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In the functional-integral technique an auxiliary field, coupled to appropriate operators such as spins,
linearizes the interaction term in a quantum many-body system. The partition function is then averaged
over this time-dependent stochastic field. Quantum Monte Carlo methods evaluate this integral numeri-

cally, but suffer from the sign (or phase) problem: the integrand may not be positive definite (or not real).
It is shown that, in certain cases that include the many-band Hubbard model and the Heisenberg model,
the sign problem is inevitable on fundamental grounds. Here, Monte Carlo simulations generate a distri-
bution of incompatible operators —a Wigner function fro—m which expectation values and correlation
functions are to be calculated; in general no positive-definite distribution of this form exists. The distri-
bution of time-averaged auxiliary fields is the convolution of this operator distribution with a Gaussian
of variance proportional to temperature, and is interpreted as a Boltzmann distribution exp( —PV,e) in
classical configuration space. At high temperatures and large degeneracies this classical effective Hamil
tonian V,& tends to the static approximation as a classical limit. In the low-temperature limit the field
distribution becomes a Wigner function, the sign problem occurs, and V,z is complex. Interpretations of
the distributions, and a criterion for their positivity, are discussed. The theory is illustrated by an exact
evaluation of the Wigner function for spin s and the effective classical Hamiltonian for the spin-~ van

der Waals model. The field distribution can be negative here, more noticeably if the number of spins is
odd.

I. INTRQDUCTIGN

Functional integration is an important computational
tool in areas ranging from the statistical mechanics of
correlated electrons to nuclear structure. In studies of
magnetism and superconductivity, it is useful to be able
to deal directly with the relevant order parameter field
(or auxiliary field coupling to it) as the variables of the
system. One traces out the electronic degrees of freedom,
to leave a functional integral over these variables. Com-
puting power now available allows quantum Monte Carlo
evaluation of the functional integrals for model Hamil-
tonians, giving nonperturbative and (in principle) numeri-
cally exact results. '

A. The sign problem

a serious impediment to Monte Carlo calculations. First
noted in fermion calculations, it also appears, for exam-
ple, in spin and Jahn-Teller systems. The current work
does not attempt to overcome the problem; rather, it
identifies a class of situations in which the sign problem
appears to be inevitable on fundamental grounds, and its
neglect may hide relevant physics. (In a similar way,
neglect of the related topological terms in one-
dimensional Heisenberg models would discard spin
quantization and lose distinctions between integer and
half-integer spins. ) For example, in an isotropic fer-
romagnetic one is interested in the order parameter. We
shall show that common quantum Monte Carlo tech-
niques are attempts to generate a probability
distribution —a Wigner function —for all components of
the total spin. Such distributions cannot in general be
positive definite.

The basis of Monte Carlo integration is the Metropolis
algorithm: importance sampling allows integration, over
a high-dimensional space, of a function varying by many
orders of magnitude. In a classical simulation, points in
phase space are typically sampled with probability given
by the Boltzmann factor exp( PE) In a qu—antum. simu-
lation, the corresponding quantity is the weight of a path,
which is not necessarily positive (or indeed even real).
Nonpositivity is not a formal difticulty in principle;
indeed, Feynman has argued that one should not be
afraid of using negative probabilities as intermediate re-
sults. In practice, at low temperatures, the integrand
may be a rapidly oscillating but sparsely sampled func-
tion, rendering numerical averages highly unstable and
unreliable. This sign problem (or phase problem) has been

B. Classical effective Hamiltonians

Classical and quantum formulations of statistical
mechanics differ in structure. Nevertheless, at finite tem-
peratures the results should be qualitatively in agreement
for the following reason. A quantum system in d dimen-
sions can be mapped onto a classical system in d +1 di-
mensions, with width P=llkT in the imaginary time
direction, as exploited in functional integration. The crit-
ical behavior crosses over to a classical d-dimensional
fixed point once the correlation length becomes compara-
ble with this width. There are subtleties in the applica-
tion of this simple argument to the auxiliary-field func-
tional integral, as the resulting fermion determinant is a
highly nonlocal functional of the field. However, if the
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interactions are exponentially damped at large distances
(as might be expected at finite temperature), and an auxi-
liary field of the correct symmetry is used, one might ex-
pect a finite-temperature quantum phase transition to be
in the same universality class as the corresponding transi-
tion in a classical system. This motivates modeling of
quantum statistical mechanics at finite temperature by a
classical effective Hamiltonian V,z in d dimensions, ob-
tained formally by a renormalization-group transforma-
tion in which all nonzero frequency modes in the time
direction are integrated out.

Such attempts to map quantum onto classical statisti-
cal mechanics date from the first decade of quantum
mechanics. The approach that will be developed here is
to find the distribution in classical phase space or
configuration space and interpret it as a Boltzmann factor
exp( —PV,ir) over the classical space. For example, the
partition function of a particle of mass m in a potential
V(x) is given by the path integral

Z = x 7 exp
P

0

m dx
2' dr

—V(x(r)) dr .

Z= f dx exp[ —PV,&(x)] . (1.3)

The effective Hamiltonian V,z is essentially a smeared
version of the original potential: the particle explores a
neighborhood of range increasing with inverse tempera-
ture. (The term effective Hamiltonian, rather than
effective potential, is used here for V,z to emphasize that
there is no dynamics. The kinetic energy has already
been absorbed into the temperature dependence of the
Hamiltonian. ) The Feynman-Jensen inequality
F ~ Fo+ ( S —So } allows variational approximations to
V ff if the integrand in Eq. (1.1) is posi tiue, which is the
case for spinless particles in time-reversal symmetric
fields. ' (Alternative approaches are based on expan-
sions of the effective Hamiltonian. '

) This Hamiltonian
can then be used in a classica/ Monte Carlo simulation of
a many-body system. Such methods have been successful-
ly applied to anharmonic potentials and, through path in-
tegration in phase space rather than configuration space,
to easy-plane ferromagnets. " At this point the sign
problem arises and other, nonvariational, methods are re-
quired, which do not extend to isotropic spin models.
Knowledge of the corresponding Hamiltonian for isotro-
pic spins would be of interest; it would, however, need to
have an unusual form if it is, for example, to recover the
subtle topological effects seen in low-dimensional Heisen-
berg antiferromagnets. The work presented here there-
fore addresses the question of this effective Hamiltonian;

The paths are classified according to the mean position of
the particle on the path,

x=kT J x(r)dr .P
(1.2)

0

The integral is evaluated over all nonzero frequency Auc-
tuations about the mean position, leaving an ordinary in-
tegral over x:

we shall construct it explicitly for simple cases and give a
general formal expression. It tends to smooth classical
Hamiltonian at high temperatures but has a singular
low-temperature limit: the sign problem implies that it is
complex.

C. W'igner functions

To develop these ideas, we need to clarify what the
weights in a quantum Monte Carlo simulation are proba-
bilities of. The answer is clear enough in a classical simu-
lation. For example, in a nonrelativistic plasma one
might use a Maxwell-Boltzmann distribution for the
charge density to obtain correlation functions. Alterna-
tively, one could replace the Coulomb interaction by an
electrostatic potential —an auxiliary field —and consider
the distribution of this potential. This may gain one little
in the classical case (although it is useful in transforming
spin models into field theories' ).

If we try to describe a quantum system in a classical
phase space, we immediately run into the question of the
meaning of a joint probability density of incompatible ob-
servables. The Wigner function is a distribution of this
type, which gives the same expectation values as the den-
sity matrix and has other useful properties. ' It is not a
probability density, as it cannot in general be positive
definite. The Wigner function appearing in this paper is

p (S), the joint distribution of the components of a spin. '

In quantum simulations the variables are time depen-
dent. We shall, however, concentrate on the distribution
of time-aueraged variables, defined by analogy with Eq.
(1.2). Within a quantum simulation, this distribution
might be constrained averaging over paths. If the opera-
tors are conserved (such as the total spin in an isotropic
Hamiltonian), we will show that their distribution defined
in this way is a Wigner function. Usually (as in the Hub-
bard model) it is difficult to work directly with the spin
and charge distributions. One might therefore introduce
a time-dependent auxiliary-field u(r) coupling to spin,
charge, or both, in analogy to the potential in the classi-
cal plasma, and work with the distribution of the time-
averaged auxiliary fields. This distribution will turn out
to be a Gaussian convolution of the operator distribution,
and will therefore be nonpositive at low temperatures.
This is our interpretation of the sign problem. It will be
interpreted here as a Boltzmann distribution
Z exp[ —PV,&(u)] in a (not necessarily real) effective
Hamiltonian V,z-. In both high-temperature and high-
degeneracy limits, V,z tends to the static approximation,
a well-known approximation in studies of itinerant mag-
nets.

D. Outline of paper

The aim of this paper is thus to make explicit the links
between quantum and classical simulations, between the
spin and auxiliary field distributions, and between the
sign problem and the nonpositivity of the Wigner func-
tion. Since a number of ideas are to be related, the next
section reviews the coherent-state and auxiliary-field
functional integrals and the class of Hamiltonians for
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which nonpositive Wigner functions emerge from the
simulation. This class includes the Heisenberg and
many-band Hubbard models. These are systems where
vector rather than scalar auxiliary fields are required. Al-
though not currently studied by auxiliary-field quantum
Monte Carlo methods, they represent the generic case.

Integrating out the finite-frequency modes gives related
classical distributions for the time-averaged spins and
auxihary fields, derived in Sec. III. We concentrate on
systems with conserved order parameters with noncom-
muting components, such as the Heisenberg ferromagnet.
In such cases, the operator distribution is a Wigner func-
tion, and the field distribution tends to this as T~O.
This demonstrates the inevitability of the sign problem on

fundamental grounds Af. ormal procedure for determin-
ing this distribution is proposed. It is often difficult to
determine if a distribution is positive definite, and a test
based on Bochner's theorem is proposed that does not re-
quire explicit evaluation of the distribution. The onion-
skin structure of the Wigner function P(S„,S~,S, ) for
spin s is also exhibited and interpreted. Section IV illus-
trates the formalism by an exact calculation of the
effective Hamiltonian and Wigner function for a van der
Waals spin model (an infinite-range Heisenberg model).
The final section discusses possible relevance to present
and future Monte Carlo calculations.

II. FORMULATION

A. Hamiltonian

We shall be concerned with spin Hamiltonians, such as
the Heisenberg model,

that form the basis of the rest of the paper. The first
stage in functional integration is to divide the imaginary-
time interval 0 ~ r ~P into a large number L of time slices
of width b,~=13/L:

L
exp( I3H—) ='7 II exp( b, r—H~t„) .

1=1
(2.4)

Here the subscript on H, levels the time slice to allow
time ordering; the time-ordering symbol V' orders factors
H with imaginary time ~ increasing from right to left.
Then suitable variables are introduced between each time
slice, leading to the coherent-state and auxiliary-field
functional-integral methods.

The coherent state functional integral is used principal-
ly in studies of spin models. ' As certain features are
relevant to the present work, the formalism is briefly
sketched here. A resolution of the identity, in the form
of an overcomplete set of coherent states
f ~n(r) ) (n(r)~dp(n(r)), is introduced between each time
slice. The partition function becomes an integral over a
product of matrix elements of the form
(n(r+br) ~exp( —brH, ) ~n(r) ), which can be written as

Z= nexp —S n (2.5)

For a spin s the coherent state ~n ) =
~ In; ] ) corresponds

to spins S; "pointing in the n; direction":
n;.S; ~n; ) =s~n; ). Thus each n;(r) moves on a unit
sphere. The action of the spin-s Heisenberg model (2.1) is

S [ [n, ] ]= is+S—wz[n, ]
I

sB.+n,-(r)+s J; n;(r) nj(r) dr .
0H= —B gS; —J;S; S~, (2.1)

(2.6)

and fermion Hamiltonians, such as the one-band Hub-
bard model

H= —t; c;,c, +In;&n;& . (2.2)

H = —K„A„—J„A„A (2.3)

where I A„]are single-particle operators, forming a
closed N-dimensional algebra, and IE„]and IJ„,] are
such that H is Hermitian. In the Heisenberg model,
these operators are spin components IS;„,S;,S,, ], with K
the magnetic field and J the exchange interaction. In the
one-band Hubbard model the operators could be
particle-hole operators [c;,c, ], where i labels a Wannier
orbital and s the spin eigenvalue, X are hopping matrix
elements, and J, in this case a very sparse matrix, is the
on-site repulsion I. The Anderson and Kondo Hamiltoni-
ans are also of this form.

(Repeated indices are to be summed over unless otherwise
stated. ) The general form of Hamiltonian under con-
sideration is

The Wess-Zumino or Berry phase term S~z is the solid
angle swept out by the spin in its motion. Spin quantiza-
tion arises from interference between such terms, also re-
sponsible for topological effects in low-dimensional mag-
nets. '

Similar coherent states can be defined for arbitrary Lie
algebras of the operators A„,' and it is in principle pos-
sible to apply the same method to fermion systems.
However, the large dimensionality of the (highly over-
complete) space of coherent states makes this less than
convenient. The method of choice is the auxiliary field-
functional integral, in which a Hubbard-Stratonovich
transformation linearizes the Hamiltonian in each time
slice. The auxiliary-field method has been used for the
Hubbard' and Heisenberg' models and is the basis of
the grand canonical and projector Monte Carlo methods.
A time-dependent auxiliary field u(r) = [u„(r)]coupled
to the operators A replaces the interaction term; the par-
tition function of a time-dependent free-particle Hamil-
tonian h (r) is then integrated over time dependences of
the field

B. Functional integration

At this point we need to review two functional-integral
methods, coherent-state and auxiliary-field integration,

u„~exp —V0u zu
z P

u„v exp — V0 u
(2.7)



226 J. H. SAMSON

where

PVO[u]= J J„u„(r)u„(r)drP

0

and

z [u]=Tr'7 exp —f h (r)drP

0

where

(2.8)

(2.9)

knowledge of the correct classical effective Hamiltonian
to which V„is an approximation. This was one of the
motivations of the present work.

There is considerable freedom in the choice of auxiliary
field, and this choice is crucial to the arguments in this
paper. This is illustrated by the one-band Hubbard model
(2.2). Most authors write the interaction in forms such as

(2.16)
h (r) = [ —K„—2J„,u, (r)]A„,. (2.10)

where
The notation h(r) indicates that h has explicit r depen-
dence; the subscript ~ in 3„is a label for time-ordering
purposes. Different linear combinations of the 6elds have
been used elsewhere; the present scale is chosen here for
the resulting agreement between operator and field corre-
lation functions:

(2.11)

(2.17)

(There is no summation over i here )T.his allows use of
scalar or Ising auxiliary fields, coupling to the z com-
ponent of spin (or to the electron density). The Hubbard-
Stratonovich transformation, applied to the first form in
Eq. (2.16), gives us the free-particle Hamiltonian

h(r)= t; c,,c~, 4—Iu, (r)—S;, . (2.18)

(2.12) An alternative is to write the interaction in the manifestly
isotropic form

and so on, all higher operator and field cumulants being
equal. Response functions can therefore be read off from
the auxiliary-field correlations. For simplicity, the above
equations refer to a positive-definite matrix J„,corre-
sponding to purely attractive interactions; the Heisenberg
model (both ferromagnetic and antiferromagnetic} can be
written in this way. (In general, the matrix is block-
diagonalized into positive-definite, zero, and negative-
definite subspaces. Fields corresponding to the negative-
de6nite subspace are replaced by iu„ in the integrand,
and fields corresponding to the zero subspace are omitted
from the integration. }

Much work in itinerant magnetism has used the static
approximation, in which the functional integral is re-
placed by an ordinary integral over time-independent
6elds. The grand potential of noninteracting electrons in
a static field defines the Hamiltonian of the auxiliary field.

f +du„exp[—PV„(u)]
Zst (2.13)J+du „exp[—P Vo(u) ]

where

and

Vo(u) =J„,u„u, (2.14)

V„(u)= Vo(u) —kT ln Tr exp[@(IC„+2J„u„)A„].
(2.15)

Electronic structure techniques enable computation of
this Hamiltonian V„ for a sample of auxiliary-field
con6gurations; the statistical mechanics can then be in-
vestigated by, for example, classical Monte Carlo tech-
niques. ' The results are difficult to relate to experimen-
tal correlation functions, and would be improved by

(2.19)

which requires a vector auxiliary field, coupling to the to-
tal spin, for example,

h(r)= t; c;,c, —
—,'Iu—;(r) 8; . (2.20)

In the one-band model, both the scalar- and vector-field
functional integrals are exact and preserve the SU(2) sym-
metry (until approximations are made), despite apparent
uniaxial anisotropy in the former case. This follows from
the isotropy of the interaction term n;&n, .&, which only
holds for a single band. In a many-band Hubbard model
with interorbital repulsion, the interaction must be ex-
plicitly isotropic, as in the right-hand side of Eq. (2.19).
The functional integral then requires a vector auxiliary
field, acting as a time-dependent magnetic field; the same
requirement applies to the Heisenberg model. To make
the definitions more precise, suppose that a subset of the
operators A„appears in the interaction term. If these
operators commute at equal time, such as the S,„andn;
in the one-band Hubbard model, we talk of a scalar field;
otherwise, we talk of a vector field. We shall consider the
auxiliary-field method in general, regardless of whether
(as in the Heisenberg model) far more efficient Monte
Carlo methods exist.

The results in this paper refer to the generic case of a
vector auxiliary field. Such considerations do not arise in
most current Monte Carlo simulations, for which the
Hamiltonians allow a scalar auxiliary field. For example,
three-band Hubbard models of cuprate superconductors
without interband interactions are, in this context, one-
band models and admit a scalar field. In a more general
situation, the J„might model configuration interactions
in a many-electron atom. If there are k operators on
each site, the auxiliary field will be a k-component field,
with operators commuting only on different sites. It is
likely that quantum Monte Carlo methods will be applied



51 CLASSICAL EFFECTIVE HAMILTONIANS, WIGNER. . . 227

to such systems in the future, and this paper will consider
the consequences.

C. The quantum Monte Carlo method and the sign problem

(2.21)

These functional integrals may be computed directly
by quantum Monte Carlo techniques. ' The Metropolis
algorithm performs high-dimensional integration by im-
portance sampling:

fw(x)f(x)d x 1 M= lim g f(x' '),
w(x)d "x

where the points [x' '] in the summation are understood
to be selected by random sampling from the weight w (x).
In a typical classical simulation this weight is the
Boltzmann factor exp[ 13E(x) ),—which is manifestly pos-
itive. In a quantum simulation, a natural choice might be
to take the integrand from the numerator of Eq. (2.7),

w [u]=exp( —P Vo [u] )z [u], (2.22)

as the weight. Unfortunately, this is not necessarily posi-
tive. Indeed, if the interaction term u„A„violatestime-
reversal invariance (as it does for a magnetic-field cou-
pling to a three-component spin), the weight is complex.
In practice the configurations are sampled according to
the weight

~
w (x) ~, and the sign (or phase factor)

s(x)=w(x)/~w(x)~ would then be included in the quanti-
ty to be averaged:

&f&= lim

g f (x' ')s (x' ')
m=1

M

g s(x' ')
m=1

(2.23)

h(r)= —5;(r).S,„with 6., =2J,"u (r) . (2.24)

This corresponds to a time-dependent magnetic field h.
In a static field the imaginary-time dynamics would be re-
laxation towards the ground state in that field. These
ground states are precisely the coherent states in the
directions of the vectors 6; and therefore form a corn-
plete set of states, represented by a product of unit

Problems arise at low temperatures, as the average sign
appearing in the denominator typically decreases ex-
ponentially with inverse temperature. This sign prob-
lem (or, in the absence of time-reversal symmetry, phase
problem) renders numerical calculations highly unstable
at low temperatures. As most quantum Monte Carlo
simulations deal with scalar fields and real weights there
is no phase problem but (except in certain cases ) may be
a sign problem. A phase problem, rather than a sign
problem, is the generic case in quantum Monte Carlo
simulations, even for scalar interactions if they are repul-
sive.

The present author has interpreted the phase problem
for individual paths in terms of geometrical phases, by re-
lating the coherent-state and auxiliary-field dynarn-
ics. ' 7 For example, consider the Heisenberg model, '9

where the free-particle Hamiltonian of Eq. (2.10) is

FIG. 1. The relation between the dynamics of the auxiliary
field 6 and of the state n, illustrated for an auxiliary field mov-

ing in a cone. The spin relaxes along a great circle towards the
instantaneous direction of 5,, sweeping out a narrower cone of
solid angle Q.

spheres and parametrized by the field directions. The
time-ordered integral (2.9) is a product of operators
exp[ —h (r)hr] directing a state along a great circle to-
wards the instantaneous ground state. As the field
evolves (discontinuously), the state pursues the instan-
taneous ground state (continuously but not
differentiably), as illustrated in Fig. 1. The wave function
acquires a geometrical phase factor that depends only on
the solid angle Q enclosed by the path in state space. The
same geometrical phase appears as Swz in Eq. (2.6). At
high temperatures there is insufBcient time for the spin to
evolve far; it responds to the time-averaged field, recover-
ing the static approximation. At low temperatures, the
state can follow a smooth field path almost adiabatically;
the phase is then a Berry phase. There is thus a map-
ping between field paths in the auxiliary-field integral
(2.7) and state paths in the coherent-state integral (2.5).
The purpose of the present paper is, however, not to dis-
cuss individual paths but statistics of paths. Just as the
spin follows the field at low temperatures, and spin cumu-
lants are equal to field cumulants, so will the field distri-
bution tend to the spin distribution, as demonstrated in
the following section.

III. DISTRIBUTIONS

We are now in a position to investigate the distribution
of the time-averaged operators and of the time-averaged
auxiliary fields. The former, derived in Sec. IIIA, will
answer questions such as the simultaneous value of non-
commuting operators, and will be a Wigner (or related)
function. It will not be positive definite, and the sign can
be ascribed to the phases in the coherent-state integral.

Section IIIB relates the auxiliary-field distribution to
this Wigner function, implying the sign problem. The
distribution is also interpreted as a Boltzmann distribu-
tion in a classical (but complex) effective Hamiltonian.

We shall calculate these distributions using the method
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p(y)=(5(y —f(x))) . (3.1)

The exponential form for the 6 function allows us to
rewrite this distribution as

p (y) =(2m ) "fe' '"y(A, )d "A, , (3.2)

of characteristic functions, frequently used in the study
of Wigner functions. ' Suppose x is a set of random vari-
ables; the probability distribution for the k-dimensional
vector y= f(x) is

A. Distributions of the operators

Suppose the components of y are operators A, a k-
dimensional subalgebra of the operators I A& J. For ex-
ample, A could be the order parameter gS; in a Heisen-
berg or Hubbard ferromagnet (so that k =3). It is still
possible to find a distribution that obeys most of the
properties of a probability density (apart from positivity).
However, operator-ordering ambiguities mean that this
distribution is not unique. We define two characteristic
functions. Let us first consider the function

~(g) ( e it(. f—(x) ).

It is a generating function for the moments of y,

(3.3)

where the characteristic function y, the Fourier transform
of the distribution, is

g(A. ) = Tr exp( PH— i A—A),

Tr exp( PH)—

'Texp ikT—A„f A, „(r)dr
0

where

O(r) =e 'Oe

(3.5)

(3.6)

y(A, ) =1—iX„&y ) —
—,'dI.„k,&y„y,)+ (3.4)

and its logarithm generates the connected correlation
functions. Although it is rather unconventional to inter-
pret this property of a generating function as arising from
a distribution of operators, it will be useful in the current
work.

(O) Tr(Oe ~ )

Tre
(3.7)

This is the partition function of the system in an imagi-
nary field ikTA, divided by that in zero field, and is also
the generating function for static correlation functions,

g() )=) ()»( d») A»A ((kT) 9 i f d»(Ti)d (rp) riddTp + (3.8)

p( A)=(2m) "fe' y(A)d '"A, , (3.10)

is the Wigner function (or P representation in Weyl-
symmetrized ordering' ) corresponding to the canonical
ensemble. The A in Eq. (3.10) is a vector of real numbers,
not of operators. The moments of this distribution are
symmetrized correlation functions for equal-time opera-
tors as in (3.4). We are interested in whether the distribu-
tion p( A) is positive.

At this point we digress to consider the Wigner func-
tion of a spin, which does not seem to be widely known
but will be of relevance to the distributions. Chandler
et al. have derived a Wigner function for a spin —, in a
magnetic field. ' We shall generalize their result to arbi-
trary spin s (but zero field). In that case the characteristic
function (3.9) can be expressed in terms of the partition
function Z (B) in a magnetic field:

We shall interpret its Fourier transform, p( A) as the dis-
tribution for the time-averaged operator.

This paper concentrates on the conserved case where
[H, A&]=0, satisfied by the ferromagnetic order parame-
ter. In that case Eq. (3.5) simplifies to

g(A, ) =y(A, ) —= ( exp( i A, A) ) . — (3.9)

Its Fourier transform

1 ' dp(S)= —— g 5(S —m) . (3.12)

This Wigner function has an onionlike structure of
derivatives of 5 functions on concentric spheres of quan-
tized radius. To check that this rather unfamiliar form is
correct, we can integrate over S and S to obtain the
marginal distribution p(S, ). This vanishes unless the
plane of integration is tangent to one of the spheres, in
which case the outer (positive) part of the —5' function is
not canceled by the inner part. It is straightforward to
perform the integration and obtain the expected result

p(S, )=f dS f dS p(S)

] S

5(S,—m) . (3.13)2s+1 m= —s

This result can be related to the coherent-state func-
tional integral. We show that the distribution of the
time-averaged spin

sn=kT f sn(r)dr,P

0
(3.14)

y(A, ) = = g exp( im A)—. (3.,11)
Z(ikTA, ) 1

m= —s

The Fourier transform can be performed
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where the distribution of n is defined by the coherent-
state functional integral (2.5) for a single spin s in zero
Geld, is the Wigner function just calculated. The charac-
teristic function corresponding to sn,

f2)nexp isSwz[n] ik—TsA, f n(r)drP

g(X)=
n exp iSwz n

Z(ikTA, )

Z(0) (3.15)

B. Distributions for the auxiliary Seld

Practical Monte Carlo calculations use the auxiliary-
field functional integral in preference to the coherent-

is the same characteristic function as that of a spin in
(3.11).The Wigner function of a spin is therefore the dis-
tribution of the time-averaged path sn(r) in the
coherent-state functional integral. This would be ob-
tained by an integration over all paths n(~) constrained
to have a time average n, as in the definition of the
effective Hamiltonian. The same result would appear for
other conserved quantities, such as the total rnagnetiza-
tion in the Heisenberg model in the absence of a magnetic
field.

This is a somewhat paradoxical result: although
~n~ &1 for almost all paths on the sphere, the spin- —,

'

Wigner function vanishes for
~
n

~
+1. This suggests that

the sign problem is required in order to ensure proper
quantization of the appropriate variables, and that at-
tempts to circumvent the sign problem by replacing the
weight by its absolute value may be discarding such
physics.

state functional integral. The dynamics of the states in
the latter is tied to that of the fields in the former, as dis-
cussed in Sec. IIC, and the distribution of the time-
averaged field u„=kTf~cruz(r)dr will therefore be relat-
ed to the Wigner functions already discussed. If the func-
tional integral suffers from the sign problem, some of the
paths contributing to the Geld distribution will have nega-
tive weight It. will turn out that, even after the integra
tion ouer nonzero frequency modes, the resulting classical
distribution is not positive definite at low temperatures.
Indeed, it will tend to the Wigner functions discussed
above in the low-temperature limit.

The distribution of the time-averaged field can be inter-
preted, as in Eq. (1.3), as a Boltzmann distribution of the
auxiliary field in a classical effective Hamiltonian V,ff,

P(«)= 5 « kTj «(r)dr —
l

P

0

=—exp[ —P V,s(u }],=1 (3.16)

where the expectation values are now taken with respect
to the auxiliary-field functional integral. (Upper case P,X
will refer to distributions and characteristic functions of
the geld, while lower case p, X refer to functions of the
operators. ) Equation (3.16} can be considered as a
renormalization-group transformation collapsing the
time direction to a point. This is in contrast to the static
approximation, which represents the first approximation
to V,ff and ignores quantum fluctuations.

Insertion in the functional integral (2.7) gives the
characteristic function of the distribution P as

X().)=(exp —ikT).„f««d~

f2)u exp( —PVO[u]) Tr'T exp f [ [IC„+2J„,u„(r)]A„,—ikTA,„u„(r)]dr
0

fNuexp( —PVO[u]) TrTexp f [[I(:„+2J„„u„(r)]A„,]dr
0

(3.17)

Observing that the coeKcient of u(r) in the numerator has become shifted, with respect to that in the denominator, by
an amount proportional to k, we can irnrnediately complete the square and invert the Hubbard-Stratonovich transfor-
mation to obtain

X(A, ) =

=exp( 4kTJ„,'l,„l,)——

Trexp[P[X„A +J„„(A„,'ikTJ„&'A&)(A,——,'i—kTJ, '))), )]]—
Trexp(P[K A&+J „A„A„])

Tr exp( PH i A„A&
)——

,

Tr exp( —PH)

(3.18)

(3.19)

The expression in square brackets is the characteristic
function X(A, ) of Eq. (3.5); the field characteristic function
is the operator characteristic function multiplied by a
Gaussian factor.

The distribution P of the time-average fields is there-
fore a Gaussian convolution of the distribution p of the

operators:

P(u) =v'det(PJ/m. )fdx exp( PJ„x„x,)p(u —x)—.

(3.20)

This is a key result of this paper. In retrospect it should
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with

A„=+A„,,
a=1

(3.21)

not be unexpected, since the operator and auxiliary-field
cumulants, apart from the second cumulant, are equal as
stated in Sec. II B, but the result does not seem to have
been expressed elsewhere in terms of distributions. If the
operators in question are conserved, the distribution of
the operators is a Wigner function p=p ( A), and that of
the fields coupled to them is a smoothed Wigner function.
The variance of the Gaussian is proportional to tempera-
ture, so that in the low-temperature limit the field and
operator distributions coincide. This is related to the adi-
abatic following of the field by the spin described in Sec.
II C; in addition, the action for the auxiliary fields in the
Heisenberg model in the low-temperature limit has a
similar form to that of spins. ' Because the Wigner func-
tion can be negative, the field distribution becomes nega-
tive at sufficiently low temperature. This is a manifesta-
tion of the sign problem; indeed it demonstrates its inevi-
tablity. Even after averaging over a large number of paths
the weight remains negative. The expression (3.20) is,
however, not restricted to the case of conserved opera-
tors.

The above gives a formal definition of the effective clas-
sical Hamiltonian, though not a practical method for its
calculation. It is more difricult to calculate the effective
Hamiltonian than the partition function; following the
above definition (3.5) would entail solving the original in-
teracting Hamiltonian with an additional random spatial-
ly varying (but static) imaginary field ikTA, and then tak-
ing a Fourier transform with respect to the field. Options
for approximations are limited by the nonpositivity of the
inte grand, which precludes standard variational ap-
proaches. An expansion parameter is, however, available
in the v-band Hubbard model. A 1/v expansion is pos-
sible if the operators I 2

„
I have the form

field, related to the random phase approximation. ' Since
the effective Hamiltonian is complex at low temperatures,
convergence of this expansion may be a delicate matter.

C. A criterion for positivity

Since the distributions discussed here involve a high-
dimensional Fourier transform, it is useful to have a
means of checking for positivity that is based on the
characteristic function directly. Bochner's theorem
states that a function y(A, ), with g(0)=1, is the charac-
teristic function of a positive probability density if and
only if, for all sets of n points IA, ; Em, i =1, . . . , n),
and all sets of n complex numbers a, , the sum

E—= g ga, a'y(A, ,
—

A, )~0. (3.25)

This provides a means of showing that a distribution is
not positive definite without evaluating a Fourier trans-
form. Faced with a characteristic function, choose a suit-
able set of points A,;, for convenience at the vertices of a
regular polyhedron. Then minimize E with respect to the
I a; J, subject to the spherical constraint g ~ a; ~

= 1. If the
minimum is negative, the underlying distribution cannot
be positive. (This can be thought of as a tight-binding
band-edge calculation. ) For fixed [A,; I, the condition
(3.25) is a necessary but not sufficient condition for the
distribution to be positive. In a three-dimensional space
with a spherically symmetric characteristic function we
could take four points A, ; at the vertices of a regular
tetrahedron of side d, and all a; to be —,'. Then
E = I+3'(d), which can be negative in the case of a
half-integer spin, since y(2m. )= —1 from Eq. (3.11). For
integer spin it is harder, but possible, to find a set of
points for which the sum is negative. This agrees with
the result, obtained by explicit Fourier transformation,
that the Wigner function is not positive.

[A„„A,b]=0 for aAb, (3.22)
IV. ILLUSTRATIVE EXAMPLE:

THE van der WAALS SPIN MODEL
and the J„scaling as 1/v. In the v-band Hubbard mod-
el a would be an orbital index. The functional integral
then becomes

The van der Waals spin model comprises v interacting
spin- —, particles with an equal interactions J/v between
each spin,

u„~exp v — Vo u +lnz u

u„~exp —v Vo u
(3.23)

J V

H= —— gS,
a=i

2

—B QS, .
a=1

(4.1)

where z[u] is the partition function of a single (v=1)
band in the field u. This form suggests a saddle-point ex-
pansion about the Hartree-Fock solution; it is, however,
better to expand the effective Hamiltonian in powers of
1/v as

(3.24)

The leading term V„,the efFective Hamiltonian in the
static approximation, already contains all diagrams, with
zero-frequency interactions only, and VRpA. is the contri-
bution from quadratic finite-frequency fluctuations of the

(The self-interaction terms S, .S, give a shift of —3J/4 in
the energy, which we ignore. ) This Hamiltonian is ex-
actly soluble, and is described here to illustrate some of
the features of the effective Hamiltonian. The total spin
QS, is an example of an operator of the form (3.21); fur-
thermore, it is conserved in zero field. The partition
function is

v!(2S+1)]
, (v/2 —S)!(v/2+5+1)!'2

sinh[ —,'PB (2S + 1)]

sinh [—,'PB ]
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Z(ikTA, )

Z(0)
v/2 (2S + 1 )

AS(S+1)/v S
iA, m

(v/2 —S)!(v/2+S+ 1)!S=O or—
2

'm= —S

v/2 (2S+ 1)2 i)JS(S+1)/v

, (v/2 —S)!(v/2+S+1)!"2

The lower limit of the sum is 0 (or —,) if v is even (or odd).
From the above equation, we immediately obtain the

characteristic function in zero field as

tion in the previous section for a single spin,
S

p(p) = — g F(m)5'(p —m),
2~I m= —s

where F (m) is the probability that S, =m:

v/2 (2S + 1) PJS(S+1)/v

(v/2 —S)!(v/2+S + 1)!
F(m)=

v/2 (2S + 1 )2 pjS(S+1)/v

, (v/2 —S)!(v/2+S+1)!S=O or—
2

(4.4)

(4.5)

(4.3)

The Wigner function for the total spin p of the van der
Waals model is therefore a generalization of the calcula-

The field distribution and effective Hamiltonian are ob-
tained by smearing out the 6' distributions as in Eq.
(3.20):

' 3/2

P(u)= J
V7T

v/2
pJ!l2/v g F( ) h

2pJum

m = —v/2 V

m .
h

2PJum
slnh

Q V
e

—PJm /v (4.6)

This distribution is negative for certain ranges of u at low
temperatures. The distribution of the total spin in the
Heisenberg model (and indeed the Hubbard model) would
be of similar form, but with combinatorial factors F(m)
that would be impossible to evaluate analytically. The
corresponding effective Hamiltonian,

V,(r(u) = —kT ln[ZP (u) ], (4.7)

has a nonzero imaginary part at points where the distri-
bution is negative. Figure 2 compares this with the corre-

vkT in[2 cos—h(PJu /v) ] . (4.8)

These effective Hamiltonians coincide in the high-
temperature limit. At low temperatures V,z has a
nonzero imaginary part, while V„remains real but leads

sponding effective Hamiltonian (2.15) in the static ap-
proximation,

V„(u)=— ln +Ju /v
3kT J

2 VK

!/(u)
v= 1

PJ=100
V=

PJ=100

V(u)

0--

FIG. 2. The real part of the effective Hamil-
tonian (in units of P for the auxiliary field in
the van der Waals spin model (bold), and the
static approximation to the same Hamiltonian
(thin line), for one and two spins at various
temperatures. In the dashed regions the
weight is negative and the effective Hamiltoni-
an is therefore complex. Vertical lines indicate
logarithmic singularities.

0-- 0--
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to a negative heat capacity. ' Integration of the exact
effective Hamiltonian of course gives the correct partition
function.

V. DISCUSSION

This paper has considered the distribution of time
averages both of the spins (or similar operators) and of
the auxiliary fields appearing in a functional integral.
The main result is the identification of the sign problem
with the nonpositivity of the Wigner function. Just as
the correlation functions of the auxiliary fields are related
to the correlation functions of the corresponding opera-
tors, the distribution of the time-averaged fields is related
to the distribution of the operators. The field distribution
is the convolution of the operator distribution with a
Gaussian of variance proportional to temperature. This
paper has concentrated on the distribution and effective
Hamiltonian for conserved quantities. In that case the
operator distribution is a Wigner function, which, if the
operators do not commute, need not be positive at any
temperature —as shown by explicit calculation of a spin
Wigner function. The distribution of the time-averaged
auxiliary field, as a smoothed form of the operator distri-
bution, becomes the Wigner function in the low-
temperature limit. If an auxiliary field couples to non-
commuting conserved operators, even a high-dimensional
average of paths can have negative weight. This there-
fore establishes the inevitability of the sign problem.

This might suggest a rather bleak outlook for a class of
quantum Monte Carlo calculations. It is therefore useful
to consider what features have led to this conclusion.
First, the discussion only refers to the auxiliary-field (or
grand canonical) method, and the closely related
ground-state projector method. It shows that the sign
problem occurs if the operators coupled to the auxiliary
field generate a non-Abelian symmetry group; that is,
they commute with the Hamiltonian but not with each
other. This is necessary if the simulation is to study the
total magnetization of an isotropic model, such as the

Heisenberg or Hubbard model.
A further element is the form of the effective classical

Hamiltonian. This describes the system as a classical
Hamiltonian for the time average of the appropriate
quantum variables. It is constructed to give the correct
thermodynamics, but is dificult to calculate in general;
an expansion has been proposed. The effective classical
spin Hamiltonian is necessarily complex as a result of the
sign problem. The effective Hamiltonian for auxiliary
fields is a smoothed version of that for the original vari-
ables, and is therefore less singular; it is also accessible by
Monte Carlo simulation.

This says nothing about the sign problem in cases
where a scalar auxiliary field couples to only one spin
component, which correspond to most current studies.
This is allowed for the one-band Hubbard model, but not
for the interactions described above. With nonconserved
scalar fields the commutator of the operators may vanish
at equal time only:

[A„(r),A„(r')]—(r—r')" .

In the vector field cases considered here, n =0. For scalar
fields the sign problem might arise from the same effects
but at a higher order. The resulting distribution of non-
conserved observables (for example, long-wavelength
modes in a ferromagnetic or staggered magnetization in
an antiferromagnet) is left for subsequent work.

This paper has not attempted to circumvent the sign
problem, but rather to put it in a broader context and
identify situations in which it is inevitable on fundamen-
tal grounds. It suggests that neglect of the sign may hide
important physics, just as neglect of the related topologi-
cal terms in one-dimensional Heisenberg models hides the
distinction between integer and half-integer spins. Nev-
ertheless, identification of a source of the sign problem
would be an aid in seeking auxiliary-field couplings that
can avoid it. In essence, the field would have to couple to
commuting operators, which is not possible for general
on-site interaction with more than two states.
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