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Hopping transport on a fractal: ac conductivity of porous silicon
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We have measured the frequency dependence of the conductivity and the dielectric constant
of various samples of porous Si in the regime 1 Hz —100 kHz at diferent temperatures. The con-
ductivity data exhibit a strong frequency dependence. When normalized to the dc conductivity,
our data obey a universal scaling law, with a well-defined crossover in which the real part of the
conductivity o' changes from an u dependence to being proportional to cu. We explain this in
terms of activated hopping in a fractal network. The low-frequency regime is governed by the fractal
properties of porous Si, whereas the high-frequency dispersion comes from a broad distribution of
activation energies. Calculations using the effective-medium approximation for activated hopping
on a percolating lattice give fair agreement with the data.

I. INTRODUCTION

The discovery of efBcient luminescence &om porous Si
(PS) (Refs. 1 and 2) has created a great deal of inter-
est in this material, because of its possible applications
in Si-based optoelectronics. Porous Si is produced by
electrochemical etching of crystalline, doped Si in a hy-
drofluoric acid (HF) electrolyte. The resulting material
is an interconnected network of small Si crystallites with
a typical size of a few tens of A..s Porous Si has quite ef-
ficient photoluminescence in the visible range, above the
band gap of crystalline Si. The effect has been linked to
quantum confinement of carriers inside the small crystal-
lites, which results in an increased band gap. ' A lot of
research is currently devoted to the optical properties of
this material. Very little, however, is known regarding
its electrical transport properties.

While quantum confinement is necessary to explain the
luminescence properties of PS, it is not clear whether the
same is true for the transport properties. Porous Si is in-
sulating, with a typical resistivity at room temperature
that is five orders of magnitude higher than that of in-
trinsic Si. This high resistivity can be attributed to
various efFects. Assuming that the material can be re-
garded as a semiconductor, quantum confinement results
in a wider band gap and reduces the thermal generation
of &ee carriers. However, this requires that the carriers
supplied by doping are depleted. Depletion of carriers
is known to occur during the preparation of the mate-
rial, either because the dopant energies are increased, or
because of the creation of deep surface levels.

However, the simple model of a wide band-gap semi-
conductor, where dopants are depleted resulting in in-
trinsic characteristics, does not apply for the transport.
Different authors have measured the activation energy of
the dc conductivity, and have reported values about 0.5
eV. ' This energy is lower than half the "band gap, "

extracted from luminescence measurements, suggesting
that the material is not "intrinsic. " The value 0.5 eV
is comparable to the activation energy in intrinsic crys-
talline Si. To explain the lower conductivity the effective
mobility of carriers in PS should be much reduced by
comparison with bulk Si. These arguments suggest that
the mobility of carriers in PS is governed by a completely
different process.

One feature that strongly affects the transport is the
inhomogeneous nature of the material. The current is
carried. in regions with high local conductivity, which oc-
cupy only a small fraction of the material volume. From
a comparison of electron microscopy data with com-
puter Inodels, as well as &om small-angle x-ray ' and
neutron 2 scattering, it is known that the PS network of
crystallites has a &actal structure. Such a structure is
expected to have strong geometrical effects on the con-
ductivity.

Another important feature is disorder induced localiza-
tion. Although PS preserves the crystalline structure on
short length scales, and even long-range order in the sense
of a common orientation of the crystallites is conserved to
some degree, one must keep in mind that the material is
highly irregular. Since the crystallites have d.ifferent sizes
and shapes, there are band-gap variations &om one par-
ticle to another. These band-gap fluctuations are likely
to cause localization of the electronic states. Like in an
amorphous semiconductor, the system has a spectrum of
localized energy levels that results from the disorder.

In such a system, transport can occur in various
ways. ' Carriers can be activated to a mobility edge
above which extended states exist or to an energy above
which they can move by hopping transport. In this case
the activation energy of 0.5 eV, observed in the dc con-
ductivity experiments, re8ects the energy separation be-
tween the Fermi level and the mobility (or transport)
edge. The conductivity would behave as in the wide
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band-gap semiconductor picture, except for a reduced
mobility relative to crystalline Si because of an enhanced
scattering due to the disorder.

There exists also the possibility of hopping in the vicin-
ity of the Fermi level. This requires localized states
within k~T around the Fermi level. The dc activation
energy is then a typical barrier height separating neigh-
boring localized states.

There are two questions to be answered. The first is
whether the high resistivity of PS has a physical origin
such as quantum confinement, or is due to a geometrical
effect. Second, the basic mechanism of transport in the
material must be determined. These questions can be
answered using combined dc and ac conductivity mea-
surements, because the ac conductivity probes the local
conductivity of the composite material.

ac conductivity measurements ' have been exten-
sively used to investigate both amorphous and glassy
materials, as well as d.ifferent ceramic and granular
systems. 8 They allow one to investigate the broad range
of relaxation times typical for nonhomogeneous and
amorphous systems. In this way, it is possible to obtain
more information on the underlying transport mechanism
than &om dc conductivity measurements alone.

Different approaches are used for the two classes of
materials. For ceramics and granular composites classi-
cal effective-medium theories are applied. The dis-
persion of the ac conductivity is given by a nontrivial
average involving the ac conductivity of the crystallites
(Si) and that of the matrix in which they are embedded
(air). The averaging procedure accounts for the proper-
ties of the material and the geometry of the connecting
network. This method has been used to interpret the
IR properties of PS. However, it completely neglects
quantum effects like tunneling between particles, which
is important for the conductivity. This will not affect
the results in the IR regime, which is dominated by the
intraparticle polarization. The low-&equency conductiv-
ity will have large contributions &om tunneling processes.
This is the case in amorphous and glassy materials, where
the structure is homogeneous and the dispersion comes
&om the disorder.

Usually, hopping transport between localized states is
the reason for the &equency dependence of the conductiv-
ity. The d.isorder results in a wid. e distribution of hopping
rates, and gives a strong dispersion of the ac conductivity.
In most of the systems investigated, a &equency depen-
dence for the real part of the conductivity 0'(u) of the

13,15—17

(with 0 & v & 1, but mostly v —1) is observed. This fre-
quency dependence usually relates a small dc conductiv-
ity to a high local one which (with increasing frequency)
is due to the polarization of increasingly small conducting
units.

The reduction of the dc conductivity is intimately
related to the appearance of the frequency law (1).
Although this behavior of the ac conductivity has
been termed "universal" '2 because it is ubiquitous

in disordered materials, it can have different micro-
scopic origins. ' For electronic transport, the rele-
vant mechanisms are electron localization with associated
hopping and &actal topology. In both cases, the
experimental data can be represented in a scaling form,

The scaling function f (x), which describes the crossover
&om the &equency-independent to the &equency-
dependent regime, has a limiting behavior,

f( )
const x « xp
x") x && xp

If the dc conductivity is temperature depend. ent, one
can combine the dc and. ac data to obtain a master plot
which explores many orders of magnitude of the universal
scaling function.

In this present study of the conductivity of PS, we in-
deed obtain a scaling behavior as indicated by Eq. (2). In
contrast to other disordered systems, our scaling function
exhibits two crossovers, namely,

const, x (( xp

f(x) oc & x", xp «x«xy
X ) X'&PX1

(4)

with u = 0.5 and v —1. The lower &equency xp defines
the crossover &om dc conduction to a regime, where,
as we argue, the &equency dependence is produced by
the &actal geometry of PS. The higher one, x1, is the
crossover to hopping transport, with a wide distribution
of local hopping conductances within a given crystallite
or between near neighbors. We confirm this conjecture
by a model calculation using the effective-medium ap-
proximation (EMA) for an activated hopping model on
a percolating lattice.

II. EXPERIMENTAL ASPECTS

The porous samples are prepared by anodization of @-

type Si in the dark. The substrate material is (100) Si,
doped with B to a resistivity of 5 0 cm. Before an-
odization, an Ohmic contact to the substrate is created,
by evaporating a thin layer of Al, followed by annealing
at 555 C for 20 min. The current-voltage characteristic
of this contact was checked and found to be linear. An-
odization is done in a solution of HF (49% by wt. ) diluted
1:1by volume with ethanol. The etch current density is
30 mAjcm2. Immediately after anodization the samples
are taken out &om the cell, rinsed with propanol, and
left to dry in ambient conditions. For electrical measure-
ments, rectangular aluminum contacts (2 x 1 mm ) are
evaporated on top of the porous layer. Samples prepared.
in the dark and without further chemical treatment, ex-
hibit only weak luminescence at 1.7 eV. This is nonlumi-
nescing PS, in the usual sense.

The ac conductivity is measured by applying a sinu-
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soidal voltage between the aluminum contact and the
Ohmic back contact, and measuring the current after am-
pli6cation using a lock-in technique. At each measuring
&equency the lock-in phase is adjusted by replacing the
sample with a 1 MO resistor. Then the current through
the sample is measured in both the resistive and capaci-
tive phases, and the results are calibrated with compari-
son to the resistor.

We need to comment on some experimental prob-
lems which afFect the interpretation of the ac conduc-
tivity measurements. Transport in insulating materials
is known to be nonlinear. This is the case in PS. The
dc conductivity is in principle field dependent. We have
checked the ac current for difFerent ac voltages in the
range 0.1-10 V rms. Only a slight increase of the mea-
sured conductivity is observed (about 10%%uo). As we shall
see, this small change is negligible in comparison to the
observed dispersion. Thus, we may assume that our mea-
surements are in the linear regime. To minimize errors
our measurements have been carried out with a Gxed ex-
citation voltage of 1 V. For the given sample this corre-
sponds to about 10 V/cm.

Another problem is the question of contacts. The
measured admittance Y = I/V is usually interpretated
as a parallel combination of conductance and capaci-
tance, Y = G +iuC, where G is related to the conduc-
tivity and C to the dielectric constant of the PS. Contact
resistances and capacitance spoil this interpretation. We
examine in Fig. 1 the dependence of the conductivity
and the dielectric constant on frequency for two samples
with different thicknesses. The dielectric constant does
not depend significantly on the PS layer thickness. The
conductivity is independent of thickness only for low &e-
quencies. At high &equencies, one Ands that the thicker
sample has higher efFective conductivity. This can be
easily explained if one takes into account the contact re-
sistance. An. equivalent circuit for the measurement is
given in the inset of Fig. 1. Street et al. give the &e-
quency response of such a system as
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FIG. 1. Comparison of the normalized conductivities
o„, = G„, d (where d is the thickness) and the normalized
dielectric constants e„, = C„, d as a function of frequency
for two PS samples scaled for diferent thicknesses. The inset
shows the equivalent circuits from which the parameter values
can be extracted. See details in the text.
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where R, and R are the sample and contact resistances,
respectively, and C the sample capacitance. Under the
assumption that R, && R, we get

G„, =, C„, =C when (u(R, R, ) ~ C & 1,
1

R, '

G„, ~ RC, C„, CforwRC&1&cu(RR, ) ~ C,
(6)

and

1 CG„, —,C„, in the limit 1 & wR, C.

III. RESULTS

A. Conductivity

At low &equency, the measured conductance and capac-
itance re8ect the sample conductivity and dielectric con-
stant. However, at higher &equencies the measured con-
ductance contains a term related to the contact resistance
(6). This term causes the estimated conductivity of thin
samples to be lower than its real value. The model pre-
dicts an u2 dependence of the ac conductivity in this
frequency regime, a behavior that was observed in our
samples. ' In order to simplify the discussion, the data
are corrected for the eKect of the series resistance.

Figure 2 shows the &equency dependence of the real
part of the conductivity at various temperatures. The
solid line marks where the ac conductivities at difFer-
ent temperatures all merge. This line is a power law
o'(~) w" with an exponent v = 0.95 + 0.05. Data
below 200 K fall very close to it. As the temperature
increases, a deviation &om the line is observed. For each
temperature, there is a temperature-dependent threshold
frequency ur (T) (marked in the figure by arrows), which
separates the high-frequency regime (the continuous line)
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FIG. 2. Frequency dependence of the con-
ductivity at different temperatures for a typ-
ical porous Si layer. The dashed and contin-
uous lines in the figure have slopes of 1/2 and
0.95, respectively. The arrows mark the tran-
sition between the two frequency regimes.
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and the low-frequency regime (the dashed lines). The
threshold &equency is correlated with the dc conductiv-
ity at the same temperature 0'(T), by ~,(T) = Acr'(T),
where A is a constant of the order of 100. The conduc-
tivity has diferent behavior in these two regions. At
high &equency, it depends strongly on the &equency
(o'(u) = u) and is almost independent of the temper-
ature. At low frequency 0'(a) = ui~, and a strong
temperature dependence is observed. We note that a
saturation of the conductivity to its dc value is not seen,
even for &equencies well below the threshold. This indi-
cates that in the measured &equency range we are still
quite far &om the dc limit.

The temperature dependence of the ac conductivity is
compared with that of the dc conductivity in Fig. 3. The
dc conductivity is activated above 200 K, with activation
energy of 0.45 eV and a prefactor of 10 (0 m) . Below
200 K, it is almost temperature independent. The depen-

dence of the ac conductivity on the temperature varies
appreciably for diferent &equencies. Generally, at high
temperatures the conductivity is activated while it satu-
rates at low temperature. For sufficiently high &equen-
cies no activation is observed, while in the same temper-
ature range the dc conductivity changes exponentially.
The temperature dependence in this saturation regime is
shown in Fig. 4. The conductivity depends linearly on
the temperature o'/w=T/To, where To——4000 K.

Some preliminary conclusions can be drawn &om these
data. The dc conductivity might suggest that transport
involves activation to a mobility edge. However, this is
clearly not the case. An activated temperature depen-
dence should then be observed for all frequencies. The
fact that at high enough &equencies the ac conductiv-
ity has only a weak temperature dependence implies that
there is neither a gap in the density of states at the Fermi
level, nor is activation to a mobility edge a relevant trans-
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ity of a PS sample at the saturation regime as
a function of temperature. The conductivity
is given in terms of an imaginary "dielectric
constant" by dividing it by the measuring fre-
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done in order to show data obtained at dif-
ferent frequencies on the same scale.

0.0
0 50 100

l

150
I

200 250 300 350

Temperature (K)

port mechanism. We are dealing with degenerate Fermi
statistics and a Gnite density of states at the Fermi en-
ergy. The results in Figs. 2—4 are typical for hopping
transport in the vicinity of the Fermi level.

The total dielectric response of our PS layers is de-
scribed by

B. Dielectric constant

The fi.equency dependence of the dielectric constant as
derived &om the capacitive component of the impedance,
is shown in Fig. 5 for various temperatures. The most
striking effect is the divergence of the dielectric "con-
stant" at low f'requencies, a feature that becomes more
prominent as the temperature is increased. At high fI.e-
quencies the dielectric constant saturates to a weakly
temperature-dependent value e(oo, T). Figure 6 depicts
this e(oo, T) for frequencies 1—30 kHz for which there
exist reliable data after contact corrections. e(oo, T) is
increasing linearly with temperature with a slope of (650
K) . The extrapolated value of e(oo, T = 0) is 2.0+0.1.

Where e,~(T) is the contribution due to polarization of
inner electronic shells, e~(T) is the contribution from the
lattice and the last term is due to mobile electrons. We
assume that both electronic and lattice contributions are
independent of kequency in our range of measurement.
The temperature dependence observed in Fig. 6 arises
mainly &om the mobile electron term. The electronic
and lattice contributions change only slightly with tem-
perature, due to the thermal expansion of the lattice.

The limit e(oo, T = 0) gives the "lattice" and "atomic"
contribution to the dielectric constant of PS. The value
that we observe (e 2) is in agreement with values of
the re&active index obtained &om ellipsometry measure-
ments made at IR frequencies. At such high &equencies
there is no contribution from the transport processes.
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The divergence of the dielectric constant at low &e-
quencies in Fig. 5 deserves further clari6cation. Such
dispersion is usually attributed to contact polarization
(known as the Maxwell-Wagner phenomenon), ' s re-
sulting from the parasitic capacitance of the contacts.
We have neglected this capacitance in our interpretation
of the data according to Fig. 1. Contact polarization
eÃects, if present, lead to a thickness dependence of the
effective dielectric constant. This is not observed (see
Fig. 1), and thus the divergence is not a contact effect.

We must look for another mechanism to explain the
strong dispersion. As in the case of the ac conduc-
tivity, the &equency response of the dielectric constant
can be divided to a regime of strong dispersion and
the saturation regime. We note that there is a correla-
tion between these two regimes of the dielectric constant
and those observed in the ac conductivity measurements
(Fig. 2). The same threshold frequency separates the
low- and high-&equency regimes for the conductivity and
the dielectric constant. The temperature dependence is

also similar. At low &equencies both quantities depend
strongly on temperature, while in the saturation regime
a linear temperature dependence is observed. Figure 7
shows the &equency dependence of the real and imagi-
nary parts of the dielectric constant. We have subtracted
the high-&equency term &om the real part in order to
identify the electronic contribution. Both follow an ap-
proximate power law with the same power, as required
by the Kramers-Kronig relations. Again this observa-
tion suggests that parasitic impedances are not respon-
sible for the divergence of the dielectric constant, but
that this behavior is related to the same physical process
which governs the anomalous difFusion observed in the
low-&equency conductivity measurements.

C. Scaling properties

Figure 8 shows the normalized conductivity o'(~, T)/
cr'(0, T) as a function of the normalized frequency
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FIG. 8. Scaling picture for the real part
of the ac conductivity, i.e. , the scaled con-
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ture. The continuous line marks the dc con-
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The arrows mark the two transitions.

u/w (T), where &u„(T) is the dielectric relaxation fre-
quency 0'(0, T)/e. All temperature data fall on the same
curve, suggesting a simple scaling law for the ac conduc-
tivity. Similar scaling can also be found for the dielectric
constant (see Fig. 9).

The scaling shows that there is a relation between the
dc and high-&equency conductivities, even though they
have completely difFerent behavior as a function of tem-
perature and. &equency. It suggests that the same trans-
port mechanism is responsible for the conductivity in
these two regimes. Moreover, since the dielectric con-
stant can also be scaled. with respect to the dc conduc-
tivity, we have additional evidence that the strong disper-
sion is related to the low-&equency transport properties.

Scaling relations are predicted by most of the hopping
theories. The mere existence of the scaling
does not identify the physical mechanism of the trans-
port. However, our experimental scaling function is dif-
ferent &om what is usually observed in hopping systems.

It is seen that we have, in addition to the usual crossover
&om &equency-independent to &equency-dependent be-
havior, a crossover &om a u" to a u law with u 0.5 and
v 1. We see in this evidence that there is a crossover
&om a frequency dependence due to the &actal character
of the porous material to a "conventional" u" law due to
a large distribution of activation energies. We shall ex-
plore this idea in detail in the sections below.

IV. THEORETICAL DESCRIPTION

The transport mechanism that is suggested &om the
experimental observations is activated hopping on a &ac-
tal with Huctuating activation energies. In our theoretical
description, we start with a summary on what is known
about random walk on &actals and its consequences for
the ac conductivity. We derive a scaling law d.escrib-
ing the d.c-ac crossover in a fractal with finite correlation
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length. Turning to the fluctuating activation energy as-
pect, we consider the pair approximation. This is the
simplest scheme describing the ac conductivity in such
a situation. By combining the two aspects, we obtain a
simple phenomenological scaling formula which describes
the crossover 6.om the &actal to the disorder-dominated
&equency region. Next, we substantiate these findings
by means of the efFective-medium approximation (EMA)
applied to an activated hopping model on a percolating
lattice.

A. Random walk of carriers
and ac conductivity in fractals

The quantity of interest is the complex dynamic con-
ductivity o.(~), the real part of which is the ac conduc-
tivity. If the ac response is due to the diffusive motion of
carriers with charge e, the generalized Einstein relation
applies in the form

(8)

Here D(ur) is the generalized frequency-dependent dif-
fusivity, n the number of carriers, and p the chemical
potential. In systems with a finite diffusion coeKcient
D, we have lim ~p D(ur) = D.

For noninteracting carriers the diffusive motion of the
carriers is described by a single-particle random walk. In
this case, D(ur) is the Laplace transform D(p = i~ + 0)
of the velocity autocorrelation function, which, in turn,
is related to the Laplace transform of the mean square
distance (r2(t)) walked by the particle byM

(9)

Normal diffusion is the case if (r2(t)) increases linearly
with time, i.e.,

(io)

where D is the difFusion coefEcient. By (9) this
implies a frequency independent D (~) . A nomalous
difI'usion ' 's~ ss is present if (r (t)) increases sublin
early with t, for example, according to

( (t))

fractal properties varies with wave number q as i(q) oc

q ". In fact, such anomalous small-angle scattering has
been observed in the type of PS material discussed in this
paperi i (see below).

It has been shown by Alexander and Orbach that a
random walk on a &actal implies a sublinear time depen-
dence of (r2(t)) according to (11) with

dw = 2d/d,

where d is the spectral or fracton dimension, and we have
d & d. The &acton dimension is determined by the vi-
brational density of states N(~) of the fractal which is

proportional to w" . Accordingly the temperature de-

pendence of the specific heat is given by C(T) oc T~.
An example of a &actal which has been studied exten-

sively by numerical and analytical theoretical work is a
percolating lattice. ' In the bond percolation problem,
bonds with concentration x are distributed randomly on
a d-dimensional lattice. In the site percolation problem,
impurities are distributed at random with concentration
x and are treated as connected if they occupy nearest-
neighbor sites. In both cases, below a critical concentra-
tion x, only connected clusters with finite size exist. At a
critical concentration x an infinite cluster appears which
is called the percolation cluster. For d = 3 it has a frac-
tal dimension d 2.5 and a spectral dimension d 1.33.
This gives the random walk dimension as d~ 3.77 and
correspondingly u —0.47. d~ has also been determined
independently by nuinerical simulation (see Ref. 38) to
be in the range 3.45 & d~ & 4.0. These numbers apply
both for site and for bond percolation.

In percolating systems, the presence of finite clusters
even for x & x leads to a slightly larger value u as com-
pared to relation (12). Since we are not dealing with a
percolating system, but with a porous material, which is
more similar to the "backbone" of the infinite percolation
cluster and does not contain isolated clusters of material,
we disregard this eÃect. 2

For x ) x, one can define a correlation length (. On
length scales smaller than ( the structure of the perco-
lating network looks like the critical cluster, on a scale
larger than ( it looks homogeneous. ( obeys the scaling
relation

&/a = I(x —x.)/x. I

"

where d~ & 2 is the "random walk dimension" or
"difFusion exponent. " By (8) and (9) this implies an
anomalous &equency-dependent conductivity of the form
cr(~) oc (iur)" with

u = 1 —2/dw.

A crossover according to (2) with scaling function (3) is
equivalent to a transition &om anomalous diffusion for
times t & to to normal diffusion for t ) to with to oc xo.

A fractaPP is a self similar geometrical object in which
the mass M of a region of diameter L scales as M(L) oc

I", d & d, where d is the dimension of the embedding
space and d is the Haussdorff or fractal dimension. The
x-ray (or neutron) scattering intensity of materials with

where a is the microscopic length scale (average hopping
distance). In d = 3, we have v = 0.9. If g(r2(t)) be-
comes larger than (, one has a crossover from anomalous
diffusion with d~ —4 to normal diffusion at a character-
istic tiine tp ——( /D. The difFusion constant D vanishes
according to D oc (x —x )" with P, = 1.5 in d = 3.4s

The concept of a correlation length can be generalized.
Let us consider a system which on length scales smaller
than ( has fractal properties and on length scales larger
than ( is homogeneous. The mean square distance in
such a system behaves as

1( 2(t)) Dtp(t/tp) i ~, t (& tp6" Dt, t peto,
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where, again,

tp —————( /D
(dp

Using (9), we obtain for the dynamic diffusion coefBcient

urz, it is governed by the fluctuating activation energies.
The value of u» can be estimated by requiring that

g(r2(tq)) (with tq —— u~ ) is of the order of the
microscopic length scale a of the system. Setting
a = s(r (tq)) in equation (15) with tq & tp, and using
(16), we obtain

D, cd gg (do

D(' /. )" » ~
(17) = ~z = ~p ((/a)" (23)

with u = 1 —2/d~. Porous Si is such a system, because
on a macroscopic length scale it is homogeneous.

B. Fluctuating activation energies
and Pair approximation

~'(~) = ~'(0)f
I —,

I
~

f~l
(24)

By this relation we are able to estimate the ratio (/a,
which is an important structural parameter.

If we assume that at high &equencies the ac conduc-
tivity is given by expression (22) with ~ && vp, we can
write down the scaling law

In what follows, we consider activated hopping between
sites i and j separated by an activation barrier E,~ and
a spatial distance r;~. The hopping probability per unit
time is assumed to be of the form

The reference &equency

w„' = D/a = cr'(0)/a e N(E~), (25)

W~ = W(E;~) = vp exp( —E;~/k~T).

vo is the attempt &equency. For classical barrier hop-
ping, vo should be of the order of a phonon &equency
vp 10 Hz. For phonon-assisted tunneling between
localized states, there is an additional tunneling fac-
tor vp ——v„exp( —2r;~/(), where ( is the localization
length. 44

The simplest model for the ac conductivity due to such
a process is the pair approximation» ' in which carriers
are assumed to hop between isolated pairs of sites. The
frequency-dependent difFusivity is given by

D((u) = r,',

can be identi6ed with a dielectric relaxation &equency.
The universal function is given by

1, x(& xo
f (x) = ( (x/xp)", xp (( x (( xg

x/PEp, x )) xy,

with P = [k+T)], where (T) is a mean value of the
experimentally relevant temperature. xp up/w' is
the lower and xq xp((/a)" (PEp) ~~ is the higher
crossover point. The latter relation for u» has a different
prefactor than relation (23). However, in determining
the ratio (/a this amounts to a factor (PEp) ~~2, which is
typically of order unity.

where () means an average over a large number of pair
conf»gurations. In the case of a uniform barrier distribu-
tion P(E;z) =const= 1/Ep, we have

k~T vo
D(w) = a i(u ln 1+ —.

Eo z(u
(20)

where a is the mean pair site separation.
Identifying Ep with the inverse energy level density, ~s

1
N(Ep)as ' (21)

we have for the ac conductivity in the &equency regime
~ &( ~p (Ref. 1S)

0'((u) = e a N(Ey) k~T~ 2' (22)

C. Combined phenomenological scaling law

We assert that below a crossover &equency u», the ac
conductivity is determined by the &actal properties of the
system, i.e. , D(u) is given by expression (17), and above

D. EfFective-medium approximation

Although we are able to explain the salient features
of the data qualitatively by such semiphenomenological
considerations, we would like to have a model to calcu-
late explicitly the dynamic conductivity across the whole
&equency range, &om dc through the &actal 0' cx u /'

&equency dispersion to the regime of validity of the pair
approximation. Such a model is provided by a percolat-
ing lattice on which carriers perform activated hopping
with a broad distribution of activation energies. This
model can be solved in the efFective-medium approxima-
tion.

The efFective medium 9' or coherent potential
approximation is a mean f»eld theory for the dynamics
of excitations in disordered systems. The idea is to re-
place the fluctuating hopping rates W,~ by a uniform, but
frequency-dependent WM(ur) (effective medium). Then
one picks a particular pair ij, replaces again WM(ur) by
R'~ and requires that this operation should have —on the
average —no effect on the effective medium. The "amor-
phous" version of the EMA (Refs. 47—52) is reviewed in
Refs. 24 and 53. In the present study we utilize the lattice
version of the EMA, 4 5 in which the efFective medium
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Replacing the interior of the square bracket in the denom-
inator of Eq. (32) by unity, we obtain essentially Eq. (19),
namely, the pair approximation. Therefore, the EMA
can be considered as a generalized pair approximation
which interpolates between the Bruggeman EMA (Ref.
19) value of the dc conductivity and (19). The "amor-
phous" version of the EMA, which has been checked
by us to give almost the same results as the lattice ver-
sion used presently, compares well with numerical simu-
lations of disordered hopping systems. ' In disordered
systems, it predicts a strong &equency dispersion for the
case that the dc value of O'M is lower by orders of mag-
nitudes than the (d m oo value given by Eq. (32). In
the case of a constant distribution of activation energies
one obtains approximately a behavior according to (1),
where the exponent v lies between 0.8 and 1.

It is worthwhile to note that in the region of the strong
frequency dependence the EMA predicts a weaker vari-
ation of o' with ~ than the pair approximation. The
two approaches give exactly the same results only in the
vicinity of the saturation. We shall see in our numeri-
cal calculations (Fig. 10) that the discrepancy between
EMA and the pair approximation is accompanied by a
slightly nonuniversal behavior in the sense of (24) and

WM ((d) —W;~

1 —~~ ( ) QM((d) [WM((d) —W;~]
(27)

Here, () is a configuration average, Z (= 6 for the sim-
ple cubic lattice) is the coordination number, QM((d) =
1 —i(dGM((d), and GM((d) is the diagonal lattice Green's
function of the medium. Equation (27) can be rewrit-
ten as

1 — ()Q ( )[W ( ) —W]
The frequency-dependent diffusivity is given by

D((d) = a WM((d), (29)

where a is now identi6ed with the lattice constant of the
effective medium.

In the dc limit u ~ 0 the EMA equation (28) takes
the form

TV;~

Iv~(((]II —kl+ ks'() (3()) (26).

is taken to be a simple cubic lattice.
The self consistent EMA equation derived in Refs. 54—

56 has the form

ZWM ((d)
x(dGM((d) = 1 — . + .

ZCd
(31)

Inserting the leading terms into (28) gives

WM((d) = t(d
214r y ]( ~~ ( )])

Here, WM(0) = WM((d = 0).
Let us now study the EMA expression in the limit,

u )) WM((d). In this limit, the Green's function of the
medium GM((d) can be expanded as

f. Percolating lattice without ffuctaating hopping
vates

Before we consider our model with Huctuating activa-
tion energies, we remind the reader of the EMA descrip-
tion of a percolating lattice without Quctuating W,.z.
Consider a bond percolation problem in which for con-
nected sites i,j we have R';~ = R', and for disconnected
sites W,.~ = 0. From (30), we obtain for the dc conduc-
tivity

WM(0) = W,

= (W;~) for (d -+ oo. (32) where xM = 2/Z is the EMA percolation threshold. We

8
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text).
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see that in EMA, p, = 1.
The full EMA equation for this model reads

R'
1 —~™() QM(~) [WM(~) —W]

(34)

WM(0) = eW0 = AM [exp(E0/k~T) —1]kgT

&oEo
exp( —Ep/k~T).

k~T

(40)

In the literature ' 6 it has been shown that the EMA
predicts critical behavior in the vicinity of the EMA
threshold with u = 1/2 and, correspondingly, dv( = 4.
The correlation length exponent is v = 1/2.

In contrast to p and v, the exponent u is almost the
same as the exact value obtained &om simulations. On
the other hand, it agrees nicely with the &equency expo-
nent that we observe in the &actal &equency domain of
the ac conductivity of PS.

g. Percolating lattice tvith fluctuating hopping rates

The EMA equation for Buctuating TV;~, according to
(18) and with barrier distribution P(E) on a percolating
lattice, which is characterized by the bond concentration
x—:xM(1+ e), takes the form

WM((u) = x dEP(E)
0

W(E)
(35)

1 —~ ( )QM((u) [WM((u) —W(E)]

a. dc conductivity. The dc limit of (35) takes the form.

WM(ur) = Wq(i(u)", (41)

with u = 1/2 and Wg = Wp
1/2

c. Crossover frequencies. For the dc-ac crossover fre-
quency up, we have explicitly (see appendix):

~o ——e R'o.2 (42)

The crossover &equency uz into the high-&equency
regime is obtained as

~~ = Wp/(/3E0)' = ((!/a)'~0/(&Ep)'.

The scaling behavior of this expression agrees with our
general scaling relation (23) to within a prefactor. The
latter is different &om that obtained &om the phe-
nomenological relation (26), but, again, for determining
(/a only a factor of order unity is involved.

Thus we identify Eo as the apparent activation energy of
the measured dc conductivity.

The correlation length exponent is v = 1/2 (see Ap-
pendix) .

b L.om freque-ncy ac conductivity. It is shown in the
Appendix that in the limit e = 0, we obtain for u ~ 0,

1 = x dEP(E)
(1 —xM)WM(0) + W(E)

V. COMPARISON OF THEORY WITH
EXPERIMENT

Since we expect WM(0) ~ 0, for e -+ 0, we put

WM(0) = Wpe" (37)

and expand the right-hand side of (36) in powers of e.
We obtain a nontrivial solution for p, = 1 with

In the following, we try to extract physically relevant
parameters &om a comparison of our experimental data
with the theoretical considerations. To facilitate this, let
us collect the formulas for the dc and high-frequency con-
ductivity. As stated above, we may identify the density-
of-states parameter Eo with the activation energy of the
measured dc conductivity, which is Eo ——0.45 + 0.05 eV.
Combining (29) with (41) and using the Einstein relation
(8) with Bn/Oy, = N(E~), we find for the dc conductivity

(38)
o(0) = o'p exp( —Ep/k~T), (44)

where pM = xM/(1 —xM) = 1/2 for Z = 6. The angular
brackets () now and in the following mean an average
over the distribution P(E) only. The physical meaning
of this result is that hopping along the backbone of the
percolation cluster samples all "conductances" W,~ in se-
ries.

Inserting the (normalized) uniform distribution func-
tion

with (P = 1/k~T)

op ——N(Ey)e a ePEpvp. —2 21
2

(45)

For high &equencies, we obtain &om the pair approxima-
tion (32) in the regime m « vp the real and imaginary
parts of o.(~) as

p(E) = (
i~Ho B&Ho'

0, E)Eo,

we obtain for Wp [and hence for WM(0)]:

cr' (ur ) = N (Es )e a (u
2 0

o."(~) = N(E~)e a (u ln(vp/(u).
0

(46)

(47)
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Both real and imaginary parts of the conductivity de-
pend linearly on the temperature and frequency as ob-
served in the experiments. Moreover, &om the ratio be-
tween the real and imaginary part of der/dT, we obtain
an at tempt &equency of vo = 10 s . This is a very
reasonable value, because it should be the product of a
typical phonon &equency and a tunneling factor.

In order to evaluate the density of states at the Fermi
level, we use the temperature dependence of the ac con-
ductivity and combine formulas (21) and (46) to ob-
tain N(E~) 10 eV cxn and a 50 A. The
value of a is of the order of the typical crystallite size,
confirming that the hopping occurs &om one crystal-
lite to the other. N(E~) appears to be rather large
for a Fermi level in the forbidden gap of all the crys-
tallites. However, the large internal surface area of the
PS (= 500 m /cms) may cause a high density of surface
states. Taking reasonable numbers for the surface states
density ( 10 2 cxn eV ), we just arrive at our mea-
sured value for N(E~). Moreover, the energy spectra
of the different quantum wells are shifted with respect
to one another due to partial charging effects either by
doping or by different chemical bonding on the surface.
Thus, the effective density of states near the Fermi level
involves the local state densities near the conduction or
valence bands of particular crystallites.

We new discuss the &actal properties of PS. The &ac-
tal dimension d has been determined directly by small-
angle x-ray ' and neutron scattering as a function of
porosity. In a limited range of wave numbers the scatter-
ing intensity varies according to i(q) oc q as expected.
The parameter d has been shown to take values &om
d = 3 at 55%%up porosity, decreasing to d —2 at 68%%up and
d = 1 at 85 %% porosity. Since our samples have a porosity
of about 60—70'%%up, we assert that d = 2. Prom the exper-
imental value of u 0.5 in the low-&equency scaling
regixne, we conclude from relations (12) and (13) that
the spectral dimension of our material is d —1. This
value seems to be rather small, because in other &actal
materials d takes values lying in the range 1.2 to 1.5.
However, we think this is still compatible with the esti-
mates performed above, because the &actal dimension is
very sensitive to the porosity and the error in the latter
quantity is rather large.

We next estimate the degree of &actality measured by
the parameter (/a, the ratio of the correlation length to
the mean hopping distance. By the scaling relation (23)
this can be obtained &om the ratio of the two crossover
frequencies. Since in our data (dx/Lop 10, we obtain
with dxx = 4 the parameter (/a = 10. A similar re-
sult is obtained in EMA for which (/a = e x~2 applies.
Together with our value of a, we arrive at ( 500 A.
From the small-angle x-ray data one deduces a value of
( which lies roughly between 100 and 1000 A.

We now compare the predictions of the EMA with our
data in more detail. In Fig. 10, we show the scaling func-
tion of Fig. 8 together with the scaling function obtained
&om the EMA using r = 0.01 and Eo ——0.42 eV. In the
low-&equency regime, the data are described very well
by the theory. In the high-&equency regime u ) uq the
calculated curves deviate &om the measured ones: The

&equency dependence predicted by the EMA is weaker
than o' oc u, the calculated crossover is more smeared
out than the measured one, and the calculations show
a nonuniversal temperature dependence not observed in
the experimental data. This behavior is due to the fact
that in the frequency regime wx ( u ( (W;~) the EMA
does not describe pair hopping but hopping within clus-
ters of more than two sites. The number of these sites is
the larger the lower the frequency is and becomes infinity
in the dc limit. Only at very high frequencies u = (W;~),
where both approaches predict a saturation of cr'(~), the
EMA is equivalent to the pair approximation.

We conclude &om the linear &equency dependence of
the experimental data that in PS hopping among clusters
which contain more than two sites (i.e. , Si crystallites) is
suppressed in the high-&equency regime.

VI. DISCUSSION

In the Introduction, we pointed out the high resistiv-
ity of PS and discussed some possible reasons for that.
We would now like to draw some conclusions about this
question in light of the results presented above. As we
have already stated, the temperature dependence of the
conductivity (especially at high frequencies) implies that
the transport mechanism is hopping in the vicinity of
the Fermi level. The = 0.5 eV activation energy of the
dc conductivity has nothing to do with thermal gener-
ation of carriers accoss an energy gap. Quite contrary,
we find a high density of states at the fermi level N(E~)

10 eV cm . One could argue that the dc cur-
rent might be carried in a small portion of the sample,
composed of intrinsic c-Si "needles" (with no quantum
confinement), while the ac conductivity arises froxn po-
larization currents in disconnected particles. However,
the scaling proves that the same transport mechanism
is responsible for both the high &equency and the dc
conductivity. Thus, such explanations based on the in-
homogeneous structure of the sample can be ruled out.

There is one important difference between our data
and the behavior usually observed in amorphous materi-
als. This is the intermediate region, in which the conduc-
tivity follows an ~ / law. In homogeneous disordered
systems there is only one crossover &om a &equency-
independent conductivity (the dc limit) to a u" regime
(with v = 0.8 —0.9 . In our system, two crossovers are
observed: dc to u and ~ /' to u . This is related to
the fact we emphasized above, that the ac conductivity is
caused by hopping of charged carriers and not by polar-
ization of atoms or metallic particles. The electrons per-
form a random walk in the disordered &actal system in
the presence of the electric field. They will pass a certain
distance before the field changes its polarity. For higher
&equencies the distance walked will be shorter. In a ho-
mogoneous systems only one typical distance scale exist,
namely, the average hopping length. In PS samples, two
typical length scales can be found: The hopping length,
which is comparable to the typical crystallite size, and
the correlation length, which is the typical scale of the
inhomogeneity. This is the reason for the two transitions
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observed in our experiments. These two length scales are
also observed in small-angle x-ray scattering. In these ex-
periments, a fractal structure is observed for length scales
between a few hundreds of A. and up to —1000 A. (the
upper liinit is given the experimental limitations). At
shorter length scales, the typical Si particles sizes can
be deduced to be in the range of a few tens of A.. Both
these values are quite compatible with our estimates of
the hopping distance ( 50 A.) and the correlation length
of the percolating system (= 500 A.).

One of the most interesting aspects of the present study
is that we can determine directly the random walk di-
mension d~ from the frequency dependence of the ac
conductivity. Our value of d~ ——4 implies a relation
d = d/2 between the spectral and the &actal dimension.
As stated above, d in other fractal materials is always
&1.2. It should be interesting to directly determine d
by inelastic neutron scattering, in order to investigate,
whether this applies also to PS. If so, the fractal dimen-
sion should be ) 2.4. The measurements of small-angle
x-ray scattering of Vezin et aL. » give a smaller value. A
possible reason for this could be that the fractal seen by
the x rays might have a slightly different topology than
the conducting network.

Our use of a percolating network to model the PS
structure is due to its simplicity. We do not believe that
the real strucutre of the Si skeleton is similar to this arti-
ficial model. The scaling relation (24), (26) proposed by
us applies to any fractal with finite correlation length.
Nevertheless, in terms of diffusion and conductivity, it
seems that the properties of the real system are repro-
duced by this simple model.

In the above discussion, we ignored the possible in-
Quence of Coulomb interactions on the ac conductivity.
It is known that these effects are important in the dc
transport. The field dependence of the dc conductivity
has been interpreted in terms of hopping in the vicin-

ity of charged centers. It was further argued, that these
centers are the crystallites themselves and that the trans-
fer from one crystallite to another involves a Coulomb-
Blockade type energy. Such effects will also inHuence the
ac conductivity. However, a detailed analysis of them is
very difficult. The role of Coulomb interactions in the ac
conductivity of disordered systems has been examined
only for the case of the Coulomb gapsi using the pair
approximation. For states within the gap, it was found
that the conductivity follows an a' law where s is a bit
larger than in the noninteracting case. Furthermore, the
temperature dependence in the high-frequency regime is
weaker than linear. However, the analysis performed for
the Coulomb-gap cannot be applied directy to our case.
We believe, that our main conclusions about hopping in
the vicinity of the Fermi level and the role of the fractal
structure in the low-frequency transport are still valid in
a mean-field sense.

To summarize, we have shown that the transport
mechanism in microporous Si is governed by hopping at
the Fermi level. The density of states at the Fermi level is
very high, almost comparable to what is found in unhy-
drogenated a-Si. The geometrical constraints imposed by
the &actal structure of the Si skeleton alter the transport
properties by reducing further the dc conductivity, and
giving rise to additional dispersion at low frequencies.
Thus, a relation between the electrical and the structural
properties is obtained.

APPENDIX

In this appendix, we show how to obtain the low-
frequency exponent u in EMA for the combined fractal
and disordered model.

For reaching this goal, we have to include the Green's
function,

1
G~(~) = ). .i~ + WM(~) [Z —2cos(k a) —2cos(k„a) —2 cos(k a)]

'

explicitly into our consideration. The summation goes
over the first Brillouin zone. For e = 0, we make the
ansatz

For Z = 6, we have gp ——0.26. Setting x = xM and
defining qM = (1 —zMQM)/zM, we rewrite the EMA
self consistency equation (35) in the form

WM(~) = Wi(i(u)", (A2)

with u ( 1. From this, it follows in the u ~ 0 limit, (
'~GM (~) —qM WM (~)/W(E) = 0.

1 —i~G~((u) + qM WM ((u) /W(E)
(A5)

with

G~((u) = = (i~) (A3) Since in the low-frequency limit the denominator is
finite and tends towards unity, we have

(iuG~(&u) —qMWM(&u)/W(E)) = 0,
1go=). Z —2 cos(k a) —2 cos(k&a) —2 cos(k, a)

(A4)

from which we obtain u = 1/2 and

W» = Wpgp.2 (A7)
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u)p ——e Wp/gp = e Wp ——eD/(a ) (AS)

The crossover frequency (at finite e) from dc to ac be-
havior can be estimated by putting ]WM(uo, e = 0)] =
WM(~ = 0, e) with the result

quencies above which iurGM(u) —qMWM(u)/W(E) is
no more a small number (i.e. , « 1). This expression
obtains values of the order of one if WM(u) = Wi(i~) /

becomes comparable with the smallest transition rate,
which is W(E) = vo exp( —Eoj. From this we obtain

Comparing with (16), we find a'i = Wo/(&Eo) = (&Ia) ~o/(/3Eo) . (A10)

i.e. , we have for the correlation length exponent in EMA
v = 1/2. This result can be obtained directly Rom the
EMA equation (35) for e & 0 by identifying ( with
D (ur) /i(u

An estimate for the crossover &equency ~z &om the
&actal &equency regime to that determined by the Huctu-
ating activation energies can be obtained &om the regime
of validity of relation (A6). The crossover starts at fre-

At the end let us remark that for our numerical calcu-
lations, we replaced the lattice Green's function (Al) by
the approximate expression (Hubbard approximations7),

2
Go(p) = .i sr + ZWM + g(t'u + ZWM) 2 —Z WM2

(A11)

In this approximation the relations derived above hold
with go

——2/Z, which is equal to 1/3 for Z = 6.
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