
PHYSICAL REVIEW B VOLUME 51, NUMBER 4 15 JANUARY 1995-II

Thermal diffusion of a two-layer system
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Thermal conductivity and thermal diffusivity of a two-layer system are examined from the the-
oretical point of view. We use the one-dimensional heat-diffusion equation with the appropriate
solution in each layer and boundary conditions at the interfaces to calculate the heat transport in
this bounded system. We also consider the heat Hux at the surface of the sample as a boundary
condition instead of using a fixed temperature. Prom this, we obtain an expression for the effective
thermal diffusivity of the composite sample in terms of the thermal diffusivity of its constituent
materials without any approximations.

I. INTRODUCTION

During the last decade, several methods have been de-
veloped to determine thermal diffusivities and conduc-
tivities with high precision by means of photothermal
effects. The most widely used method is based on the
photoacoustic effect. The principle of the effect is that
when a sample in a closed cell is illuminated by light
modulated or chopped at audio &equencies, an acoustic
signal is produced. The application of the photoacous-
tic effect to the measurement of thermal diffusivities for
thin films has been made by Adams and Kirkbright.
They have used the method called rear-surface illumina-
tion. When the rear surface of a sample is illuminated
with the chopped light beam, heat oscillations generated
therein propagate &om the surface into the sample. Pres-
sure oscillations of the same &equency are induced in the
gas chamber by the temperature oscillations at the sur-
face interface between the sample and the gas, where
they can be detected by a microphone. The photoacous-
tic signals obtained have a certain phase shift relative to
the signal detected &om &ont-surface excitation. Besides
that, since the phase shift of the signal does not depend
on the optical properties of the sample, it is simpler to
extract information on the thermal diffusivity &om the
experimental results. Phase shift lag measurements are
then most suitable for determining the thermal diffusiv-
ity of the material. Charpentier et al. made an analy-
sis of the pressure variations considering rear- and &ont-
surface excitation and gave a formula relating the lag
shift of the photoacoustic signal using high modulation
&equency. The refinement of the theory in terms of the
Rosencwaig and Gersho theory was given by Pessoa et
aI,.; they showed that the relative phase lag exhibits no
explicit dependence on the absorbed power and surface
conditions so that a single Inodulation &equency mea-
surement is sufBcient to determine the thermal diffusiv-
ity.

In recent years, there has been some interest in study-
ing the thermal characterization of two-layer systems of
variable thickness using the photoacoustic effect. Tomi-

naga and Ito used the Rosencwaig-Gersho model for a
two-layer system under rear illumination and looking at
the phase angle behavior as a function of the modula-
tion &equency. They showed that, at high modulation
&equencies, the rear-illumination phase angle depends
upon a critical &equency above which one of the materi-
als becomes thermally thick. From the analogy between
thermal and electrical resistances widely used in heat-
transfer problems, Mansanares et al. calculated the ef-
fective thermal diffusivity of the two-layer system as a
function of the filling &action of the composite sample
and the ratio of the thermal conductivities of each ma-
terial. Recently Christofides and Seas made an exten-
sion of the theoretical model of photopyroelectric spec-
troscopy of solids to investigate the optical and thermal
properties of a two-layer sample. They examined the case
where the optical absorption coefBcients of the substrate
and film vary in different ways; several computer simula-
tions were performed in order to examine the correctness
of this model for a wide range of wavelengths and mod-
ulation &equencies.

In the present paper, we take a different approach than
previous investigations to the heat transport in bounded
systems. We restrict our analysis to the case of solution
of the heat transport equation considering only the con-
tinuity of the heat Bux at the interface of the two-layer
system. In addition, we only take into account the de-
creasing exponential term of the dynamical part of the
temperature Buctuation in each layer, which gives the
physical solution of the heat Qux. It is shown that if
the ratio of the square root of the diffusivity is equal to
the ratio of the thermal conductivity of each layer, then
the temperature distribution is continuous at the inter-
face; otherwise the temperature is discontinuous. In both
cases, the effective diffusivity of the two-layer system is
the same.

II. ONE-LAYER SYSTEM

It is well known that heat transport in solids is carried
out by various quasiparticles (electrons, holes, phonons,
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magnons, plasmons, etc.). Frequently the interactions
between these quasiparticles are such that each of these
subsystems can have its own temperature and the phys-
ical conditions at the boundary of the sample can be
formulated separately for each temperature. For ex-
ample, the physical conditions resulting in heat trans-
port by electrons and phonons are given by Granovski
and Gurevich and those for the transport by electrons
and magnons are given in Ref. 12, where the appropri-
ate boundary conditions are formulated. The theory of
heat conduction in solids was developed by Gurevich
and Kaganov using the two-temperature approxima-
tion. They showed that, in general, the temperatures of
carriers and phonons in anisotropic semiconductors are
unequal even in the interior of a bulk sample. The expres-
sion for the temperature distribution for electrons and
phonons was obtained in bounded semiconductors using
adiabatic boundary conditions. It is shown that the ac-
cepted assumptions about the constancy of the temper-
ature gradient are only valid under certain limits.

We restrict ourselves for definiteness to the case when
the quasiparticle systems are electrons and phonons. Let
Tp be the characteristic phonon temperature. Then the
momentum q oc ~ (s is the sound velocity) sets a limit
to the phase space volume occupied by phonons. Here-
inafter, we shall consider two limiting cases.

(i) Short wavelength (SW) phonons occupy a large vol-
ume in phase space. This case is represented by the the
inequality

q (2p.
In the limit vpp » vp, the phonon-phonon interac-

tions are more &equent than phonon-electron collisions
and more efBcient in terms of energy relaxation than en-
ergy transfer &om the electron to the phonon subsystem.
It should be noted that the electron and phonon subsys-
tems, generally speaking, cannot be characterized by a
single temperature. Therefore steady state heat conduc-
tion can be described by the following system of equa-
tions:

divQ, = P,„(T,—T„), divQ„= P„,(T—, —T„) . (6)

The term P,z(T, —T„) describes the transfer of heat be-
tween electrons and phonons. Here P,p is a parameter
proportional to the &equency of phonon-electron colli-
sions (P,z ——P„,) and the heat flux of electron Q, and
phonon Qz subsystems are described by the usual rela-
tionships

Q, = —k,divT„Q„= k„divT„—,

where k, (kz) is the electron (phonon) thermal conduc-
tivity. If in addition, we consider large specimens such
that the dimension l )) L*, where I* is the scale of
the electron-phonon energy interaction, referred to as the
cooling length then the temperatures of the two subsys-
tems are equal, i.e. , T, = Tp = T. In this case we
obtain, after summing Eqs. (6), the following equation:

Tp
2p &( —,

where p is the average electron momentum, namely, p oc

/2mT for the nondegenerate electron gas and p = py,
the Fermi momentum, for the degenerate electron gas;
here T, is the electron temperature.

(ii) Large wavelength (LW) phonons occupy a large
volume in phase space. This is the case when electrons
interact with all phonons,

Tp.2p ))—
Prom the Boltzmann equation, it is known that the

degree of nonequilibrium of the phonons is determinated
by the relationship between phonon-electron (v„,) and
phonon-phonon (v„„) relaxation frequency. v„, deter-
mines the degree of phonon disturbance by the electrons
and it decreases rapidly, tending to zero for q ) 2p,
while the other, vpp describes the tendency of phonons
to come to equilibrium as a result of the energy distribu-
tion. Therefore, in the region q ) 2p, only the following
inequality holds:

divQ = 0,
where Q = C}, + Q„ is the total heat flux carried by
electrons and phonons.

Now, consider the situation represented by the inequal-
ity of Eq. (5). This is the case when phonon-phonon col-
lisions alone cannot bring the phonon subsystem to an
internal equilibrium. If Eq. (1) is true, i.e., LW phonons
occupy a much smaller phase volume than SW phonons,
then the SW system has enough time to redistribute the
energy received &om the LW phonons between its con-
situent quasiparticles. As a result, the distribution func-
tion of SW phonons becomes Planckian (see Ref. 15).
Then the electron —LW phonon interactions relax their
energy more eKciently than the phonon subsystem and
the LW phonons emitted by electrons of temperature T
are characterized by the same temperature T = Tp
In this situation we also have two diferent subsystems;
one corresponds to the SW phonons with temperature
T„and the other one corresponds to electrons and LWSW

phonons with a characteristic temperature T, = Tp
LW

and they satisfy the following heat transport equations:

vpp &) vpe) q ) 2p

In the region q ( 2p, the inequality

vpp )) vp„q ( 2p

can hold as well as the reverse inequality

(4)
where the term P„„(T,—T„) represents the transfer
of heat &om LW phonons to SW phonons and Ppp is
calculated in Ref. 16. If the size of the sample is greater
than the cooling length (l )) L*) of this system then we
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obtain the condition Te = T„=T, and after summing
Eqs. (9) the total heat flux satisfies divQ = 0.

When vz, » viz and Eq. (2) holds, we have only
I.W phonons and they interact efBciently with electrons.
In this case all the quasiparticle systems have the same
temperature T, = T„=T and the equation for heat flux
is similar to Eq. (8).

From this brief discussion, we have shown that under
certain conditions on the realaxation frequency of the
electron and phonon subsystems and size of the sample
the total system can be described by the same tempera-
ture T and the total heat flux satisfies divQ = 0.

So far, we have only described the static contribution
of the heat transport, i.e. , the heat Aux is independent of
time. However, in the photoacoustic experiments, the in-
cident radiation is modulated in time by the chopper, and
in this case it is necessary to consider the dynamic contri-
bution to the heat transport in the electron and phonon
systems. It is worth mentioning that even the external
perturbation depends on time, the dynamic contribution
of the heat flux is only important when the frequency u of
the incident electromagnetic field is of the same order as
the characteristic relaxation energy &equency of the elec-
tronic system, v, .i7 If ~ && v, (high frequency limit), the
electron temperature cannot follow the variation of the
field and assumes an average value. Since phonons can
receive energy only &om electrons, the phonon temper-
ature should also remain constant as a function of time.
Otherwise, if u (( v, (low frequency limit), the variation
of the electron and phonon temperatures is quasistatic.
That means that the static quasiparticle temperature os-
cillates with the same &equency as the radiation.

In Eq. (8), we are not taking into account the dis-
tributed heat source resulting &om the light absorp-
tion. Assuming that the temperature of the electron and
phonon systems are equal, which is usually the condition
in most of the photothermal experiments, the equation
of heat conduction in solids (that is valid for a ( v, ) can
be written as

OT(r, t)
Ot

(10)

Q(x, t)~ o
= Q+ AQe' ',

In this equation, we are considering that the variation of
the temperature as a function of x is such that the heat
conductivity k is independent of the coordinates; other-
wise, we have to solve a nonlinear heat equation. Here
the diffusivity o. is given as o. = —where p is the den-

pc
sity and c is the specific heat of the sample. Consider
the photoacoustic cell geometry for the heat transmis-
sion configuration shown schematically in Fig. 1(a). The
temperature fluctuation is obtained from the solution of
Eq. (10) in one dimension. The solution T(x, t) should
be supplemented by boundary conditions at x = 0. In
the photoacoustic experiments, the most common mech-
anism to produce thermal waves is the absorption by the
sample of an intensity modulated light beam with &e-
quency modulation ~ & v, . It is clear that when the
intensity of the radiation is fixed, the light-into-heat con-
version at the surface of the sample can be written as

(a)

(b)

FIG. 1. Geometry for (a) a one-layer system and (b) a
two-layer system.

where Q is proportional to the intensity of high frequency
light (0 » v, ) and the other term represents the mod-
ulation of this light. The temperature is not used as
a boundary condition because it is usually an unknown
parameter in the experiments, and besides that it is nec-
essary to know the temperature on both surfaces. It is
only important in thermoelectric phenomena in semicon-
ductors when the specification of the temperatures on the
surfaces of the sample must be known.

The general solution of the heat-diffusion equation for
a one-layer system is given by

(12)

The parameter o is determined by forcing Eq. (12) to
satisfy Eq. (10) for one-dimensional heat flux and is equal
to 0 = (1 + i) gu/2o;. Using the boundary condition at
x = 0, the constants Ti and T2 are given by

Q AQ 2n
1 '7 2

k 2k
(1 —i).

In arriving at Eq. (12), we assume that the sample is
optically opaque to the incident light (i.e., all the incident
light is absorbed at the surface). Here To is a constant
which cannot be determined &om these boundary con-
ditions and it is not important in obtaining the physical
results. It is worth mentioning that the increasing ex-
ponential term with distance in the dynamical part of
Eq. (12) has not been considered because this term rep-
resents a macroscopic heat flux &om the lower to higher
temperature region (heat flux cannot be reflected).
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Once we know the temperature distribution in the sam-
ple, we can assume the acoustic piston model for evalu-
ating the pressure fIuctuation in the cell. Acording to
this model, the oscillating component of the tempera-
ture attenuates rapidly to zero with increasing distance
from the sample surface. The thin gas boundary layer
at the interface then acts as a vibrating piston. The dis-
placement of this piston is estimated using the ideal gas
law (PV = NkgyT) for the boundary layer. As a result
of this gas piston oscillation, a pressure fiuctuation bP(t)
is produced in the cell and is given by

1/2

2o. )

(14)

(1-')
l2k2

) 1/2
x exp

(2o.g)
(1 + i)lg

with

(20)

L li l2+
0!i O.'2

) 1/2

o; =
~ ~

(1+i).
(2o.;)

Comparing the temperature distribution Eq. (17) with
Eq. (12) at z = L, we can write the effective thermal
diffusivity and conductivity of the two-layer system as

where Po and To are the ambient pressure and tempera-
ture, respectively. Then Eq. (14) may be evaluated for
the magnitude and phase of the acoustic pressure wave
produced in the cell by the photoacoustic effect.

and

or

0!2

k2
(22)

III. TWO-LAYER SYSTEM
go. 2 / lg l2+

k k2 4 do'& do2 )
(23)

Let us consider the two-layer system shown schemati-
cally in Fig. 1(b) consisting of a material 1 of thickness
li and a material 2 of thickness l2, both having the same
cross section. Let L = li + l2 denote the total sample
thickness, o,; the thermal diffusivity, and k, the thermal
conductivity of the material i (i = 1,2). The system
of heat-difFusion equations describing the heat transfer
through the various layers of the one-dimensional pho-
toacoustic configuration is given by

It is worth mentioning that the effective thermal pa-
rameters Eqs. (21)—(23) have been obtained without any
approximations about the thermal thin and thickness of
the materials, analogy between thermal and electrical
resistances used in heat-transfer problems, some criti-
cal frequencies above which one of the layers becomes
thermally thick, or continuity of the temperature distri-
bution at any interface.

However, if the thermal parameters of each layer satisfy

0Ti 0 Ti
(15)

0!2

kg
(24)

The boundary conditions of the thermal-diffusion
equation (15) are obtained &om the requirement of heat
Aux continuity at the interfaces of the two materials and
Eq. (11). The solutions of the heat transport equations
can be written as

0 & z & l„(16)

and using Eq. (23), the effective thermal conductivity
can be written as

I. l i l2+
k ki k2

(25)

Then, &om Eqs. (16) and (17) we obtain that Tq(lq, t) =
T2(lq, t), i.e. , the temperature is continuous at the inter-
face x = li, otherwise, in general, the temperature will
be discontinuous at the interface of the two materials
and the effective thermal conductivity and diffusivity are
given by Eqs. (21) and (23). This discontinuity in the
temperature can be expressed mathematically as follows:

T2(z, t) = Op + Oy(z —l] ) + 02 exp [iwt —0'2(z —ly)],

li&z&L, (17)

T2(lq + e) —Ti(lg —e)z,t, =hm —k
e—+p

= rl(T2 —Tg), (26)

where

Oi ————
k2

'

where g is the surface thermal conductivity at the
interface. ~4 Note that when g goes to infinity, since Q is
finite, the temperature distribution must be continuous
at the interface, and for finite surface thermal conductiv-
ity, in general, we have that Tq(z, t)~ & g Tq(z, t)~
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IV. CONCLUSIONS

A theoretical analysis of the photoacoustic effect in a
two-layer sample has been studied. Using the appropri-
ate boundary conditions, we obtain the effective thermal
diffusivity and thermal conductivity of the two-layer sys-
tem without any approximation in the thermal parame-
ters. The continuity or discontinuity of the temperature
at the interface of the two-layer system depends on the
relationship of the thermal parameters of both layers. In
general, the heat flux is defined as the product of the
thermal surface conductivity and the difference of the
temperatures at the interface.

Mansanares et al. demonstrated the usefulness of a
single modulation frequency method for measuring the
thermal diffusivity of solid samples. The method consists
of measuring the relative phase between the rear-surface
illumination and the front-surface illumination. Using
the thermal-diffusion model of Rosencwaig and Gersho
for the production of the photoacoustic signal, the ra-
tio of the signal amplitude and the phase lag for rear-
and &ont-surface illumination is given as a function of

the sample thickness and the sample thermal-diffusion
coeKcient. The theory for the relative phase lag will be
studied using our model in a forthcoming paper. Finally,
its important to mention that our model is valid for mod-
ulated &equency of the incident light, u, of the same or-
der as the &equency of the relaxation energy between the
quasiparticle systems v, . In the limit u )) v, the system
cannot respond to this external perturbatien; therefore
the average in time of the dynamical part of the heat flux
is negligible and the transferred heat is only static. For
u « v„ the heat flux is quasistatic, i.e. , BT/Bt = O. i7

Then the solution of Eq. (10) for one layer is given by
T(x, t) = Ci + C2x and from Eq. (11) we finally obtain
the solution in this regime as T(x, t) = (Ci + Czx)e'
This represents an oscillation of the temperature distri-
bution in every point of the layer.
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