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Phase transition in a many-electron gas in a two-dimensional polar-semiconductor
quantum well
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We investigate the problem of an electron gas interacting with longitudinal-optical phonons in a two-
dimensional polar-semiconductor quantum well for the entire range of the coupling parameter using the
Feynman path-integral method and the random-phase approximation. We show that at a critical value
of the electron concentration an optical polaron will undergo a transition from the localized state to a
mobile state.

I. INTRODUCTION

With the development of modern fabrication tech-
niques like molecular-beam epitaxy and metal-organic
chemical-vapor deposition, it has now become possible to
realize quasi-one-dimensional and two-dimensional elec-
tronic systems. Consequently, there has been a great deal
of activity in recent years in the field of low-dimensional
systems such as thin films, inversion layers, quantum
wells, and heterojunction superlattices of polar semicon-
ductors. These studies are important from the point of
view of fundamental physics as well as for applications to
electronic devices. The polaronic interaction plays an
important role in determining the transport and other
properties of these systems and has, therefore, been ex-
tensively studied in these materials both theoretically and
experimentally (see Refs. l —4 and references therein).
Earlier theories' were, however, developed using the sin-
gle polaron model of Frohlich which neglects the
electron-electron interaction completely. This would be a
reasonably good model for low-carrier density systems
like ionic crystals. But in semiconductor structures the
carrier concentration is quite significant and so the
Coulomb interaction between electrons can give rise to
important many-body effects. Indeed the free-carrier
screening was discussed long ago by Ehrenreich in the
context of bulk polar semiconductors. Das Sarma stud-
ied for the first time the screening effects on the polaronic
interaction in a quasi-two-dimensional structure and
showed that many-body effects would lead to an appre-
ciable decrease in the polaron mass correction. Subse-
quently, this problem has been investigated by several au-
thors using different types of screening. All these calcu-
lations were, however, based on weak-coupling approxi-
mations. In a recent paper, we performed an all cou-
pling variational calculation to study the many-electron
effect on the ground-state (GS) energy, effective mass and
size of a polaron in a purely two-dimensional (2D) quan-
tum well using the random-phase approximation (RPA).

This method was based on Huybrecht's modification of
the Lee, Low, and Pines (LLP) canonical transformation
technique, and is known to have certain disadvantages.
Therefore, in the present paper, we investigate the same
problem using the Feynman path-integral method which
is the most elegant physical and mathematical approach
providing at the same time the best GS solution for the
entire range of the electron-phonon coupling constant u.
Here, also, we include the many-electron screening effect
within the framework of RPA and reestablish the same
conclusion that there exists a critical carrier density (de-
pending on a) below which the polaron will be in a self-

trapped state and if the carrier density exceeds this value,
it will make a transition to the delocalized state. The
present calculation is, however, more rigorous and is,
therefore, expected to yield quantitatively more accurate
results.

II. FORMULATION

A system of an electron gas in 2D interacting with 2D
optical phonons of dispersionless frequency coo may be
modeled (in Feynman units) by the Hamiltonian,

J q

1/2

e 'b-+ H. c.
q

where everything is dimensionless. p refers to the posi-
tion vector of the jth electron, b-(b-) is the creation (an-

nihilation) operator for a phonon of wave vector q,
v(p, . —p ) represents the Coulomb interaction between
the ith and jth electrons, A stands for the surface area of
the 2D material and a is the electron-phonon coupling
constant in two dimensions. For a purely 2D material, a
can be assumed to be given by an expression similar to
that in 3D, while for the interaction of a surface electron
with the surface-optical phonons on a bulk material, the
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where E(q, O) is the static RPA dielectric function given
by9

s(q 0)= 1+ ~FT
for q (2kF

~FT1+ 1—
q

2 1/2
2kF

q

for q )2k+, (3)

where qFT is the Thomas-Fermi screening parameter, and

kF is the Fermi momentum. In Ref. 6, we have solved
the model problem (2) using a variational method (LLP-
H), which is a generalization of the LLP method as pro-
posed by Huybrechts, in the context of the single pola-
ron problem. In this method, we minimize the functional

(4)

where u is a Lagrange multiplier to be identified as the
polaron velocity and %' is a trial wave function, which we
choose as

—exp
2

p +tpo p exp ia gq p—b-b-
q

Xexp g (f-b- fq b-) l0), —
q

where 2, a, po, and f- are obtained variationally and l0)
is the unperturbed zero-phonon state which satisfies
b-l0) =0 for all q. The LLP-H method gives reasonably
accurate results, but some confusing complications are
known to arise in this scheme in the weak-coupling re-
gime. Furthermore, we find that in this method the pola-

for'm of ~ has to be slightly modified (see Sil and Chatter-
jee'). The electron-electron interaction term cannot be
treated exactly, so we have to include its effect in some
approximate way. We shall assume that the sole effect of
the electron-electron interaction is to screen the
electron-phonon coupling which is a reasonable approxi-
mation. The simplest way to include this screening is to
use the Thomas-Fermi method which is, however, not a
useful approach in two dimensions because the Thomas-
Fermi screening parameter does not depend at all on the
electronic density in two dimensions. Therefore, we treat
the electron-electron interaction within the framework of
the static RPA which has been shown to be quantitative-
ly accurate in 3D (Ref. 5) and has also been successfully
used in 2D by Xiaoguang, Peeters, and Devreese (1986)
(Ref. 3) and Das Sarma and Mason (1985). In the static
RPA scheme the effective Hamiltonian for an electron in-
teracting with surface-optical phonons in the presence of
other electrons of density X, can be written as

1/2

ron size is always infinity in the entire weak-coupling re-
gime which is a little unrealistic. We, therefore, employ
in the present paper the Feynman path-integral method
(FPIM) to solve the effective model Hamiltonian (2).

In FPIM, one calculates the transformation function K
for the electron going from the point (p„t, ) to (pb, tb)
with the phonon system remaining in the GS. E is finally
given by' *"

K= f X)p(t)e

where the classical action S is given by

s = '—f- dp
2 dt

(6)

dtds e' '

V'2A - [E(q, O)] q

—lf —S
Ie 7

which is, however, not path integrable. Therefore, we
choose, following Feynman, a nonlocal Gaussian action,

T

S,= —
—,
' f dt —

—,
' —C f f ds dtlp(t) —p(s)l

—~If —s
~Xe

a ~ ~ dk dt
e

V2 o o [E(k 0)]
2 2 2(v co )(1 —vt) & t k2
2v 2v

X exp (9)

where v =co +4C/to. Finally, the GS energy is obtained
by minimizing (9) with respect to v and co. In the weak-
coupling limit, C is negligible and, therefore, the GS cor-
responds to a value of v which is nearly equal to co. Writ-
ing v =(I+A, )co, where b, is a small number, in Eq. (9)
and taking the limit 5~0, we obtain the energy in the
weak-coupling limit:

dk
i 2 o (1+k /2)[E(k, O)]

(10)

which was earlier obtained by Xiaoguang, Peeters, and
Devreese (1986) (Ref. 3) and is also identical to the weak-
coupling LLP-H result. In the limit X, ~O, Eq. (10)
gives, as expected, the well-known LLP energy. For the
entire range of the coupling parameter, the minimization
of (10) with respect to co and v is done numerically. Re-
sults are shown in Fig. I.

To calculate the effective mass for a slow polaron we
consider, following Feynman, all paths from (0,0) to
(ur, r), where r is the time interval and u is an imaginary
velocity. The corresponding transformation function for
small displacement in the limit ~~ ao is assumed to take

with co and C are two variational parameters. Using the
Feynman-Jensen inequality (e")~ e('), where x is a real
function, we then obtain for the variational energy,

( v —to)
2v
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the following form:

F 2 F F
—[E (0)+—m u j'T —E (Q)7

Thus, equating the total energy Ez(u ) to EF(0)+—,'mF u,
we obtain the following expression for the effective mass:

cx f f dk dr
2v'2 o o [E(k,O) ]

Xexp — (1 —e ")(u —co )

2v

2
co t

2

which in the weak-coupling limit reduces to

my=1+ f"
2 2 0

dg
2

2

l+~
2

e(q, O)
J

2
(13)

which is again identical to the effective-mass result of
Xiaoguang, Peeters, and Devreese (1986) (Ref. 3) and the
weak-coupIing limit of the LLP-H expression. For the
entire range of a, the effective mass is obtained numeri-
cally and shown in Fig. 2.

To calculate the size of the polaron, we follow the
method of Schultz. " Schujtz has simulated the Feynman
approximation by replacing the whole lattice by a second
fictitious particle bound harmonically to the electron.
The Lagrangian of such a model system is

2 2
1 dp, dXL =— +-'M ——'E p —X —U
2 dt ' dt

(14)

FICx. 1. —EF vs X„E+,polaron GS energy; X„carrier con-
centration.

M= I(u /co ) —1]; IC=(u —co ) .

In the center-of-mass coordinates, we can write (14) as
2

I.= —,'(1+M) + —,
'dR, M dPi —

—,'Kp, ,

(16)

where p, =(X—p) and R =(MX+p)/(M+1).
Hamiltonian corresponding to (16) is

'2dR, dp&H =
—,
' (1+M) + —,

' p + —,'&p~i,
dt 2 dt

The

(17)

where p=M/(1+M)=(u —co )/v . The quantum-
mechanical Hamiltonian for the Feynman polaron is,
thus, given by

28 = +—'Kp
2p

(18)

which is exactly soluble. The GS wave function of this
Hamiltonian is given by

1/4
&pK

p&
pX

P& (19)exp

and the radius of the Feynman polaron is defined as the
root mean square distance of the electron from the ficti-
tious particle. Thus, the size (R) of the polaron is given
by

R =[(@(pi)~pal@(pi))]' =[v/(v —co )]', (20)

where M and X refer to the fictitious second particle and
Uo is a constant to be so chosen as to make the model
system have the same energy E„. The correspondence of
the model (14) with the Feynman action becomes exact
(except for some effects which are unimportant for large
time) if the following identifications are made:
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which the effective mass is essentially linear in a and so
the polaron should be in the weak-coupling phase and as
the coupling constant exceeds a, the effective mass in-
creases rapidly indicating a strong-coupling phase. For
large electron concentration the transition from the
weak-coupling (or the delocalized) phase to the strong-
coupling (or the localized) phase is very sharp as is seen
for N, =10' cm, whereas for low concentrations the
transition may not be so sharp. In Fig. 7, we compare
the effective-mass results obtained from FPIM with those
calculated using the LLP-K method. We find that the
value of X„obtained from FPIM is higher than that pre-
dicted from the LLP-H method. So we may conclude
that the LLP-H method effectively overestimates the
screening effect.

The existence of transition is also evident from the

variation of the polaron size with N„which we plot in

Fig. 8. For large values of a the polaron size shows a
jump at X, =N„. Again we see that X„increases with a.
In Fig. 9, we compare the size of the polaron as obtained
from FPIM with that predicted from the LLP-H method.
According to the LLP-H method, the polaron is infinitely
large in size in the entire weak-coupling phase which is a
little unrealistic. This problem does not crop up in the
FPIM solution which predicts only a finite jump in the
polaron size at the transition point.

The explanation for the occurrence of the localization-
delocalization transition discussed above is quite simple.
It has been theoretically predicted that in a single pola-
ron system, there exists a critical coupling constant at
which the polaron should make a transition from the
mobile state to a self-trapped state. Experimentally, how-
ever, it is difficult to verify this prediction because one
cannot change the material parameters continuously to
sweep the value of a around the critical value. In Ref. 6
and in the present paper, we have shown that one can
change the effective coupling constant continuously by
changing the electron density which is precisely the
many-particle screening effect. As the electron density is
increased, the electron-phonon interaction becomes more
and more screened and at a sufficiently large carrier con-
centration, the interaction can become severely screened
so that the effective coupling constant may reduce to a
value which is equal to the single polaron critical cou-
pling constant. At this value of the carrier density, we
would expect the polaron to make a transition from the
localized state to the delocalized state and such a transi-
tion should be observable in mobility and cyclotron reso-
nance experiments.

4. Io12

N~ (in

8 1012

cln 2) IV. CONCLUSION

FIG. 8. Polaron size (R) vs N„ for ca=3, 3.5, 4, 4.5, 5, and
6.5.

In conclusion, we have investigated the many-electron
screening effect on the GS energy, effective mass and the
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size of the polaron in a purely two dimensional polar
semiconductor quantum well for the entire range of the
coupling constant using the Feynman path-integral
method and the static random-phase approximation.
Comparison shows that the present results are qualita-
tively similar to those obtained earlier by us using the
LLP-H variational method. Quantitatively, however, the
present results are more reliable than the LLP-H results
because mathematically FPIM is a more rigorous method
and it provides a lower variational GS energy. We, there-
fore, reestablish our earlier conclusion that there exists a
critical value of the carrier density (depending on the
electron-phonon coupling constant) at which the polaron
makes a transition from the self-trapped state to a delo-
calized state. For a material with a large value of a, this
transition is expected to be quite sharp. This is an in-
teresting theoretical observation and should be verified
experimentally. One should look for this transition in
mobility and cyclotron resonance experiments on inver-
sion layers where the electron density can be varied al-
most continuously as is done in quantum Hall effect ex-
periments. The potential materials which can show such
transitions are clearly the ones with large electron-
phonon coupling constants. Although a number of ionic
crystals like alkali halides are known to have large cou-
pling strengths, ' most polar semiconductors available to-
day are essentially weak-coupling systems. It is, however,
known for the Si02-Si interface in metal-oxide-
semiconductor field-effect transistor (MOSFET) that the
polar nature of the interface phonons is due to the polar
nature of Si02. ' Therefore, for the present purpose it
will be desirable to fabricate a semiconductor-insulator
interface in a MOSFET kind of device with the insulator

having a large electron-phonon coupling constant and the
semiconductor having a small dielectric constant so that
the coupling strength of the interface phonons to the
electron in the inversion channel remains sufBciently
large.

Finally, we would like to make a few remarks regard-
ing our approximations. First, the use of the electron-gas
dielectric function in the static RPA should not be
rigorously valid in the self-trapped state because in this
regime, the continuum approximation itself breaks down
and, therefore, no analysis based on the Frohlich model
should be fully accurate. This, however, does not rule
out the possibility of existence of the phase transition be-
cause the use of the electron-gas dielectric function is
rigorously valid in the delocalized phase right up to the
transition point. However, the static RPA might overes-
timate the screening effect because it does not take into
account the effect of the exchange and correlation hole
which exists around each electron. The effect of the ex-
change and correlation hole is to prevent other electrons
from coming close to the one which participates in the
dielectric screening. The present calculation can certain-
ly be improved by using a better dielectric function such
as the Hubbard dielectric function' or the Singwi-
Sjolander dielectric function, ' which will probably yield
for the localization-delocalization transition higher criti-
cal densities than those obtained in the present work.
We, however, believe that the improvement will be only
marginal because the densities of interest in usual semi-
conductor quantum wells are orders of magnitude smaller
than the metallic densities and, therefore, the higher-
order correlation effects may not be all that important in
the present problem.
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