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In this paper, recently developed time-convolutionless quantum-kinetic equations for electron-hole

pairs near the band edge are used to derive the optical gain and the line-shape function of a driven semi-

conductor taking into account excitonic efFects. The equation of motion for the interband pair ampli-

tude is integrated directly assuming the quasiequilibrium or adiabatic approximation. It is shown that

the line shape of the optical-gain spectra is Gaussian for the simplest non-Markovian quantum kinetics.

On the other hand, the line-shape function becomes Lorentzian, which has been assumed in most practi-

cal calculations, in the Markovian limit. It is also shown that the optical gain is enhanced by (1) exciton-

ic efFects caused by the attractive electron-hole Coulomb interaction and (2) interference e6'ects (or re-

normalized memory e8'ects) between the external driving field and the stochastic reservoir of the system.

Gain enhancement by the memory e8'ects can be interpreted as the result of the violation of energy con-

servation on the time scale shorter than the correlation time.

I. INTRODUCTION

This paper is a direct continuation of a preceding one'
(I) in which the time-convolutionless (TCL) quantum-
kinetic equations for interacting electron-hole pairs in
band-edge semiconductors are derived from the equation
of motion for the reduced density operator for an arbi-
trary driven system coupled to the stochastic reservoir.
Time-convolutionless quantum-kinetic equations general-
ize the semieonduetor Bloch equations to incorporate the
non-Markovian relaxation and the renormalization of the
memory efFects through the interference between the
external driving field and the stochastic reservoir of the
system. The memory effects arise because the wave func-
tions of the particles are smeared out so that there is al-
ways some overlap of wave functions and as a result the
particle retains some memory of the collisions it has ex-
perienced through its correlation with other particles in
the system. These memory efFects are the characteristics
of the quantum-kinetic equations. In quantum kinet-
ics, a particle may possess a component of the wave func-
tion prior to the collision. As a resu1t, the strict energy
conservation may no longer hold for a time interval
shorter than the correlation time.

From an application point of view, the optica1 gain is
one of the most important basic properties of optoelec-
tronic devices. For most practical calculations, the
phenomenological Lorentzian line-shape function for the
optical gain, analogous to gas laser theories, are assumed.
However, it was pointed out by Yamanish and Lee' that
the optical spectra calculated with the Lorentzian line-
shape function deviate from the experimental results.
Especially, a gradual tailing and an unnatura1 absorption
region appears at photon energies lower than the band
gap in spontaneous emission and gain spectra, respective-
ly, as long as the Lorentzian line-shape is used. More-
over, the gain coeKcient may be underestimated and may

sensitively depend on an upper limit in an integral over
the electron energy due to the weak convergence of the
Lorentzian function with increasing off resonance. Be-
sides, the Urbach absorption tail universally observed in
polar semiconductors cannot be explained by the
Lorentzian line-shape function. When these issues are
set aside, there are many-body effects to be considered in
the theoretical description of the optical grain. " '

Well-known efFects are the reduction of the band gap
with increasing carrier density (band-gap renormaliza-
tion) and the enhancement of the optical transitions due
to the attractive electron-hole interaction (Coulomb or
excitonic enhancement). Recently, Tomita and Suzuki
used the time-convolutionless equations in the lowest
Born approximation to obtain the density-matrix theory
of nonlinear gain for noninteracting electron-hole pairs in
semiconductors. ' Many-body effects such as band-gap
renorrnalization and Coulomb enhancement are not con-
sidered in their work.

In this paper, the optical gain and the 1ine-shape func-
tion of a driven semiconductor are derived from the TCL
quantum-kinetic equations for the interband polarization
taking into account many-body efFects. This paper can be
regarded as an extension of Tomita and Suzuki's work'
on the system of noninteracting electron-hole plasmas to
the interacting electron-hole pairs in the band-edge semi-
conductors. The optical gain and the line-shape function
are studied from first principles starting from the TCL
quantum-kinetic equations obtained in I. We simplify the
theory by considering the case of quasiequilibrium or adi-
abatic approximation only. Nonlinearities due to the
Coulomb effects are considered in the present theoretical
frame. %"e integrate the equation of motion for the inter-
band pair amplitude directly to obtain the optical gain as-
surning the quasiequilibrium or adiabatic approximation
and discuss the interference effects on the 1ineshape be-
tween the external driving field and the stochastic reser-
voir of the system.
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II. TIME-CONVOLUTIONLESS QUANTUM-KINETIC
EQUATIONS FOR SEMICONDUCTORS

In this section, we summarize the results obtained in I
on the time-convolutionless quantum-kinetic equations
for the interacting electron-hole pairs in band-edge semi-
conductors with an external driving field. We consider
an arbitrary driven system interacting with the stochastic
reservoir and assume that the interaction of the system
with its surroundings can be represented by the stochas-
tic Hamiltonian. ' The Hamiltonian of the total system
is assumed to be

HT(t) =H, (t)+H, (t)+H. ,„,(t)

=H(t)+H, „,(t)

=H, (t)+H, (t), .

where Ho(t) is the Hamiltonian of the system, H,„,(t) the
interaction of the system with the external driving field,
and H; (t} the Hamiltonian for the interaction of the sys-
tem with its stochastic reservoir. The equation of motion
for the density operator PT(t) of the total system is given
by the stochastic Liouville equation, '

dpT(t)
dt

= —i [HT( t),pr(t) ]

renormalization and phase-space filling are included by
taking into account the Coulomb interaction in the
Hartree-Fock approximation. The information of
the system is then contained in the reduced density
operator p(t), which is defined by'

p(t) =
& Ppr(t) &, ,

where P is the projection operator.
As an initial condition, decoupling of the system and

the reservoir for the total density operator is assumed.
Perturbation expansions of the generalized collision
operator are carried out in powers of the driving field
with the lowest-order Born approximation for the in-
teraction of the system with the reservoir.

Nonequilibrium distributions n,k(t), n„k(t) for elec-
trons in the conduction band and in the valence band, re-
spectively, and the nondiagonal interband matrix element
pk (t) which describes the interband pair amplitude in-
duced by the optical field, are the matrix elements of the
reduced density operator and are given by

n,k(t) =P~.k(t)

=&cklp(t)lck &,

n k(t) P k(t}

tLT(t)p—,(t),
=

& vk lp(t)lvk &, (4)

where Lz(t)=LO(t)+L;(t)+L,„,(t)=L(t)+L,„,(t)
=L,(t)+L;(t) is the Liouville superoperator in one-to-
one correspondence with the Hamiltonian. In this paper,
we use units where 6=1. The stochastic Hamiltonian
H;(t) may include electron-electron interaction and
electron-LO-phonon interaction for both conduction and
valence electrons. Many-body effects such as band-gap

and

Pk (t) =P„,k(t)

=
& vk lp(t) lck &,

for the two-band model of a semiconductor.
The time-con volutionless quantum-kinetic equations

for n, k(t), n„k(t), and pk(t) are (I)

and

c}
n,k(t) 2Im p(k)E—(t)+g V(k —k')pk (t) pk (t)

t k'

2f d—r Re(«cklIH;(t)[UO(r)H;(t —r)]] lck »; }In,k(t) —(po ')„k(t)],
0

n„k(t)=2Im p(k)E (t)+g V(k —k')pk (t) pk (t)a
Bi k'

2 f dr—Re[«ukl [H(t)[UO(r)H(t —r)]] luk »;] [n„k(t)—(po )»k(t)J .
0

pk (t) =i[E,(k) —E„(k)]pk (t)+i p (k)E~(t)+g V(k —k')pk. (t) [n,k(t) —n,k(t)]
Bt k'

—f dr(« uk
l [8;(t)[UO(r)H;(t —r)]] luk »;

0

+« ck
l [ [ U 0(r)H, (t —r) ]H;(t) ] l

ck »; )pk (t)

+i f dr f ds exp[ —i[E„(k)—E, ( k)]s (]«v k[lH(t)[U (0r) H(t —r)]] lvk »;
0 0

+ « ck l [( U (r)H; (t —r) ]H;(t) ] lck »; )

Xp*(k)EI, (t —s) [(Po ),k(t) —(po ')„,k(t) ] .
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Here, E,(k), E, (k) are renormalized single-particle ener-
gies given by

E,(k) =E,'(k) —g V(k —k')n,'„, (9)
k'

and

E,(k)=Eo(k) —QV(k —k'}n k (10)
k'

and we include the band-gap renorrnalization that
reduces the band gap with increasing carrier density.

The last term of (8), &vkiDP'(t)ick ) of (I), modulates
the interband pair amplitude due to the interference of
the driving optical field and the stochastic reservoir of
the system and gives the renormalized memory effects.
In other words, it describes the effects of the external
driving field on the motion of a particle between col-
lisions.

Equations (6)—(8) include the eft'ects of the non-
Markovian relaxation on the motion of particles between
collisions. The interband kinetic-equation incorporates
additional interference effects between the systern-
reservoir interaction and the external driving field.

III. TIME-CQNVQLUTIONLESS
INTERBAND QUANTUM KINETICS

In this section, we derive the optical gain and the line-
shape function from the TCL quantum-kinetic equations.

I

( t) E e
—lQPI+E llie lcd'

P

In the rotating wave approximation, we rewrite the in-
terband pair amplitude pk (t) as

Pk (t) =e'"'P„*(t), (12)

for electron-hole pairs in the band-edge semiconductors
driven by the coherent optical field.

Substituting (12) into (8) and linearizing the equation of
motion by assuming the quasiequilibrium, we get

We simphfy the theory by considering the case of
quasiequilibrium and steady-state interband polarization
only. Nonlinear effects caused by the population modula-
tion, such as spectral hole burning, are ignored in this
work. Spectral hole burning for noninteracting electron-
hole pairs is studied briefly in the Appendix with the gain
enhancement due to the renormalized memory effects
taken into account. In order to obtain temporal dynam-
ics of the interband polarization self-consistently, one
needs to solve (6)—(8) numerically. We consider the sys-
tem of interacting electron-hole pairs in semiconductors
in the presence of coherent monochromatic radiation.
The optical field E (t) is given by

a
p k {t ) = & ~kp k {t ) + t i

*{k )E,' +&V{k —k '
}p k'{t } I:n,'k —n'k ]

k'

—f 'dr(« vk
I [H {t)[UO(r)H;{t—r)] j i.k », + «ck

I I [U,(r}H,(t —r)]H, {t)j Ick &); }p „'(t)

+i f dr f ds exp[ —i[E,(k) —E, (k)]s j( « uk
I IH (t)[U 0(r)H (t —r)] j iuk ));

0 0

+ « ck
I [ [ U o(r)H;(t —r) ]H,.(t) j ick )); }

(14a)

and

g2(t, bk)= f drf dsexp[ibksj(«vkI[H(t)[UO(r)H(t —r)]j iuk));+«cki[[UO(r)H (t —r)]H (t)] ick)), ) .
0 0

(14b)

Equation (13) becomes

Xp (k)E~(t s)[n,k
——n, k ], (13)

where b, k =E,(k) —E„(k)—co and n, k and n„k are the quasiequilibrium distribution of electrons in the conduction band
and the valence band, respectively.

We assume that the interband pair amplitude follows the temporal variation of the polarization and the field ampli-
tude adiabatically. We introduce functions g, (t) and g2 (t, b, k ) as

g&(t)= f dr(«uki[H (t)[Uo(r)H(t —r)]jiuk));+«cki[[UO(r)H (t —r)]H (t)j ick));)

ibk+g, (t) p k(t)=i —p'(k)E~'I l+g2(t, hk) j+QV(k —k')p ~ (t) [n,k n, k] . —
k'

Equation (15) can be integrated directly using the integrating factor h (t), which is given by

h(t) =exp f dt'[ id, k+g, (t')j—
using the time-convolutionless nature of the equation.

The result is

(15)
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pk(t)=i J drexp ~
—J dt'[ —iAk+g, (t')] p'(k)E~*I1+g~(r, hk)]++V(k —k')pk. (r) [n k

—n„k] .
'T k'

(16)

Equation (16) is the generalized form of the optical dipole
with phase damping. ' Mathematical manipulations can
be simplified considerably by taking the Laplace transfor-
mation of (16).

%'e define the following Laplace transformations:

I

can be expressed through the dipole operator and the in-
terband pair amplitude as

(24)

ti'k (s)=x IPk ( t)],
r

:-(s,bk)=X j dt'[ib„—g, (t')]
0

(17b)

or

s(g(co) =—Tr . i Ip(k) I

V 1 —q, k(0)

and

G2(s, hk ) =X{g2{t,bk )], (17c)

X [1+gz( oo, 5k )][n,k n,—k ]
' .

The optical gain g (co) is

(25)

where X.If {t)J denotes the Laplace transformation of
(t).
%'e obtain

g(ro) = Ime~(co)
n, q

k(s) = f'k '(s)Qk(s),

where

4k '{s)=t:-(»~k )c '{k)E,* —+G2{»~k ) [nck nuk ]s

(18)

with

cope 2 Re=(o, hk)—Xn„v „1—Req, „(O)

X lp(k)l'[I+Reg~(~, ~k)][n,k n k],
(26)

and

(19) Req, k(0)= g V(k —k')Re=(o, bk )[n,k n,„], —
k'

Qk(s) = 1+ s
p'(k)E*[1+sG2(s, Ak ) ]

Xg V(k —k')g'„. '(s)Q„.(s) .
k'

(20)

1
Qk(s)=

1
(21)

where

q, k(s) = V(k —k') k '(s)
p*(k)E *[1+sG2(s,b k ) ]

(22)

The vertex function Qk(s) can be approximated by fol-
lowing Haug and Koch'

where p is the permeability, n„ is the refractive index, c is
the speed of light in free space, V is the volume, Tr
denotes the trace, and cp is the permittivity of free space.
y(co) is the Fourier component of y(t) with e' ' depen-
dence. In Eq. (26), Re=(o, hk ) is the line-shape function
that describes the spectral shape of the optical gain in a
driven semiconductor. It will be shown that the line-
shape function becomes Gaussian for the simplest non-
Markovian relaxation and Lorentzian for Markovian re-
laxation later in this section.

The energy difference E,(k) —E„(k) between the elec-
trons in the conduction band and the valence band con-
tains the Coulomb e6'ects which account for the band-gap
renormalization. From

k
E,(k) —E„(k)=Es+

in the simplest Pade' approximation.
The factor Qk(s) describes the excitonic enhancement

of the interband polarization. The steady-state interband
pair amplitude is determined by

p „*(~ ) = limsyk(s)
s~p

—g V(k —k')(n,ok, +1 n„k ), —
k'

renormalized band-gap energy near the band edge is

b, E = —Q V(k —k')(n, k. +1 n, k )— .
k'

(28)

sf'k '(s)= lim
s o 1 —q, k(s)

:-(O,b, k )

1 —q,„o
X [1+g~( ~,hk ) ][n,k nUk ] . —

The interband polarization I' and the susceptibility y

k e ck' Uk'
0 0

(2m. ) &, k +k' —2kk'cosO

dk'e k' k +k' 0 plog, (n, I, +1—
nUk )

o (2m) E, k

oo dk'e p 0
( , n+k1 —

n„I, }as k~O, ,
0

(29)
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limit ~ is zero and the resulting integral vanishes because
of (31). The calculation of the line-shape function is
straightforward and is given by the Lorentzian

where we made use of the limit
(1/x) log~(1+x)/( I —x)

~
~2 as x ~0. This explains

some of recent results which show that the peak gain of a
laser at high injection level occurs at a lower-energy level
than the spontaneous emission-peak energy, a
phenomenon called band-gap renormalization, which
arises from the interband correlation due to the Coulomb
interaction.

Excitonic efFects enhance the optical gain by the
Coulomb enhancement factor QI, (0):

y„(k)
Re=(0,5„)=

hq+y, „(k)
(33)

which is used in most calculations.

B. Simple non-Markovian relaxation

We assume the simplest form of the non-Markovian
correlation functionQA (0)=

d k'e n, I,
—n, &.

(2' ) s, k +k ' 2—kk 'cos8 «« I [H;(&)[ U o(r)H;(& —r) ]] l
~k &&;

(30) as

where m is the reduced mass and c, is the static dielectric
constant.

Recently, Haug and Koch' showed that at room tem-
perature the excitonic enhancement can be neglected for
carrier densities above the Mott density but one needs to
keep the density-dependent band-gap renormalization.
On the other hand, excitonic enhancement has noticeable
contribution if the carrier density approaches the Mott
density.

The factor [1+Reg2( Oo, b, z )] in (26) describes the gain
(or line-shape) enhancement due to the interaction be-
tween the optical field and the stochastic reservoir of the
system. This enhancement of gain is due to the absence
of strict energy conservation in the non-Markovian quan-
tum kinetics. It can be shown that Reg2( 0O, EI, ) vanishes
in the Markovian limit. The optical-gain (or line-shape)
enhancement by the interference between the optical field
and the reservoir is predicted for the first time, to the best
of the author's knowledge, in this work for a semiconduc-
tor driven by a laser.

We now turn our attention to the study of a line-shape
function and its enhancement for the cases of Markovian
and non-Markovian relaxations.

((ak
~ IH, (t)[ U o(r)H, (t —r)]] ~ak &&,

2r, r (k)
exp (34)

C

where ~, is the correlation time for the intraband relaxa-
tion.

The dephasing term g, (t) becomes

y,.(k)
g&(t)= f dt'exp

7 0 ic

=y,„(k) 1 —exp
C

We obtain

dt'g&(t')=y„(k) t+r, exp
0

(35)
C

C

and

:-(0,b, j, )=f dt exp 'ib, j, t —y,„(k)
0

A. Markovian limit
X t +~,exp 7C

CIn order to analyze the collision term and the interfer-
ence term in the Markovian limit, we put (36)=r, IO[ —ib, „r„y,„(k)r,],
«ak~ IH;(t)[UO(r)H (t —1)]]~ak &&;= 5(~1 ~) .

2r k where

Io( A, B)= f dt exp[ —At B[t +exp( —&)——I ]] .
(31)

(37)Then the dephasing term g, (t) and the interference term
gz( ~a ) become

g, (&)=y„,(k) =y,„(k)

1

2 r, (k) r, (k)
(32)

2y„(k)

' 1/2
TC 7T

(38)Re=(0, b I, ) = expand 2y,„(k)
g2(t, b, I, )=0 .

We do not specify the explicit form of y,„(k), in this pa-

per, and the recent calculations ' of the intraband re-
laxations by several authors can be used in Eq. (38).

In the Markovian limit, the interference term g2(r, b, z )

vanishes because in the integration over ds, the upper

In general, Io( A, B) is evaluated by the continued frac-
tion representation. If we expand the argument of the
exponential function in (37) up to the second order in r,

we get the Gaussian line-shape function:
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The line-shape enhancement (or gain enhancement)
due to the interference between the driving field and the
stochastic reservoir is described by

y,„(k)
g~(~, bt, )= J d~f ds

0 0
exp &A&s—

y,„(k)r,
1 —ih~~,

y„(k)r,
1+kg,

(4O)

The gain (or line-shape) enhancement factor at the res-
onance 1S

1+Reg2( oo, hq)=1+y, „(k)~, . (41)

The enhancement of gain (or line shape) (41) is due to
the interference between the external driving field and the
stochastic reservoir of the system and may be caused by
the absence of a strict energy conservation in the non-
Markovian quantum-kinetic domain. Quantum mechani-
c»ly, «~kl[H;(t)[U, (~)H, (t —r)]luk &&; represents the
averaged probability amplitude of finding a particle in the
state lak & after being scattered at t by H;(t) when it was
initially in the state lak&, got scattered at t —r by
H, (t r), and w—ent as a free particle for the time interval
~. In the non-Markovian kinetics, the memory eQ'ects ex-
tend over the time interval ~, and yield the nontrivial
probability amplitude for t in the interval.

Equation (41) can also be deduced from physical intui-
tion only. It is well known that the optical transition
satisfies Ak =0 selection rule for electrons in the conduc-
tion and valence bands. Assume an electron at k =0 in
the conduction band was scattered at t —~ by the reser-
voir. For t in the time interval w„an electron still may
retain its previous wave function corresponding to the
state k =0 as a partial wave which decays exponentially
with t. When there is an incident photon at t &&~, to
this system, there will be a nonzero probability of transi-
tion for this electron to the state k =0 in the valence
band. As a result, the stimulated emission probability for
the state k =0 is enhanced by the presence of the
memory e6'ect. The probability of the occurrence of
enhanced transition is proportional to the number of non-
randomizing scattering events per second, y„(k), times
the time interval ~, in which the memory effects extend.
Equation (41) follows.

Tomita and Suzuki' estimated the correlation time ~,
for the non-Markovian relaxation to be on the order of 10
fs using the uncertainty principle. In comparison, typical
intraband relaxation time is on the order of 100 fs. The
non-Markovian enhancement of optical gain becomes
significant as the correlation time increases. For exam-
ple, when w, is 50 fs, the optical gain is predicted to be
enhanced by as much as 50%.

In this section, it is shown that the direct integration of
the equation of motion for the interband pair amplitude
is possible because of the time-convolutionless nature of

the equation. In addition, it is shown that the line-shape
function is Gaussian and is enhanced at the resonance
due to the interference between the driving field and the
stochastic reservoir of the system.

IV. SUMMARY

In this paper, recently developed time-convolutionless
quantum-kinetic equations for electron-hole pairs near
the band edge are used to derive the optical-gain and the
line-shape function of a driven semiconductor taking into
account the excitonic efFects. The equation of motion for
the interband pair amplitude is integrated directly assum-
ing the quasiequilibriurn or adiabatic approximation. It
is shown that the simplest non-Markovian quantum
kinetics yields the optical gain with Gaussian line-shape
function. On the other hand, the line-shape function be-
comes Lorentzian, which has been assumed in most prac-
tical calculations, in the Markovian limit. It is shown
that the optical gain is enhanced by (1) the excitonic
e6'ects caused by the attractive electron-hole Coulomb in-
teraction and (2) the interference effects (or renormalized
memory efFects) between the external driving field and the
stochastic reservoir of the system. The enhancement of
optical gain by the latter process is caused by the absence
of strict energy conservation in the non-Markovian quan-
tum kinetics.
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APPENDIX: SPECTRAL HULK BURNING
QF NQNINTKRACTING ELECTR(ON-HOLE PAIRS

In this appendix, a closed expression of the nonlinear
gain for noninteracting electron-hole pairs in a driven
semiconductor is studied briefly taking into account spec-
tral hole burning. We extend Tornita and Suzuki's
work' on the gain and spectral hole burning in semicon-
ductors by including the gain enhancement due to the re-
normalized memory e6'ects. We turn ofF the Coulomb po-
tential V(k —k') in Eqs. (6)—(8) to obtain closed expres-
sions.

The time-convolutionless quantum-kinetic equations
for n,q(t), n, q(t), and pq (t) are in the rotating-wave ap-
proxlrnat1orl:

—n, A. (t) = —21m[@(k)E p i. (t) j
—g, (t)[n,q(t) —n, q ],Bt

—n, &(t) =2 Im[ p(k)E&p &(t) ]
—g, (t) [n,~(t) —n„~ ],

Bt
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where

p k(t) =i b kp k(t)+ip*(k)E&*[n,k(t) —n„k(t)] g—&(t)p k(t)+ip'(k}E'g2(t, b k )[n k n„—k ], (A3)

and

g, (t}=2f d1.Re(«ck i {H(t)[U 0(1)H;(t —7 )) I ick »;),
0

g„(t)=2f d r Re(« uk' {H,(t)[ Uo(r)H, (t —r)]] iuk »; } . (A5)

Equations (A 1)—(A3) can be integrated directly using the integrating factors and can be solved self-consistently using the
Laplace transformation.

We de6ne the following Laplace transformations:

and

N, k(s) =X{n, k(t) j,
N, k(s) =X{n,k(t)],
:-,(x)=x{—f dt'(g, (t'))],

0

:-,(s)=X{—f dt'(g„(t'))] .
0

(A6)

(A7)

(A8)

(A9)

After some mathematical manipulations, we obtain

N,k(s)= —2:-,(s)(p(k)[ iE~( Re=(s, bk){N,k(s) —N,k(s)+ReG2(s, bk)[n k n,k]]+———:-,(s) n,k+ n,k—, (A10)

NUk(s)=2:-, (s)~p(k)i iE~i Re=(s, hk){N k(s) —N, (k)s+ReG (2' )k[ n k n,k]]+———:-„(s)n,k+ n,k—, (Al 1)

(s ~k }p (k)Ep + G2(s ~k } [nck nvk )

I+2ip(k)~ iE
~
[:-,(s)+:-,(s)]Re=(s, bk)

The steady-state interband pair amplitude is determined by

(A12)

p „'( ~ ) = lim sgk(s)s~o

i:-(0,b k )p*(k)E'[1+g2( ~,b k )][n,k nk ]-
I+2ip(k)i iE i

[:-,(0)+:-,(0)]Re=(Q, bk)
(A13)

The interband polarization P and the susceptibility g can be expressed through the dipole operator and the interband
pair amplitude as

P= —Tr{p(k)p „'( )J, (A14)

or

i:-(0,5k ) i p(k) i [1+g2( ~,hk ) ][n,„n,k]-
a~(co) =—Tr '

V I+2~p(k)i ~E i [ ( ) 0=+„( )]0Re( bQ, „)
The optical gain g(co) is

(A15)

g(iu) = APP~
ImE~(co )

cope 2
n„V

Re=(Q, ~k)Ip(k)l [1+Reg2( ~,bk }][n,k —
nqk]

I+2ip(k)i'~E i'[:-,(0)+:-,(0)]Re:-(0,& )
(A16)
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Equation (A16) is the nonlinear gain for the nonin-
teracting electron-hole pairs in a band-edge semiconduc-
tor driven by a monochromatic laser 6eld. The denomi-
nator is the gain suppression due to the spectral hole
burning. Re=(0, hk) is the line-shape function that de-
scribes the spectral shape of optical-gain and spectral
hole burning. The factor =,(0)+:-,(0) is responsible for
the population beating through the relaxation processes.

The factor [I+Regz( ao, b, k )] in (A16) describes the gain
enhancement due to the interaction between the optical
6eld and the stochastic reservoir of the system. This
enhancement of gain is due to the absence of strict energy
conservation in the non-Markovian quantum kinetics.
The gain enhancement affects the linear gain only. Spec-
tral hole burning is not affected by the interference
effects.
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