cuto8' of E,„t=10 Ry. This gave a typical
value for X& of about 3000. Diagonalization of this large
Hamiltonian matrix was assisted by exploiting the z-
reAection symmetry present in the unit cell with the
chosen odd number of atomic layers, and was performed
by our "semiblock" RM-DIIS technique. The k-space
summations were performed by considering four special
points in the irreducible segment of the surface Brillouin
zone.

In the following discussion we have used the conven-
tion that z (y) refers to the [110]([001])direction, while

~~

and l refer to the parallel and perpendicular directions of
the overlayer-substrate layer atomic bonds. Atoms on
the surface will be designated "surface layer, " whereas
atoms on the layer immediately beneath will be designat-
ed "subsurface layer" and "first substrate layer" for the
clean and covered systems, respectively.

B. Results of calculations for clean systems

In Fig. 1, we have a schematic diagram of the (relaxed)
top three layers of our slab systems, indicating the key
LEED structural parameters. Anions represent type-V
atoms, while cations represent type III. Our calculated
structural parameters for these systems are presented in
Table I together with any available relevant theoretical or
experimental data. We observe that our calculated equi-
librium geometry is close to that predicted by LEED
analysis, ' ' and a combination of XSW and surface-
extended x-ray-adsorption fine-structure (SEXAFS) deter-
mination. In addition, it is pleasing to note that we also

ANION

CATION

z/[110]

= y/[001]

FIG. 1. Schematic representation of relaxed surface-atomic
positions indicating the key structural parameters. For III-
V(110)-Bi(1 ML), both anions and cations represent Bi atoms in
the top layer, while in the lower layers cations (anions)
represent III(V) atoms.

find excellent agreement with previous Car-Parrinello
type calculations. ' This gives us strong confidence in
the accuracy of our results both for the clean surfaces
and the Bi overlayer systems studied here. It is interest-
ing to note that the equilibrium geometries obtained here
are relatively insensitive to starting conditions. In partic-
ular, if the LEED geometry is chosen as our starting
configuration, then we obtain an identical equilibrium
geometry to that obtained above. This indicates that our
geometry optimization algorithm is strongly stable.

Figure 2 shows our calculated surface electronic states
(dashed lines) for the clean surface systems superimposed
on that of the bulk (continuous lines). Also shown are
the experimentally derived data (open circles) from pho-
toemission studies on GaAs(110), on Inp(110), and on
InAs(110). Our anion and cation derived states are la-
beled A; and C, , respectively. In each case, we have
identified four anion derived states and three cation de-
rived states. The orbital characters of these states have
been discussed in many previous papers. ' '" However,
in order for the comparison to be made with the Bi adsor-
bate layer, we have depicted the orbital characters of the
three occupied states ( A 3

—A 5 ) and the unoccupied state
(C3) in Fig. 3. Our bands match those measured experi-

TABLE I. Calculated and experimentally derived structural parameters for III-V(110). All distances
0

in A, all angles in degrees.

Present
LEED (Ref. 6)
Ref. 11

30.2'
28.4'
29

3.9'
3.4'
3.8'

~1,l ~2, J.

GaAs(i io)
0.66 0.09
0.70 0.08
0.652 0.094

d]2, i

1.75
1.84
1.84

C2-A

2.42
2.42
2.43

C)-A,

2.40
2.48
2.38

C)-A2

2.34
2.38
2.37

Present
LEED (Ref. 7)
SEXAFS (Ref. 36)
Ref. 11

27.1'
31.1
27
29.5

3.1'
0.5

4.6' 0.67 0.11

InP(110)
0.60 0.079 1.85

1.88

1.93

2.50
2.55

2.46

2.46
2.52
2.54
2.42

2.48
2.49

2.42

Present
LEED (Ref. 35)
Ref. 10

28.7'
31.0'
32

3.40
InAs(110)

0.66 0.09
0.78 1.40
0.75 0.13

1.89
1.95
1.88

2.58
2.50
2.51

2.55
2.67
2.53

2.54
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FIG. 2. Electronic band structure of clean III-V(110) surfaces: (a) GaAs(110), (b) InP(110), (c) InAs(110). Dashed 'n

o r calculated energy levels, superimposed on to projected bulk bands regions shown by solid lines, while angle-resolved photo
sion results are indicated by open circles.
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(&) A3 (b) A,

(c) A5

FIG. 3. Charge-density plots, in the (110)plane, for selected
surface states on InAs(110): (a) A3 at X, (b) A4 at M, (c) A5 at
X, (d) C3 for InAs(110) at X.

mentally extremely well in dispersion, and (to a lessor ex-
tent) in their energy location. In general, we find the A 5

state lies closer to the top of the bulk valence-band edge
than suggested by experiment. %'e expect that, in agree-
ment with the work of Alves, Hebenstreit, and Schem. er'
use of a sufficiently large energy cutoff will shift this state
down in energy, thus providing improved agreement with
experiment.

Recently, Swanson et al. have noted that their pho-
toemission data for the A5 state on InAs(110) agree ex-
ceptionally well with the earlier pseudopotential calcula-
tion by Alves, Hebenstreit, and Schemer' within the
local-density approximation. However, a significant
difference between experiment and theory has been ob-
served for the energy location of the A3 and Cz states.
The theoretical work of Alves, Hebenstreit, and
Schemer' clearly suggests that the energy position of
these states is not very sensitive to the size of the basis
set. In view of this observation, Swanson et al. suggest
that the experimentally measured A 3 and C2 states could
be used to provide a stringent test of quasiparticle surface
band-structure calculations. ' We do not fully agree with
this suggestion, for two reasons. First, our theoretical
calculations show respectable agreement with their ex-
periment, both for A3 and C2. Second, it should be not-
ed that while our calculations have been performed at the

experimental lattice constant, the surface bands in the
work of Alves et al. have been calculated at their
theoretical lattice constant. The theoretical lattice con-
stant, being approximately 2% smaller than experiment,
alters the energy locations of bulk as well as surface
states. Clear evidence of this is borne out from the un-
reasonably large bulk band gap for InAs in the calcula-
tion of Alves, Hebenstreit, and Schemer. ' It can be seen
in Fig. 2(c) that for InAs(110) surface our theoretical re-
sults show a convincingly good overall agreement with
the photoemission data of Swanson et a/. The first unoc-
cupied surface energy level, C3, is found to lie at energies
1.1, 1.5, and 1.2 eV above the bulk valence-band edge for
GaAs(110), InP(110), and InAs(110), respectively.
Consequently, this state lies just below the bulk
conduction-band edge in GaAs and InP, but well above it
in InAs.

Our theoretical estimates of surface-state gaps cannot
be directly compared with experimental measurements,
due to the modest basis set used and the band-gap prob-
lem within the local-density approximation. However, as
quasiparticle calculations ' suggest a fairly uniform shift
of unoccupied states, our theoretical results can be used
to investigate band-gap trends at different k points in the
Brillouin zone. The calculated trend for the energy band
gap between highest occupied and lowest unoccupied sur-
face state at X, M, and X' points is b,E(X)
&bE(M) &AE(X'). This is in contrast to bE(X')
&AE(X) &b.E(M) as measured by Carstensen et al.
using a combination of direct and inverse photoemission
techniques.

From the results in Table I we can make a few observa-
tions on structural characteristics of clean cleaved III-
V(110) surfaces. First, since the lengths C&-3 „Cz-A „
and C, -A2 are all similar and within about 4% of the
bulk bond length, it is clear that the concept of conserva-
tion of Pauling's tetrahedral radii is maintained at these
surfaces (i.e., the surface atoms are "free" to move in the
direction perpendicular to the surface, and, therefore, set-
tle at positions in accordance with their Pauling radii).
Second, in all the three cases studied here, we find that
the top atomic layer of these clean surfaces have moved
towards the bulk (i.e., d &2 ~ is smaller than the bulk inter-
planar distance along [110],by about 10%). Third, the
clean cleaved III-V(110) surface layer shows a charac-
teristic tilt angle co& in the range 27' —30'. Anions
(group-V atoms) move out of the surface plane "prefer-
ring" a pyramidal bonding geometry, and cations
(group-III atoms) move into the substrate "preferring" a
planar bonding geometry.

Our results, for both structure and electronic states,
are in general agreement with the previously reported ab
initio work, ' '" although when making detailed compar-
isons it should be remembered that our work is based on
experimental lattice constants, while the calculations in
Refs. 8 and 9 are based on those derived from theory.

C. Results of calculations for Bi overlayer systems

In Fig. 1, we have a schematic diagram of the (relaxed)
top three layers of our slab systems, indicating the key



51 GEOMETRY AND ELECTRONIC BAND STRUCTURE OF AN. . . 2341

LEED structural parameters. For III-V(110)-Bi(l ML),
both anions and cations represent the Bi atoms in the sur-
face layer, while in the lower layers cations (anions)
represent atoms from group III (V). Our calculated
structural parameters for these systems are presented in
Table II, together with any available experimental data.

Previous theoretical studies" ' of a monolayer
growth of Sb on III-V(110) have considered many possi-
ble overlayer geometries. These studies have concluded,
in agreement with LEED studies, ' that Goddard's epi-
taxial continued layer structure (ECLS) is the lowest-
energy configuration. The ab initio works in Refs. 11 and
12 have predicted that total energy of the so-called "epi-
taxial on top structure" is higher than the total energy of
the Goddard structure by only about 0.25 eV per Sb
atom. In this study, we find that the total energy of the
Bi covered surfaces in the epitaxial-on-top structure is
also only about 0.25 eV per Bi atom higher than that for
the Goddard structure. It is also of interest to estimate
the absorption energy of the Bi overlayer in the Goddard
structure. With respect to the relaxed surfaces, we have
calculated an upper bound for the absorption energy with
the following values (in eV per Bi atom): 4.5, 4.9, and 4.8
for Bi/GaAs, Bi/InP, and Bi/InAs, respectively. (These
values were obtained by calculating an upper bound for
the pseudoatomic energy for Bi at the same kinetic-
energy cutoff, viz. 10 Ry.}

There is good agreement between our calculated
structural results and that available by LEED (Refs. 6
and 7) and x-ray standing-wave (XSW) (Ref. 9) analyses,
on the Goddard geometry, for GaAs(110)-Bi(1 ML) and
InP(110}-Bi(1ML). There appears to be no available ex-
perimental data for the InAs(110)-Bi(1 ML) structure. In
agreement with previous ab initio studies" ' of
GaAs(110)-Sb(1 ML), we find that a monolayer adsorp-
tion of Bi on III-V(110) practically removes the surface
tilt angle, and there is only a small vertical shear between
inequivalent Bi atoms. For the covered systems, the Bi
atoms can adopt either an anion- or cation-type behavior
depending on their first substrate neighbor, and our ob-
servation of the tilt angle is in accordance with this
principle —although to a much lesser extent than on
clean surfaces. Low-energy-electron-di6'raction, STM,

and photoemission results have also indicated two dis-
tinct and equally populated Bi sites on GaAs(110).

It is interesting to observe from Table II that the Bi-Bi
bond length is almost preserved, and is close to twice
Pauling's tetrahedral radius for Bi (r =1.46 A). Similar-
ly, the Bi-Ga bond length is also close to the sum of the
tetrahedral radii of Bi and Ga. Furthermore, for both
InAs(110) and GaAs(110) substrates, the Bi-As bond
length is close to the sum of the Bi and As radii. The
same is observed for the Bi-In bond length on the
InP(110) and InAs(110) substrates. These observations
thus vindicate the concept of bond-length conservation
for the overlayer systems, a point already made for clean
surfaces.

Figures 4(a), 4(b), and 4(c) show surface induced elec-
tronic states (dashed lines) for our Bi covered surface sys-
tems superimposed onto the projected bulk bands (con-
tinuous lines). Also shown (using open circles} are the ex-
perimentally derived data for GaAs(110)-Bi(1 ML),
InP(110}-Bi(1 M), and InAs(110)-Bi(1 ML). We have
been able to identify a total of nine surface induced states,
labeled SI,S2, . . . , S9. The characters of these states are
quite different from those on the clean surface, which will
become clear upon comparison of Figs. 3 and 5. We now
discuss the overlayer states in some detail.

The lowest-energy valence state S, is observed in each
of our three systems, and lies entirely below the bottom
of the ionicity band. This state is derived from a sso. -

type bonding between the s-type wave functions located
on the surface cation Bi atom and its neighboring (first
substrate) anion atom [shown in Fig. 5(a) for the case of
InAs(110)-Bi(1 ML) at X]. The band Sz is only observed
for the cases GaAs(110)-Bi(1 ML) and InAs(110)-Bi(1
ML). It lies just above the ionicity band, and is predom-
inantly derived from an s orbital located in the anion Bi
atom. For the case of InAs(110)-Bi(l ML) at X, this state
is found to be resonant with bulk s bands [see Fig. 5(b)].
The state S3 is seen for all our overlayer systems lying
high in the ionicity gap, and is associated with antibond-
ing between the s orbitals located on the cation Bi atom
and its neighboring first substrate layer anion atom [see
Fig. 5(c) for the case of InAs(110)-Bi(l ML) at X]. Thus,
the states SI and S3 result from the bonding and anti-

TABLE II. Calculated and experimentally derived structural parameters for III-V(110)-Bi(1 ML).
0

All distances in A, all angles in degrees.

Present
XSW (Ref. 9)
LEED (Ref. 6)

4.5'

2.6'

7.1

4.3

d12, l

GaAs(110)-Bi (1 ML)
0.16 0.17 2.38

0.14+0.1 2.5+0.08
0.09 0.11 2.52

C2-A )

2.73

CI-AI

2.89
2.85+0. 17

2.87

CI-A2

2.61

2.77

InP(110)-Bi (1 ML)

Present
LEED (Ref. 7)

5.5'
5.4'

4.1'
1.5

0.20 0.098 2.41
2.48

2.83
2.88

2.94
2.98

2.58
2.58

InAs(110)-Bi (1 ML)

Present 4.3 5.2' 0.15 0.13 2.43 2.85 2.98 2.67
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FIG. 5. Charge-density. plots for selected interface states on InAs(110)-Bi(1 ML): (a) S& at X, (b) S2 at X, (c) S3 at X, (d) S4 at M, (f)

S~ at 0.5(X—M), (g) S6 at 0.5(X—M), (h) S7 at X, (i) S8 at X, (j) Ss at X, (k) S9 at X, (1) S9 at X. Also shown in (e) is S~ for
GaAs(110)-Bi(1 MU at M. The plots in (a)—(i), (k) are in the (110)plane, and the plots in (j) and (1) are in the (110)plane.
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bonding combinations of the s orbitals of the overlayer
and substrate anion atoms. This feature has also been ob-
served" for InP(110)-Sb(1 ML).

The state S4 is glimsed at the upper edge of the ionicity
gap around M for the InP and InAs substrates, and along
X-M-X' just inside the stomach gap for the GaAs sub-
strate. In all three cases it is associated (somewhat weak-
ly) with an orbital on the first substrate layer cation atom
[see Fig. 5(d) and Fig. 5(e) for the cases of InAs(110)-Bi(1
ML) and GaAs(110)-Bi(1 ML) at M, respectively].

S5 and S6 are two bands which skirt across the top of
the stomach gap for each of our overlayer systems. For
the InP substrate their maximum separation is fractional-
ly greater than that of InAs and GaAs, which may ex-
plain why both bands have been experimentally observed
only in this case, and single bands in the other cases.
These bands are both related to p orbitals located on the
1st substrate layer anion atom, which may be another
reason for the diSculty of experimentally distinguishing
them. They are depicted in Fig. 5(Q and 5(g) for the case
of InAs(110)-Bi(1 ML) at 0.5(X-M). The state S6 has a
large contribution from the substrate anion p orbital and
a small p~ contribution from the Bi atom. The S5 state
has a large p, contribution from the substrate anion and a
small p contribution from Bi. These two bands cross at
around X, and, thus, to the left of X the substrate's p and

p, contributions are swapped. The bands S5 and S6 are
nearly degenerate throughout X-M-X'. Schmidt, Wen-
zien, and Bechstedt' have noted a similar situation for
GaAs(110)-Sb(1 ML).

The second highest occupied state is S7. It lies above
the bulk valence-band edge everywhere except for part of
I -X. In the region of X, it is derived from a bonding
configuration between a pj orbital on the cation Bi atom
and a p~~

wave function on its anion neighbor [see Fig.
5(h)]. Its character changes along X-M-X', and at X' is
associated with interacting p~ orbitals located on both
types of Bi atoms.

The highest occupied state S8 lies entirely above the
valence-band edge, with relatively Aat dispersion along
J-M-J'. In the region of X, it is derived from a p, dan-
gling bond on the anion Bi atom, together with some in-
teraction with its cation neighbor [see Fig. 5(i)]. This in-
terpretation of the highest occupied state on III-V(110)-
Bi(1 ML) is similar to that presented theoretically" ' '"
for a monolayer of Sb. At X' this state is composed of p,
orbitals on both types of Bi atoms, forming an antibond-
ing configuration of the type shown in Fig. 5(j). Our in-
terpretation of this state is also in agreement with the
finding from the experimental work of McLean et al.
for GaAs(110)-Sb(1 ML).

The lowest unoccupied state S9 disappears into the
bulk in the regions around I and M, with a minimum at
0.8(l'-X) and a slightly higher lying minimum at X'. At
X, this state is associated with an sp~ orbital located on
the anion Bi atom [see Fig. 5(k)], while at X it is derived
from a Bi-Bi antibonding chain of p orbitals [see Fig.
5(1)]. This state lies below the conduction-band edge in
InP, but above the conduction-band edge in GaAs and
InAs.

Photoemission measurements ' ' have only been able
to detect surface or overlayer states with low binding en-
ergies, typically up to 4 eV below the bulk valence-band
edge. As seen from Fig. 4, these can be identified with
the states S5-S8 obtained in our work. In the binding-
energy range 2—3.5 eV, these measurements have pro-
duced two surface bands for Bi/InP, and only one surface
band for Bi/GaAs and Bi/InAs. These can be compared
with the nearly degenerate bands S5 and S6. In the ener-

gy range +0.5 eV to —1.0 eV, with reference to the bulk
valence-band edge, photoemission measurements have
mapped out two surface states. These show reasonable
agreement with the states S7 and S8 of this work. A
clear feature of the highest occupied state, from both ex-
periment and theory, is that it shows very little dispersion
along X-M-J'. In addition, both experiment and theory
identify two bands along I -X', which cross and anticross.

The leading edge of S8 lies at about 0.7 eV above the
GaAs valence-band maximum, and about 0.5 eV above
the valence-band maximum in InP or InAs, in agreement
with photoemission measurements. ' This energy edge
can be regarded as the Fermi-level pinning position for
p-doped substrate, and its position above bulk valence-
band maximum provides a measure of the corresponding
Schottky barrier height for the Bi covered system. The
bonding character of this state, viz. the bonding between
the p, orbitals of the overlayer Bi and the substrate cat-
ion as discussed above, provides an understanding of the
nature of Schottky barrier formation for p-doped sub-
strate. The unoccupied dangling-bond nature of the state
S9 could pin the Fermi level for n-doped substrates. This
state lies below the bulk conduction-band edge for the
substrates GaAs and InP, but above it for InAs. The
transition S8~S9 is indirect with magnitudes approxi-
mately 0.5, 0.8, and 0.7 eV for GaAs, InP, and InAs sub-
strates, respectively.

IV. CONCLUSION

In conclusion, we have developed a robust method of
solving the Kohn-Sham equations for both the electronic
and geometric degrees of freedom within the pseudopo-
tential approach and local-density approximation. We
have applied this technique to study clean III-V(110)' sur-
faces and III-V(110)-Bi(1 ML) systems. Our calculated
equilibrium geometry agrees well with the results ob-
tained from LEED analysis and a combination of XSW
and SEXAFS determination. In addition, there is excel-
lent agreement with previous Car-Parrinello type calcula-
tions. There is fairly good agreement between the calcu-
lated surface states and photoemission data. Similarly,
the calculated atomic geometry for the ordered mono-
layer deposition of Bi on these surfaces is found to be in
very good agreement with available results from XSW
and LEED studies, The calculated electronic structures
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of the overlayer systems show reasonable agreement with
recent angle-resolved photoemission measurements. Our
work also explains the orbital characters of the important
adsorbate induced states in the substrate band gap, to-
gether with their role in Schottky barrier formation.
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