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We have measured the real part e' and the imaginary part e" of the dielectric susceptibility of the
quasi-one-dimensional conductor TaS3 in its charge-density-wave (CDW) state in the wide frequency
range f (10 —10 Hz) in the low-temperature range (4.2—52 K). The frequency dependence of e'(co, T)
as well as e"( o,cT) show the lnf scaling and a crossover between a behavior corresponding to a Gaussian
distribution of logarithms of relaxation time ~ at T ~ 30 K and a frozen-in state with very wide ~ distri-
bution at T~ 24 K. The temperature dependences of e' measured at low frequencies (f ~ 10' Hz) show
maxima whose positions shift to low temperatures and whose amplitudes grow with decreasing frequen-

cy. The temperature dependences of ~ are characterized by two branches. With decreasing temperature
the long-time branch of ~ diverges (cz relaxation) while the shorter-time branch shows a monotonous
behavior, corresponding probably to the tunneling mechanism of CDW local motion (P relaxation). A
qualitative model is suggested that describes the transition of CDW into the glass state with decreasing
temperature and the main properties of this state.

I. INTRODUCTION

Since the beginning of the study of a new condensed
state in solids —charge-density wave (CDW) —the
description of the CDW physical nature has evolved from
the hypothesis of an absolute rigid CDW to a deformable
CDW with interior degrees of freedom and existing of
collective excitations (CE) such as solitons and disloca-
tions in the CDW superlattice. ' At present the ques-
tions about the mechanism of CE motion and their kinet-
ic properties especially at low temperatures when CE are
the main current carriers remains very important. ' Of
special interest is the question about CE cooperative in-
teraction, CE aggregation into dislocation loops and clus-
ters and interaction of these clusters (as macroscopic ob-
jects) with impurities.

Many experiments have enabled us to obtain data on
the low-temperature CDW ground state. The important
deviation of temperature-dependent conductivity from
activation behavior with Peierls energy gap 6, ' the con-
siderable growth of threshold electric field ET for the be-
ginning of CDW motion as a whole, ' the development
of nonlinearity on the IV curve at threshold field ET & ET
at low temperatures were found. ' The strong frequency
dependence of conductivity down to very low frequen-
cy ' and corresponding growth of relaxation time were
found. The linear conductivity in weak electric field has
been shown to be determined by a variable range hopping
mechanism and the important role of phase-slippage and
tunneling eFects in this low-temperature range were un-
derlined. ' ' At very low temperatures (below —1 K)

in the course of heat-capacity studies waiting time and
aging e6'ects have been found which are typical of glassy-
like states. " Recently, it was found that in the low-
frequency range the dielectric constant shows pro-
nounced maxima, with its amplitude and position on tem-
perature scale being dependent on frequency. '

In spite of numerous experimental data, we consider
that the clear physical understanding of CDW ground
state at low temperatures is not yet obtained. As far as
we know, the appropriate kinetic theory of CDW
behavior at low temperatures is not yet developed in
which the important role of CE and their interaction be-
tween themselves and with random strong impurities has
been taken into account. Although, the theoretical stud-
ies in this direction are carried on now. '

In this experimental work, the method of dielectric
spectroscopy, which we have used earlier, ' was extended
to more wide frequency range about nine octave from
10 to 10 Hz. We think that our data will make possi-
ble a more clear physical picture of CDW ground state at
low temperatures and show the tight connection of this
CDW behavior with CDW properties in the higher and
the lower" temperature ranges.

II. EXPERIMENT

We have measured the real and imaginary parts of ac
conductivity of orthorhombic TaS3 as a function of fre-
quency in the range 10 —10 Hz at fixed temperatures
in the range 4.2—52 K, where we have found earlier the
divergency of dielectric susceptibility. ' In the frequency
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range 10—10 Hz the complex conductivity has been mea-
sured by impedance analyzer HP 4192A, under the com-
puter control. At low temperatures, when the sample
resistance was about —10 Q, we have used a special
preamplifier which improved the resolution of the im-
pedance analyzer in the low-frequency range (f (10
Hz}.' We have verified that in this frequency range the
preamplifier did not introduce any noticeable phase shift.

For measurements in the frequency range 10 —10
Hz, we have used a homemade computer bridge. ' The
bridge is autobalanced by computer generation, with one
bridge arm the sin wave with such amplitude and phase
to compensate the appropriate ac signal from unknown
impedance in another bridge arm. In addition, the bal-
ance of the bridge was carried out not only in respect of
first harmonic of signal but in respect of 2, 3, and 4 har-
monics also. The deviation from orthogonality of the sig-
nal components in phase and in quadrature was less than
10 rad.

As it is well known, the complex conductivity o. of
CDW samples depends on the amplitude of the ac voltage
V„and o. can vary considerably for electric field
E„~0. 1Ez, especially in the low-temperature range.
We have carried out measurements of o. dependence on
V„(at frequency 10 Hz) to determine the range of V„
values below which o was independent on V„(the range
of linear cr). It was found that in all temperature ranges
under investigation (4.2—52 K} the deviation from linear-
ity of the real and imaginary parts of the ac conductivity
of o-TaS3 was about lgo in the electric field about 70
mV/cm. For this reason, we have carried out our mea-
surements with E„about 10 mV/cm. The results of the
study of the nonlinear behavior of o-TaS3 samples in
higher electric field at low temperature will be published
elsewhere. Our measurements have been carried out us-
ing long o-TaS3 samples (=1 cm) to maintain the ap-
propriate resolution of our bridges on one hand and to
fulfill the conditions of linearity of the sample response
on the other hand.

We have measured about 10 samples of o-TaS3 with
typical cross-sectional area —10 cm . For measure-
ments, we have selected samples with the most regular
form and with minimal external defects. The sample
with two gold paint contacts has been mounted on the
narrow gold strips attached by indium tubs on the sap-
phire substrate. The sample was cooled in zero electric
field at a rate of —1 K/min down to helium temperature.
The majority of experiments were carried out with in-
creasing temperature. Before measurements at a fixed
temperature, the sample was held for 5 min. For all our
samples under consideration the majority obtained
dependences has a qualitatively similar form. Below, we
will show the data for the typical detailed studied 0-TaS3
sample, with length 9 mm, cross sectional area -2.10
cm and room-temperature resistance -80 Q.
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e"(co)=[Reo(co)—oz, ]/co. The value of od, was deter-
mined, where it was possible, at low frequencies where
o„was independent on frequency. ' As can be seen
from Fig. 1 the Reo (co) dependences at various tempera-
tures show the peculiar "threshold" behavior as a func-
tion of frequency. In the low-frequency range at temper-
atures above —14 K Reo(co) is practically independent
on frequency and it corresponds to o.d, value. The
growth of Rerr(co) begins from some "threshold" fre-
quency which decreases with decreasing temperature. In
the temperature range 14—52 K the od, values deter-
mined from these data are thermally activated with an
activation energy b, , =240 K (inset in Fig. 1). In the tern-
perature range below 14 K Reer does not become con-
stant down to the lowest frequencies of our measure-
ments (10 Hz) and od, value could not be evaluated
with enough accuracy. In the temperature range below
14 K the Reo(co) dependences proceed gradually to the
power-law dependences. For example, in our sample at
temperature T =4.2 K in the frequency range 10 —10
Hz the Reer(co)-co', where s =0.8. At the same temper-
ature in the frequency range 10 —10 Hz Imo. (co)-co',
where s'=0. 82. This behavior corresponds to a variable
range hopping conductivity in CDW conductors.

As it follows from these data and as it will be shown
below, the e(co, T} dependences differ from appropriate
dependences derived from simple Debye relaxation with
single relaxation time. The e'(co) and e"(co) dependences
are in fact similar to those observed in the very wide
range of various materials and systems with some disor-
der including glass materials. ' ' In these materials,
the relaxation is typically nonexponential with a very
wide distribution of relaxation times. In addition, the
contribution of relaxation process with very long time
(i.e., at very low frequency in frequency domain represen-
tation) is very considerable. For description of these pro-
cesses, phenomenological equations are often used, the
most general form of which was suggested by Havriliak
and Negami ' to describe the dielectric relaxation in
polymers:

III. RESULTS
0.001 0.1 10 1000 10 10

Frequency (Hz)
The real and imaginary parts of dielectric susceptibility

were calculated from measured complex conductivity
values o (co) by standard relations e'(co) =Imo(co)/ro and

FIG. 1. The frequency dependence on the real part of ac con-
ductivity Reo of 0-TaS3 at temperatures 4.2—42 K. Inset shows
the temperature dependence of o.=Reer at co~0.
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&O &HF
e(co) =eHF+HF

[ 1 +( ~ )I—0]ls

where eHF is the e'(co) value for co»cop(cop=7p ) Ep is
e'(co) value for ro«cop, and a and P characterize the
width of the distribution of relaxation times and its non-
symmetry, respectively. In accordance with Eq. (1),
which is similar to the earlier introduced Cole-Cole equa-
tion, the dependence e" and e' at various frequencies
should have the form of arc. The intersections of this arc
with the e"=0 axis determine the eHF value for high-
frequency part e"(e') dependence and the ep value for the
low-frequency part. Figure 2 shows the appropriate
dependences e"(E') which are typical for o-TaS3 samples
under consideration.

In our case, the eHF value and its temperature variation
can be precisely determined because the appropriate e"
and e' values get in the high enough frequency range
when the e" becomes very close to axis e"=0. The deter-
mination of eH„( T) values is important because the
e'(co, T) dependences can be a combination of several con-
tributions (for example, pristine lattice, free electrons,
etc.).~3 In this case, the substitution of high-frequency
contribution [eH„ in Eq. (1)] gives us the possibility to ex-
tract more precise low-frequency contribution to e'(co, T).

Figures 3 and 4 show the dependences e' —eHF and e"
on frequency at various temperatures calculated by the
above-mentioned standard equations. Figure 3(a) shows
e' —eHF dependences (below, this quantity will be desig-
nated as e') for several selected temperatures in the tem-
perature range 4.2 —24 K and Fig. 3(b) shows the ap-
propriate e'(co) dependences for temperature range
24—42 K. As it can be seen from Fig. 3, e'(co) depen-
dences in scale log&0e versus log&0' are qualitatively simi-
lar and with increasing temperature they move up in the
temperature range 4.2—24 K and they move down in the
range 24—42 K. These dependences can be presented in
the form of two approximately linear sections in the loga-
rithmic scale (i.e., power type dependences in linear scale)
with temperature-dependent slope (i.e., with
temperature-dependent exponent). With increasing tem-
perature above 24 K, the crossover between these two
sections shifts to a higher temperature range with a
simultaneous decrease of the slope of the low-frequency
part e'(co) dependence and appropriate decrease of e'
variation [Fig. 3(b)].

The e"(co, T) dependences in log}pro scale (Fig. 4) show
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a qualitative similarity at different temperatures. With
decreasing temperature the rnaxirnurn of loss function
e"(rp) shifts to the high-frequency range with simultane-
ous decrease of its amplitude in the temperature range
above 24 K.

Figure 5 shows the frequency dependence of e'(co) and
e"(rp) both for three selected temperatures T =18, 28,
and 38 K. It should be noted that the forms of e'(co) and

810

FIG. 3. (a) The frequency dependences of the real part e' of
dielectric susceptibility of 0-TaS3 in the temperature range
4.2-24 K. (b) The frequency dependences of the real part e' of
dielectric susceptibility in the temperature range 24—42 K.
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FICx. 4. The frequency dependences of the imaginary part e"
of dielectric susceptibility (loss function) of o-TaS3 in the tem-
perature range 18—42 K.
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e"(ro) dependences demonstrate the difFerent behavior in
the low-frequency range (below 10 Hz) and diference be-
tween them grows with increasing temperature. At the
same time, the high-frequency branches (above f -10
Hz) of these dependences are very similar to each other
and they are well described by power law e'-e" -co

Figure 6 shows the temperature dependence of ex-
ponent n which characterizes the e' and e" dependences
in a high-temperature range above the maximum of the
loss function. These n values are in a good quantitative
agreement with the range of their overlapping. As can be
seen from Fig. 6, in the low-temperature range, the n
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dependences; 6 denotes n values determined from e"(co) depen-
dences.

value grows from 0.52 at 4.2 K with saturation on
0.68—0.7 in the temperature 20—30 K. Such an evolu-
tion of the value of the exponent n is typical for various
complex systems with nonexponential relaxation.

The temperature dependence of real part of dielectric
constant e'(T) shows a very interesting behavior which
was briefly analyzed in (Ref. 14). Since this previous
work, the frequency range for measurements has been ex-
tended by three decades in the low-frequency range,
which gives us the possibility to better analyze the physi-
cal picture of e'(co, T) divergence which was revealed ear-
lier. ' Figure 7 shows the e'(T) dependences at several
6xed frequencies in the range 10 —10 Hz. The temper-
ature dependences of e' measured at a frequency above
—10 Hz show the monotonous decrease of e' with de-
creasing temperature. This decrease is a continuation of
the decreasing e' from temperature range 120—70 K,
where e' decreases exponentially with activation energy
—300 K.I zo s However in the frequency range f (10
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IV. DISCUSSION

As can be seen from above-mentioned data the proper-
ties of quasi-one-dimensional conductors with CDW at

Hz the e'(T) dependences show pronounced peaks the
amplitude of which grows with decreasing frequency and
their maxima shift to the low-temperature range (Fig. 7).
In the temperature range below these maxima e'(co, T)
dependences have a qualitatively similar form but with
considerable frequency dispersion. These curves have
been measured with increasing temperature after cooling
the sample in zero electric field [zero field cooled (ZFC)].
We have carried out also the measurements of e'( T)
dependences after cooling of the sample from room tem-
perature in the constant electric field 1 V/cm (FC). Fig-
ure 8 shows the appropriate e'(T) dependences for fre-
quencies of 111 Hz, 1.1 kHz, and 7.5 kHz. In the tem-
perature range from 4.2 K up to =22 K the ZFC and FC
dependences are very similar. However, with increasing
temperature after the FC procedure the amplitudes of
e'( T, co ) peaks increase and positions of maxima and
e'( T, co) branches descending above maxima temperatures
shift to higher-temperature range. The shift is smaller
for lower frequencies. Probably, such behavior at T) 20
K corresponds qualitatively to a frozen CDW state with
a small e' value determined by the contribution of small
enough CDW regions. This contribution is practically
independent on the ZFC or FC sample prehistory. With
increasing temperature above e'( T) maximum, the contri-
bution of large CDW regions becomes important. This
contribution seems to increase in the case of cooling in a
nonzero electric field because of the polarization of these
large CDW regions. Generally speaking this behavior is
similar to behavior of glassylike materials, for example,
orientational glasses, near phase transition. In the same
temperature range where we observed the E'(T) diver-
gence, we have observed the divergence of 2, 3, and 4
harmonics of the main signal, which is also typical for
temperature range near phase transition critical tempera-
ture.

(2)

low temperatures are very similar to typical properties of
the wide range of glass materials with nonexponential re-
laxation. Below we will discuss the peculiarities of the
CDW ground state at low temperature which confirm
this approach.

According to Fig. 4, the frequency dependences of e"
at various temperatures are very similar in log-log scale.
It can be easily verified by a simple shift of these curves
along two log &o axis bringing into coincidence the
e"(ro, T) maxima especially for high-temperature range
above 30 K. It means that for CDW conductors as well
as for many other disorder materials scaling is observed
in the scale log&oco but not co. However, with decreasing
temperature the low-frequency branch (below a loss peak
frequency) becomes more fiat which corresponds to the
extension of e"(co, T) curves into the low-frequency
range. The loss function form changes from practically
symmetrical in the temperature range T ~ 30 K to more
and more nonsymmetrical at lower temperatures (see Fig.
5). The temperature variation of frequency dependence
of the real part of the dielectric constant e'(co, T) corre-
sponds also to this behavior (Fig. 3). In the low-
frequency range (f ~10 Hz) e'(co, T) dependences are
close to linear in log-log scale, i.e., they correspond to
equation e'(co)-co, where m grows gradually from
=0. 1 to 0.25 with decreasing temperature.

The high-frequency branches of the loss functions are
more similar with the temperature variation. In the
whole temperature range where e"(co) was determined
(16—52 K), we found that e"—co

" with exponent n

dependent on temperature. As it has been shown above
(Fig. 5) in the high-frequency range e'(co) dependence has
the similar form |'-e"-co " with approximately the
same exponent n (T) (Fig. 6). The similarity of e'(co) and
e"(co) dependences in the high-frequency range and the
decrease of exponent n with decreasing temperature are
typical features of the behavior of glassy materials ap-
proaching to some critical temperature. ' ' ' The de-
crease of n is associated with the growth of correlation in
the transition between energy states in two-level system.
In the case of CDW systems it may correspond to the
growth of correlation of transitions of solitons and dislo-
cations between metastable states in the potential relief
created by random strong impurities centers. ' It means
that the behavior of these collective excitations becomes
more and more cooperative. They demonstrate a tenden-
cy to agglomeration and to formation of dislocation loops
and clusters. '

The description of the behavior of many g1ass materi-
als, especially near their phase transition, very often uses
the hypothesis about dynamic scaling. ' ' This hy-
pothesis is based on the suggestion that the scaling
methods of space renormalization of static systems can be
transferred to the study of dynamic of such systems as a
function of time. On this base, the dynamic effects
in disordered glass materials have been considered.
In particular, it was shown ' that in enough correlated
systems with some disorder, the distribution of loga-
rithms of the relaxation times is a Gaussian:

P (Inc) = exp—1 [1n (r/~*)]
&2m-A, 21'
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where w is the most probable value of relaxation time
and A, corresponds to the width of the distribution. Tak-
ing into account this suggestion it was shown that in the
frequency domain E'(log, oco) dependence corresponds to
an error function. In this case, the relation between e'

and e", which in the general case is determined by
Kramers-Kronig relations, is reduced to the so-called
"n./2 rule":

de'(co)
E(log~o'co)

2 d logipco
(3)
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FIG. 9. Frequency dependences of imaginary part of dielec-

tric susceptibility e" of 0-TaS3 at 30, 34, and 38 K. , experi-
ment data; X, data calculated by the equation

K/2(de /d log]pro).

Inasmuch as our CDW system at low temperatures is
very similar to the above-mentioned disordered systems,
we have enough physical bases to compare our experi-
mental results with some results of dynamic scaling
theory. Figure 9 shows the experimental data e"(log, ohio)

and data calculated by relation (3). In the temperature
range T ~ 30 K the agreement between these data is satis-
factory (within —10%). With decreasing temperature,
the forms of the experimental and calculated curves
remain qualitatively similar but a quantitative difference
grows (at T =24 K it is about 30%). Additionally, in the
frame of this approach the effective width A, of the loss
peak e"(co) should be proportional to (log, ocoz ),where
frequency co& corresponds to the maximum of the loss
peak. Figure 10 shows the temperature variation of the
loss function e"(co, T) in semilogarithmic scale to make
the form of the function more clear. The corresponding
dependence A, from log &pro is shown on Fig. 1 1. As it
can be seen from Fig. 1 1 the relation A, -log &pcs is
indeed observed in the temperature range above -30 K.
Thus, in this temperature range, the form of the loss
function is very similar to Gaussian. However, with de-
creasing temperature, it deviates from Gaussian (Fig. 11).
Here, it should be noted the qualitative difference in
behavior e"(co) dependences in the low-temperature and
the high-temperature (T &24 K) ranges (Fig. 5). In the

temperature range below 16 K the loss peak has not
enough frequency extension (range) to be detected in the
frequency domain under consideration (f;„—10 Hz).
In the temperature range 16 & T & 24 K e" peaks shift to
the high-frequency range and surpass the shoulder of

e"(co) dependences at frequencies below 10 Hz. Varia-
tion of their amplitude e" is very small. However, at
T )24 K the amplitudes e" begins to decrease e"-co

with a =0.7 in parallel to the high-frequency branch of
the loss function e"(co) (Fig. 4). In other words, near
T =24 K, we observe a crossover from practically in-
dependent e" to dependence t

"-~ . As it was shown
in Ref. 23 such a variation of e"(co, T) dependences is typ-
ical for materials undergoing dipole alignment transition
with finite critical temperature.

As it is known the temperature variation of the shape
of the loss spectrum represents a criterium for the detec-
tion of order change in material under investigation.
As follows from the above-mentioned data and their
analysis, the dielectric properties of CDW change drasti-
cally across the temperature range near -24 K, which
can be due to CDW transition into a glassylike state.

We have given earlier' a qualitative explanation of the
growth of e' with decreasing temperature (Fig. 7) on the
base of the appropriate growth of the CDW coherence
length approaching to the low temperature range with
the simultaneous growth of the relaxation time ~. Conse-
quently, the e' value measured on low but finite frequen-
cies begins to decrease. When the growing ~ value be-
comes comparable with the ac field period (2' )

' as a
result of dynamic retarding effect, the dynamic slowing
down behavior is observed. In Ref. 14, the temperature
dependence of relaxation time has been evaluated by plot-
ting of r= (2m f) ' —as a function of temperature T of
the e'(T) maximum measured at fixed frequencies f (Fig.
7). Presently, we think that the more accurate estimation
of the relaxation time can be done by determination of
the defiection point on e'(T) curve which corresponds to
the transition (with decreasing temperature) from the fast
growth e' to approaching to the maximum with a follow-
ing slowing down. This point corresponds to the negative
minimum of temperature derivative of de'(T)/dT.

Figure 12 shows the temperature dependence of "aver-
age" relaxation time w*, which has been calculated by
such a method. The r*(1/T) experimental dependence is
noticeably different from linear in this scale. In our
opinion, this dependence can be fitted most accurately by
a slowing down equation r*=ro(1 —T, /T) ' with

~p —-10 " s, T, = 15 K, and zv=24. The 7 p and T, mag-
nitudes are close to the appropriate value determined by
us earlier. '

On the same Fig. 12, we show the dependence of
r =(co. )

' extracted from the temperature dependence
of the frequency co corresponding to the maximum of
the loss function E' (see Figs. 9 and 10). In the high-
temperature range above —32 K, the dependences
r*(1/T) and ~~(1/T) are very close. However, with de
creasing temperature, they become more and more
different. The experimental v„(1/T) dependence shows a
noticeable convex curvature. It means that for this
branch r~(l/T) dependence the effective height of bar-
riers decreases with decreasing temperature. In the phys-
ical sense such a type of r (1!T)dependence corresponds
Inore probably to dominant contribution of tunneling
mechanism in conductivity ' ' and polarization. In
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the case of existence of interaction between single tunnel-
ing transitions the experimental r'(1/T) dependence can
correspond to a similar type of a slowing down relation,
but with negative T, value, i e , r -.r . (1—T, /T)'.
Indeed our experimental dependence can be satisfactory
fitted by this relation with ~ =10 " s, T, = —30 K, and
zv=24 (Fig. 12). Perhaps it points out the possibility of
some cooperative mechanism also on this branch of
r(1/T) dependence.

As it was noted above, in the high-temperature range
both relaxation processes merge and they are character-
ized by activation behavior with common relaxation time
r-roexp(b, /T), where ro-10 " s, b. =780 K, which
value is closed to Peierls energy gap in o-TaS3. The com-
parison of our data with those of Cava et aI., who have
measured relaxation in o-TaS3 at more higher tempera-
tures, shows a good agreement between them, not only in
magnitude of 6 but also in the magnitude of ~*.

V. THE QUALITATIVE PHYSICAL MQDEL
OF THE CDW GLASSYLIKE STATE

As it can be seen from above-mentioned data the CDW
ground state changes considerably with decreasing tem-
perature in the range 52 —4.2 K. The e'(T) divergence,
sharp growth of relaxation time, e' and e" scaling in

log&0' scale, etc., have been observed. These results can-
not be explained in the frame of Debye relaxation with
one relaxation time. The simple fit of the experimental
data with phenomenological relations of Havriliak-
Negami-type gives us the possibility to determine a set of
parameters characterized by the distribution of the relax-
ation time but it does not allow us to understand the
physical mechanism of CDW behavior in these condi-
tions. Below we shall briefly describe a qualitative pic-
ture of the evolution of CDW ground state at its transi-
tion into a glassylike state with decreasing temperature.

After the CDW formation at the Peierls transition tem-
perature T (in o-TaS3 T =220 K) the conductivity in
the temperature range T~/2& T& T~ in a weak electric
Geld E below the threshold 6eld ET is determined by elec-
trons and holes therrnoactivated across the Peierls gap A.
The CDW interaction with impurities has a character of
weak collective pinning, ' which determines the large
e' magnitude in this temperature range. ' With de-
creasing the temperature below = T /2, the number of
free electrons and holes becomes very small. The main
contribution to the conductivity and susceptibility begins
to occur from the local CDW deformations both ther-
moactivated and nucleated from the CDW interaction
with strong pinning centers. ' ' ' These CDW defor-
mations, which we will call below solitons, are the defects
and dislocations nucleated in the CDW superlat tice.
These solitons correspond to CDW phase variation on
+2m along one (or a small number) of CDW chains on
short distance. ' ' ' The characteristic energy of the
soliton nucleation corresponds to the energy of an inter-
chain interaction, which in turn is equal to the energy of
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three-dimensional ordering of CDW —kT . ' ' The
change of slope of o(1/T) from the value equal to 6
below the Peierls transition to the energy -kT at T
below 100 K (inset on Fig. 1, see also Refs. 4—7) and ac-
tivated decrease of e' with energy -300 K are in favor of
the above-mentioned model.

With decreasing temperature down to -40 K, these
2m solitons turn out to predominantly interact with single
strong pinning centers distributed randomly in the CDW
superlattice. In the weak electric field, the dielectric sus-
ceptibility will be determined by summary effects of po-
larization and dipole interaction between these random
distributed solitons. In this temperature range, the CDW
as a whole is unmovable. Its main kinetic properties are
determined by the motion of these soliton excitations in
the potential relief created by random impurities. In the
CDW case as well as in a lot of other disordered systems,
the two-level model can be used for description of transi-
tions between potential minima of this potential relief.

In Ref. 23 for a description of such systems a hierarchy
of transitions has been considered including the ther-
moactivated transition over the barriers and tunneling
transition between correlated states, the contribution of
which increases with decreasing temperature. Additional-
ly, the importance of interaction between the "units" tak-
ing part in relaxation in comparison with models with
wide distribution of relaxation times of noninteracting
"units" was underlined. In the frame of this general
model a lot of effects, observed in disordered materials
with nonexponential relaxation, can be explained. The
observed facts in this CDW work such as the similarity in
e'(co)-e"(co)-co " in the high-frequency range of the
loss f function, the possibility of their scaling in log, oco

scale, and peculiarities of temperature variation of e"(co)
dependences follow from this model.

However, for the description of random systems the
hypothesis about energy distribution of barrier height
and about the effect of this distribution on relaxation
time, which is exponentially dependent on barrier height,
is more often used. In the range of not very low tem-
peratures (in our case 30—40 K), when the main role is
due to the activation transition over barriers, the relaxa-
tion time can be defined by relation r=roexp(h/T) tak-
ing into account the barrier distribution P(h). Then,
considering also the restriction of time window in experi-
mental conditions, groups of barriers can be selected
which may or may not be overcome during this time and
as a result the equation for susceptibility turns out to be a
function of combination of T log&or (in time domain) and
T log, o(co ') (in frequency domain). From this it
follows, for example, the ~/2 rule for e'(co) and e"(co),
and the relation A, -(log&ohio )

' in the case of Gaussian
log-normal distribution. As it was shown above, these re-
sults are in agreement with our experimental results in
the temperature range 42—30 K, which points out the
possibility of using this approach for our CDW system.
As it was noted in Ref. 33, these suggestions can be ap-
plied to many disordered systems including systems
which do not undergo any phase transition with decreas-
ing temperature.

In the case of CDW systems, however, as was shown

above, the e' divergence as well as the divergence of
higher harmonics, the violation of m /2 rule are observed
which probably indicates the approach to some transition
temperature. For example, Ma pointed out that the
Gaussian approximation becomes invalid near a phase
transition due to the increase of correlated state contribu-
tions and a very large growth of fluctuations. Our obser-
vation of a divergence of high harmonics in the same
temperature range, where we have observed appropriate
divergence of first harmonics, points out also the increas-
ing role of cooperative interactions, because these in-
teractions determined by higher-order terms in a system
response corresponded to higher harmonics. Such a
behavior is typical in the temperature range near a phase
transition including the transition into glassylike state.

In this spirit we think that the main cause of e'(T)
growth is the increase of the CDW rigidity with decreas-
ing screening of its defects (solitons) by free car-
riers. ' ' ' ' ' The more rigid CDW tries to be more
homogeneous, which can promote the depinning of some
CDW local regions from strong pinning centers after the
overcoming local critical CDW tension. ' ' ' As a result
the CDW coherence length and dielectric constant will
increase. Moreover, the growth of the soliton size can
also develop which will also promote the e' growth. The
similar effect was theoretically considered in Ref. 18 but
without taking into account the random distribution of
impurities and barrier heights and the existence of a
nonexponential relaxation.

As it can be seen from our experimental data the e "(co)
dependence, which reAects the energy distribution of re-
laxation times, is spread out considerably to low-
frequency range. The dependence of average relaxation
time determined from e'(T) divergent dependence, is well
fitted by slowing down relation with finite T, =15 K and
zv=24. We think that this relaxation time corresponds
to relaxation of large CDW regions (a relaxation) and it
grows with increasing of size of these regions. With
further decreasing temperature these CDW regions could
not follow the ac field due to large growth of the relaxa-
tion time and e' begins to decrease, i.e., a slowing down
behavior takes place.

The second (faster) branch of r(1/T) dependence,
which is shown in Fig. 12, seems to correspond to relaxa-
tion on considerably smaller scale (P relaxation) regions
in the order of value, where solitons are developed or dis-
sipated. Probably they correspond to phase-slip regions
with typical size in the range of one unit cell of CDW su-
perlattice. ' In the context of a transition hierarchy
model in this temperature range, the interaction be-
tween metastable states and tunneling phenomena be-
come very important.

The dynamic scaling hypothesis is also very productive
for the explanation of these phenomena. In this case, the
interaction is indirectly taken into account because the
following steps of renormalization process are dependent
from previous ones which leads to the hierarchical suc-
cessive relaxation. Depending on the barrier behavior
when temperature is reduced, three cases seem to be pos-
sible: with increasing of barrier height the real phase
transition with finite T, )0 will be realized, with constant
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barrier height we can observe the activation behavior
with T, =0 and, anally, with decreasing of effective bar-
rier height, we can observe a so-called negative critical
temperature. '

At T (T, or at T~O, the relaxation time becomes so
long that the system has not enough time to approach
equilibrium in real experimental conditions. The system
is frozen in some metastable state with a giant relaxation
time, i.e., it approaches to true glass state. In the case of
CDW systems, as it was shown above, its ground state
has a lot of common features with other glasses. In this
temperature range, the CDW is in a frozen state. The
CDW collective excitations —solitons —are pinned on
impurities. The conductivity is carried out by rarely
jumps of these solitons by means of tunneling transi-
tions ' ' ' and it corresponds to variable range hopping
conductivity. The motion of large CDW regions as a
whole is frozen and it gives a small contribution e'. How-
ever, on a microscopic scale, the relaxation is yet possible
and the e' value is determined by P relaxation with
temperature-dependent relaxation time. Perhaps, the

"activation energy" in this case corresponds to the sys-
tem temperature. The distribution of relaxation time is
very wide but it is restricted by P relaxation from high
and a relaxation from low-frequency ranges. The effect
of waiting time and the aging effect begins to play an im-

portant role and the CDW system turns into the state
which has been studied in details in the set of publica-
tions. "
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