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We use the real-space linear-muffin-tin-orbital approach, within the atomic-sphere approximation to
calculate the electronic structure around vacancies in Al and Cu and divacancies in Al. A defect consist-
ing of a Cd-monovacancy pair in Al is also considered. The electric-field gradient at the nucleus and the
asymmetry parameter 7 for sites in the near neighborhood of the vacancy in these various situations
were also obtained. The calculated values are in good agreement with experiment when available. Our
results confirm the failure of the point-charge model when applied to obtaining the electric-field gradient
at the nucleus in metallic systems and show that the defect with quadrupole frequency w,=64 Mrad/sec,
created by low-temperature implantation of In in Al, can indeed be assigned to a Cd-monovacancy pair.

I. INTRODUCTION

Impurities, vacancies, and other lattice imperfections
are often found in metals. These defects distort the local
charge distribution, changing the electric and magnetic
fields in their neighborhood. Hyperfine interactions are
sensitive to these fields and can be used to characterize
defects in solids. The electric-field gradient (EFG) due to
imperfections in cubic lattices can be measured by several
techniques and has often been used to trace vacancy mi-
gration, trapping, and clustering in fcc metals. A large
number of experiments using perturbed angular correla-
tion (PAC), perturbed angular distribution, and nuclear
magnetic resonance (NMR) give detailed information
about the EFG in the vicinity of vacancy-related de-
fects.!~7 But to associate the measured values with each
of the possible defects is not an easy task and some
theoretical support is usually needed. One interesting ex-
ample is the case of a defect created by low-temperature
implantation of In in Al. It is characterized in PAC ex-
periments by a quadrupole frequency w,=64 Mrad/sec,
an asymmetry parameter 17=0.41, and a ¥V, directed
along the {110) direction of the fcc lattice. The In de-
cays into Cd during the experiment and the measured
EFG corresponds to that of a Cd probe. A study of the
dilute alloy of Al containing In after quenching is compa-
tible with the assignment of this defect to a Cd-
monovacancy pair in AL? But point-charge-model calcu-
lations for the EFG seem to exclude this possibility and
other authors suggest that it represents a more complex
structure, consisting of Cd and four vacancies.> Simple
point-charge models and Steinheimer factors have been
used often to obtain values for the EFG, but recent first-
principles calculations for a series of hcp metals cast seri-
ous doubts on the validity of point-charge-model calcula-
tions when applied to metallic systems.® Therefore, to
understand the behavior of the EFG around these
vacancy-related defects, it is desirable to have reliable
self-consistent electronic-structure calculations per-
formed for these systems. The lack of periodicity due to
the introduction of the defect prevents the direct applica-
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tion of the powerful k-space formalism and increases the
complexity of the problem. But under some assumptions
(different in each of the various existing methods) the
electronic structure around localized defects can be ob-
tained. Several approaches can be used to treat the de-
fects within a first-principles self-consistent method.’ 12
One can use supercells in conjunction with reciprocal
space methods, one can perform calculations in a small
cluster of atoms, or one can use the Green’s function
(GF) formalism within some well-established method
such as the Korringa-Kohn-Rostoker (KKR) or linear-
muffin-tin-orbital (LMTO) methods, among others. The
advantage of the GF approach as compared to the others
is that the embedding of the defect is correctly described
and it has been frequently applied to study impurities in
metals. In recent years a first-principles, self-consistent,
density-functional procedure,!® implemented directly in
real space (RS), has been shown to describe well the elec-
tronic structure around local perturbations in metallic
systems.!* It is based in the linear-muffin-tin-orbital for-
malism within the atomic-sphere approximation'>!®
(ASA) and makes use of the recursion method!” to solve
the eigenvalue problem in real space. The RS LMTO
ASA scheme has been applied to study substitutional im-
purities in metals, yielding results for local magnetic mo-
ments, charge transfers, and hyperfine fields that are in
excellent agreement with those obtained by KKR GF cal-
culations.'*!® We should note that the RS LMTO ASA
scheme is very flexible, can be applied to study interstitial
impurities, and is very useful in the presence of lattice re-
laxation.!®

The first realistic calculation of the electronic structure
around a monovacancy in Al was performed in a super-
cell of 26 Al atoms plus a vacancy, using the pseudopo-
tential approach.! The electronic structure around an
isolated vacancy was later obtained using the KKR GF
formalism.!! In this calculation, the potential of the va-
cancy was treated self-consistently and charge neutrality
was imposed, but the potential of the Al sites was kept at
bulk value. Due to the approximations involved, no re-
sults could be obtained for the EFG or the asymmetry
parameter at the Al site close to the vacancy in these pa-
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Here we are interested in the behavior of the EFG
around vacancies in Al, for which a considerable amount
of experimental data are available. There are few first-
principles calculations of the EFG in nonperiodic systems
and we did not find one for vacancy-related defects in Al
But a calculated value of ¥V, for a Cu first neighbor to a
monovacancy in Cu was recently cited in a KKR GF
study of the EFG for Cu sites in the neighborhood of 3d
and 4sp impurities in Cu.'? The study is rather complete
and several shells of Cu atoms around the vacancy were
treated self-consistently. The work shows that, as in the
case of hcp metals,? the lattice contributions to the EFG
at the calculated sites are very small, typically less than
5% of the total value. This is true for most metallic sys-
tems. It is interesting to have reliable theoretical EFG
values to compare with those obtained here using the RS
LMTO ASA scheme. Therefore we have also calculated
the electronic structure around a vacancy in Cu and eval-
uated the EFG at a Cu site in the neighborhood of the
vacancy.

The paper is divided in the following way. In Sec. II
we give a brief description of the RS LMTO ASA
scheme, used in the electronic-structure calculations. We
also describe the procedure used in the calculation of the
EFG tensor and its components along the principal axis.
In Sec. III we show results for vacancies and divacancies
in Al and vacancies in Cu. In Sec. IV we discuss the case
of the Cd-monovacancy pair in Al. Finally, in Sec. V we
present conclusions.

II. THEORETICAL APPROACH

In the present work we use the RS LMTO ASA
scheme to describe the electronic structure around the
vacancies. It is based on the well-known LMTO ASA
formalism'>!% and makes use of the recursion method!’
to solve the eigenvalue problem directly in real space. A
brief description of the RS LMTO ASA will be given
here to state the approximations used and establish nota-
tion. A detailed description of the scheme!? and its appli-
cation to obtaining the electronic structure around de-
fects'#!® can be found elsewhere.

The LMTO is a linear method and its solutions are val-
id around a given energy E,, normally taken at the center
of gravity of the occupied part of the band. Here we use
the ASA LMTO approach, where the space is divided
into Wigner-Seitz (WS) cells, which are then approximat-
ed by WS spheres of the same volume. The LMTO ASA
basis functions can be chosen in a variety of ways, to op-
timize the efficiency when solving a given problem.
There are three very important representations:!® the
standard, the orthogonal, and the tight binding (TB) (or
most localized). Up to the first order in E —E,, the or-
thogonal and TB representations coincide and we can
take advantage of both features. In the RS LMTO ASA
scheme we use a first-order Hamiltonian, where terms of
order of (E—E,)* and higher are neglected. Within
these approximations, we have a TB Hamiltonian and an
orthogonal basis, yielding a simple eigenvalue problem,
easily solvable in real space by the recursion method:
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(H—E)u=0, (1)
H=C+AY?SA'? . )

To build the Hamiltonian we have to determine the TB
structure constant S and obtain the TB potential parame-
ters C and A. The structure constant S is calculated only
once, since it depends on the position of the sites, which
is not changed during the iterative process towards self-
consistency. To obtain the potential parameters C and A
for a given site, one has to solve the Schrédinger equation
for E=E , within the WS sphere around the site. All ine-
quivalent sites (with different values of C and A) should
be considered. Since the potential inside the WS spheres
changes, the potential parameters C and A should be re-
calculated at each iteration, until self-consistency is
achieved. The main difference between the present real-
space scheme and the usual LMTO ASA formalism re-
gards the way by which the eigenvalue problem is solved
for the given Hamiltonian. We note that the solution of
the Schrodinger equation within each WS sphere is treat-
ed in exactly the same way in both the LMTO ASA for-
malism and the RS LMTO ASA scheme. Therefore the
approximations used for the exchange and correlation
terms when solving the Schrodinger equation inside the
WS spheres are exactly the same in the two approaches.
In the case of the vacancy, the Schrddinger equation is
solved inside a WS sphere without a nuclear charge, usu-
ally called an empty sphere.

Normally, when calculating the electronic structure of
a periodic system, the Fermi level is determined at each
iteration, by filling the bands with the correct number of
valence electrons. In the case of local perturbations, such
as impurities or vacancies, the Fermi level is determined
by that of the host and the procedure has to be modified.
Here we first perform a RS LMTO ASA for the perfect
system (no vacancies) to determine the Fermi level. Then
we fix the Fermi level at this value and introduce the va-
cancy (empty sphere) or any other perturbation of in-
terest. We calculate the occupation and other relevant
quantities as the vacancy site up to the fixed Fermi level,
keeping the potential parameters of the rest of the system
at bulk value. The extra charge found at the site is
placed in the first neighboring shell in order to preserve
charge neutrality, when determining the electrostatic po-
tential at the vacancy. The process is repeated until self-
consistency is achieved. Then we include the first shell of
atoms in the self-consistent calculation and proceed in a
similar way, placing the extra charge on the second
neighbor shell. When the potential of the vacancy of that
of the first neighbors to the vacancy are determined self-
consistently, we include the next shell. The process con-
tinues until the self-consistent value for the potential of
the last shell included differs from that of the bulk by a
negligible amount. In the case of a larger vacancy-probe
defect, the process is analogous, but the concept of the
first shell, second shell, etc. is redefined accordingly. A
diagram showing in detail the steps required to obtain the
self-consistent solution to the electronic structure around
defects within the RS LMTO ASA scheme is available in
the literature.'*

We should now comment on how to determine the
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EFG tensor and values for V,, and 7, once the converged
results for the electronic structure are known. Again we
refer to the literature for a detailed description of the
theory used to obtain the EFG tensor.?%2! Just a brief
overview stressing the approximations used and some in-
teresting consequences of the present treatment is given
here. There are several contributions to the EFG at a
given site. They are often divided according to the spa-
tial distribution of the charges from which they originate.
Here we designate by lattice contribution the part that
originates from charges located outside the WS cell
which encloses the given nucleus, and by electronic con-
tribution the part that originates from charges inside this
WS cell. It has been shown? that for metallic systems,
the lattice contribution is small (less than 10% of the to-
tal) and we neglect it in the present calculations. We also
do not consider the contribution coming from core elec-
trons around the probe. These electrons have a nearly
spherical charge density and give negligible contributions
(of order of 1%) to the EFG. The relevant contribution
to the EFG in metallic systems comes from the valence
electrons around the nucleus. It accounts for 90% of the
effect in most cases and is the term we calculate here.

The components V;; of the EFG tensor can be obtained
by taking the quantum-mechanical average of the corre-
sponding classical operator for an electronic state of ener-
gy E and integrating over all occupied states up to the
Fermi level (E;). When this is done and small terms are
neglected, we find that the components of the EFG tensor
can be tabulated in terms of radial integrals I;; and gen-
eralized occupations n,, ,. given below. A table with ex-
pressions for all the V;; in terms of these quantities can be
found elsewhere:?°

2
I”:fos"'l‘pl(r'r_)l d3" N (3)
Ep
M= [ 4 (EVu(E)E . @

Here the radial functions ¢,(r) are solutions of angular
momentum / for the Schrédinger equation inside the WS
sphere of radius s around the probe and the quantities u,,
are the coefficients corresponding to the orbital with an-
gular part designated by cubic harmonics (m =x, y, and z
for p orbitals and m =xy, xz, yz, x>—y?, and 3z2—r? for
d orbitals) in the wave-function expansion. We note that
Ium 12 is the local density of states associated with the or-
bital m. Therefore the quantity n,, ,, (m=m’) is just the
occupation of the orbital of symmetry m and the quanti-
ties n,, ,,- are called generalized occupations. If we look
at the expressions for the EFG tensor in terms of these
quantities we find that, within the RS LMTO ASA ap-
proach, the EFG, to a good approximation, can be
decomposed into a product of two terms. One term is
due to small differences between occupations n,, ,,- asso-
ciated with orbitals of different symmetries. These
differences can be positive or negative and are usually of
the order of 0.01 electrons. Therefore, to obtain this
term, very accurate electronic-structure calculations are
required. The other term is given by the integrals I;; and
is always positive. Due to the » ! dependence of the in-
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tegrand, I, is governed by the behavior of the radial solu-
tion for p and d orbitals close to the nucleus. This quan-
tity is not very sensitive to the environment in which the
atom is placed and can be tabulated for a given element
in a metallic environment (see Table I). The order of
magnitude of the EFG and the relative importance of p
and d contributions can often be predicted without ela-
borate calculations, since the radial integrals are known.
But to obtain the sign and a precise evaluation of the
EFG is rather difficult. They depend on very small
differences in occupation numbers and large errors are to
be expected.

The radial integrals and generalized occupations can be
determined from the converged RS LMTO ASA for the
electronic structure. The EFG tensor is then easily ob-
tained using tabulated expressions for its components.
The tensor is not diagonal in general, but is always trace-
less. Finally, we use the calculated EFG tensor to obtain
values for V,, and 5, which can be directly compared to
experiment. To obtain these values we diagonalize the
EFG tensor and find principal axes. The largest com-
ponent in magnitude of the diagonal EFG tensor is usual-
ly associated with V,, and the smallest with V,,. With
this convention the asymmetry parameter 7 is defined as
(Vix—V,,)/V,. It is always positive and can vary be-
tween zero and one. The direction of V,, (or any other
component) is given by the direction of the corresponding
principal axis.

III. RESULTS FOR VACANCIES IN Al AND Cu

Here we use the RS LMTO ASA scheme to obtain the
electronic structure around a vacancy in Cu and Al and
divacancies in Al. Both Cu and Al form in fcc structures
and experimental lattice constants, corresponding to a
WS sphere radius of 4.05 A for Al and 3.61 A for Cu,
were used in the calculations. The calculations were per-
formed using a large cluster of 1700 atoms, cut in order
to keep the atoms of interest at a maximum distance from
the surface. Valence s, p, and d electrons were considered
in the calculation, in a total of nine orbitals per site. For
all the sites and orbitals a cutoff parameter L ,, =20 was
taken in the recursion chain!” and a Beer and Pettifor ter-
minator was used.?? We work within the local-spin-
density-functional approximation with an exchange and
correlation term of the form proposed by von Barth and
Hedin.?*> To test the accuracy of the real-space calcula-
tions for vacancies, we have performed calculations in a
fictitious fcc lattice with four atoms (three Al atoms and
one empty sphere) in the unit cell, using both the RS
LMTO ASA scheme and the standard k-space LMTO
ASA formalism. Calculations for bulk Cu and bulk Al
were also performed using the two approaches. In all
cases, within the limitations of the first-order Hamiltoni-
an,!? the agreement between the two calculations was ex-
cellent.

To obtain the electronic structure around a monova-
cancy in Cu and Al, the potentials at the vacancy and
four shells of neighbors, in a total of 55 sites, were includ-
ed self-consistently. For the remaining atoms of the clus-
ter, the bulk potentials were used. Due to the symmetry
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of the problem, the local density of states (LDOS) and the
potential parameters are the same for all atoms belonging
to the same shell. Therefore these quantities could be ob-
tained using five representative sites (the vacancy and one
atom of each shell) in each iteration, simplifying consid-
erably the calculation.

In Table I we show the charge transfer (number of elec-
trons transferred relative to the neutral site) at the vacan-
cy and at an atom in each of the four neighboring shells
in Cu and Al. The number of atoms in each shell is also
given. Qualitatively, the behavior of the charge distribu-
tion is the same for Cu and Al. There is a positive charge
transfer of around 0.9 electrons at the vacancy site and a
negative charge transfer of about —O0.1 electrons at each
of the first neighbors to the vacancy. Since there are 12
of these, there is an overscreening, which is compensated
by a positive charge transfer in the subsequent layers. In
both cases we observe a charge transfer for atoms in the
third shell that is larger than that in the second shell. A
similar behavior was observed in the case of 3d impurities
in Cu.* There the impurity has a negative charge
transfer (loses electrons to the host), which is over-
screened by the positive charge transfers of the first Cu
shell, resulting in predominantly negative charge
transfers in the second and third shells. Both the KKR
GF and RS LMTO ASA results for 3d impurities in Cu
also show a larger charge transfer at the third shell as
compared to that of the second shell of neighbors. It is
interesting to compare our results, which include four
shells around the vacancy, with KKR GF results!! ob-
tained for a vacancy in Al, within the single-site (SS) ap-
proximation. We note that in this approximation the va-
cancy is treated self-consistently, but the potential of the
remaining atoms are kept at a bulk value. The SS calcu-
lations!! were performed in two ways: in the usual way
(without charge conservation) and using corrections to
account for the charge neutrality of the system. The
charge transfer obtained at the vacancy using charge neu-
trality corrections (0.81 electrons) agrees much better
with our more exact value (see Table I) than the one ob-
tained by the usual procedure (0.43 electrons). We note
that the SS value obtained correcting for charge neutrali-
ty is roughly twice that obtained without these correc-
tions. A similar situation is also observed for 3d impuri-
ties in Cu,'* indicating that the simple inclusion of charge
conservation, when calculating the Madelung term at the
site considered, can greatly improve the results of SS cal-
culations at no additional cost.

TABLE I. Charge transfer at each atom around vacancies in
Cu and Al. Also given is the number of atoms in each shell.

Number

Al Cu of atoms
vacancy 0.919 0.927 1
first shell —0.113 —0.108 12
second shell 0.014 0.008 6
third shell 0.017 0.010 24
fourth shell 0.000 0.000 12
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We have used our results for the electronic structure
around a monovacancy to obtain the EFG tensor at an
Al (or a Cu) site, first neighbor to the vacancy. As we
have mentioned, the dominant contribution for the EFG
in metallic systems comes from the charge distribution of
p and d valence electrons around the nucleus. Other con-
tributions (lattice and core) are small and were neglected
in the present calculations. The relative importance of p
and d contributions is roughly determined by the relative
values of the radial integrals I,, and I,,, discussed in Sec.
II. In Table II we give the value of these integrals for Al,
Cu, and Cd probes in a metallic environment. From
these values we see that the d contribution to the EFG
can probably be neglected in the case of Al, but not in the
case of Cu (or of the Cd probe to be considered later).
The radial integrals also indicate that the magnitude of
the EFG should be larger in the case of Cu than in the
case of Al.

In Table III we show the components of the diagonal
EFG tensor for sites close to a vacancy in Cu and Al
The direction of the principal axis associated with each of
the components is also indicated. The measurements give
the largest component (in magnitude) of the diagonal
EFG tensor, usually designated by V,, and the asym-
metry parameter 7. The asymmetry parameter is defined
as the difference between the smallest components, divid-
ed by V,,. In Table IV we show the calculated values of
V,, and 7 for first neighbors of a monovacancy in both
Cu and Al. The direction of ¥, relative to the fcc lattice
is given in parentheses in each case. As expected from
the values of the radial integrals (see Table II), the value
of V,, is larger for Cu than for Al. In the case of Al the
largest component of the tensor (see Table III) is clearly
associated with the (1,1,0) direction and is directed along
the line connecting the Al site to the vacancy. The calcu-
lated values for V,, and 7 given in Table IV are in very
good agreement with the values V,,=4.0X10% V/m?
and 7=0.65 obtained by NMR experiments.® In the case
of Cu one of the components of the EFG tensor is very
small, while the other two have nearly the same magni-
tude (71 close to one). In the situation, within our pre-
cision, the magnitude of V,, is well defined, but we have
two possibilities for the sign. Therefore two numbers
(with the corresponding directions) are quoted for Cu in
Table IV. The numbers compare well in magnitude with
the value of 11.3 obtained by KKR GF calculations!? and
the experimental value’ of 13.5, given in the same units.
The theoretical result is positive, but no value of 7 is
given. The sign of V,, has not been measured. We
proceed to study divacancies in Al.

To obtain the electronic structure around divacancies

TABLE II. Radial integrals I,, and I, used in the EFG cal-
culations in units of 1073° m ™2 atoms in each shell.

Al Cu Cd

I, 15.1 49.5 80.7
Iy 0.66 53.3 69.9
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TABLE III. The three components of the diagonal EFG ten-
sor at the site (0.5, 0.5, 0.0), close to a vacancy in Cu and Al
The components are given in units of 10?° V/m? and the direc-
tions of the principal axis relative to the fcc lattice are also
shown.

EFG p d Total Direction
Al v, —0.68 —0.08 —0.77 (—1,1,0)
v, —2.73 —0.09 —2.82 (0,0,1)
Vs 3.42 0.17 3.57 (1,1,0)
Cu ¥ 0.10 —0.05 0.05 (0,0,1)
Vv, 18.52  —4.67 13.85 (1,1,0)
Vv, —18.62 472 —1390 (1,—1,0)

in Al we have used the same 1700 atoms cluster with the
vacancy at the origin and added a second vacancy at a
neighboring site (0.5, 0.5, 0.0) of the fcc lattice. Here we
use reduced coordinates to indicate atomic positions.
One can easily obtain the real coordinates by multiplying
the numbers by the lattice parameter of Al. Again, the
RS LMTO ASA scheme was used to obtain the electronic
structure around the divacancy. The potential was calcu-
lated self-consistently at the vacancies and up to the third
shell of neighbors around each vacancy for a total of 60
sites. The potential at the remaining sites was kept at
bulk value. As before, we have used symmetry to simpli-
fy the numerical effort. For example, the first shell,
which includes all the first neighbors to both vacancies,
has a total of 18 atoms. But only four atoms are ine-
quivalent with respect to the LDOS and the potential pa-
rameters and have to be considered to calculate these
quantities. In Table V we show the position of these
representative atoms (All, Al2, Al3, and Al4) and the
number of atoms of each type present in the first shell.
We obtain a charge transfer of 0.82 electrons to each of
the vacancies, slightly smaller than the one obtained for
monovacancies. The All site, which is a first neighbor to
both vacancies, shows a charge transfer of —0.23 elec-
trons, while the remaining first-neighbor sites (Al2, Al3,
and Al4) show transfers of around —O0.1 electrons. In
Table V we calculated values of V,, and 7 for all
representative Al sites in the first shell around the diva-
cancy. We see that the largest value of V,, correspond to
All, a first neighbor to both vacancies, and is directed to-
wards the center of the line connecting the two vacancies.
The fourth site (Al4) is collinear with the vacancies and
has a negative value of V,,, directed along the z axis in

TABLE IV. Calculated values of V,, and 7, ior a first neigh-
bor of the monovacancy in both Cu and Al. The direction of
the EFG relative to the fcc lattice is also given. V5, is given in
units of 10%* V/m?.

Al +3.6 (110) 0.57
Cu +13.9 (110 ~1
—13.9 (1-10)
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TABLE V. Values of V,, and 7 for atoms in the first shell
around a divacancy in Al. ¥V, is given in units of 10%° V/m?.

Number

V. n Position of atoms
All 7.1 0.29 0.0, 0.5, 0.5 4
Al2 4.4 0.36 0.5,—0.5,0.0 4
Al3 —3.6 0.43 —0.5,0.0,—0.5 8
Al4 —2.7 0.54 —0.5,—0.5,0.0 2

the fcc structure. In all cases, due to the relative magni-
tude of the radial integrals of Al (see Table II) the p con-
tribution to the EFG tensor is dominant.

IV. RESULTS FOR A Cd PROBE IN Al

Most of the information for defects in Al has been ob-
tained by PAC using a Cd probe! "* (an In atom is intro-
duced, but it decays to Cd for the measurement of the
EFG). Several values of the EFG can be observed experi-
mentally in the presence of a Cd probe and the assign-
ment of the measured values to each type of defect is not
easily done. It is clear that reliable theoretical calcula-
tions for the EFG can contribute to the identification of
the defect in this case.

Here we use the RS LMTO ASA to obtain the EFG at
the Cd site of a monovacancy-Cd pair in Al. We use a
1700 atoms cluster, similar to the one used to study diva-
cancies in Al, but replacing the vacancies at position (0.0,
0.0, 0.0) by a Cd atom. The problem is more complicat-
ed, since we lose the reflection symmetry around the
plane perpendicular to the line connecting the two vacan-
cies. In this case, two shells around the monovacancy-Cd
pair are made self-consistent. This region contains all the
first and second neighbors of both the vacancy and the
Cd probe, for a total of 28 atoms. The potential of the
remaining sites are kept at bulk value. Due to the lower
symmetry of the defect, the first shell has seven ine-
quivalent atoms instead of the four inequivalent sites ob-
served in the case of the divacancy. The atom equally
distant from the Cd and the vacancy still has the
equivalence four of site All of Table V. But each of the
others (Al2, Al3, and Al4) are subdivided into two ine-
quivalent sites, one closer to the Cd probe and the other
closer to the vacancy. For the same reasons we have four
inequivalent sites (instead of two) in the second-neighbor
shell. Therefore, with the Cd and the vacancy, we in-
clude a total of 13 inequivalent potentials in the self-
consistent process. We calculate the electronic structure
around the defect using the same cutoff parameter and
the same terminator as in the previous calculations. We
find a charge transfer (number of electrons transferred
relative to the neutral site) of 0.922 at the vacancy, very
similar to the ones obtained for monovacancies in Al and
Cu. The charge transfer at the Cd atom is —0.19 and all
the other first neighbors of the vacancy, including the
common neighbor with the Cd, have a charge transfer
around —O0.1. The charge transfer at the other atoms in
the first shell, first neighbors of the Cd probe, is 10 times
smaller. In the second shell, the charge transfer of the
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two atoms closer to the vacancy probe is positive, around
0.03, while the charge transfer for those closer to the Cd
is again much smaller. We conclude that the behavior of
the charge transfer in the presence of the Cd probe is
very similar to that of the monovacancy, with a negative
charge transfer in the first-neighbor shell of the vacancy
and a smaller positive charge transfer in the second.

The components of the diagonal EFG tensor for the
Cd probe and corresponding directions of the principal
axis relative to the fcc lattice are shown in Table VI. We
have used the conventional notation to assign the largest
component in magnitude to ¥, and the smallest to V,,.
As in the case of the EFG for an Al first neighbor to a
monovacancy, V,, is directed along the line which con-
nects the vacancy to the probe. But due to the higher
values of the radial integrals of Table I, the value of V,,
in Cd is about six times larger than the one found for Al.

As we have mentioned before, there has been some in-
teresting discussion in the literature regarding the
identification of defects created by low-temperature im-
plantation of In (decaying into Cd) in Al. Two signals are
clearly observed in perturbed angular correlation experi-
.ments. Defect 1 has a quadrupole frequency w,=64
Mrad/sec, asymmetry parameter 7=0.41, and V,, along
the (110) direction, while defect 2 has a larger quadru-
pole frequency w,=123 Mrad/sec =0, and V,, along
the (111) direction.!™* It is generally agreed that defect
2 is due to a divacancy-Cd probe association and we did
not attempt to calculate the EFG associated with this de-
fect. But there is some controversy regarding the
identification of defect 1. The simplest choice for a defect
that appears when low-temperature implantation is used
is the monovacancy-probe pair. But point-charge model
calculations predict a value of 7 close to zero for this
type of defect. Therefore, in a general study of several
fcc metals,! the monovacancy-probe pair has been associ-
ated with a class A defect, oriented along the (110)
direction, having 7=0. Class A defects were encoun-
tered in several fcc metals, but a defect with these charac-
teristics is missing in Al. The point-charge model would
be compatible with larger values of 7 if relaxation of the
probe towards the vacancy is allowed. But the value of
V,, predicted by the model is already three times larger
than that associated with defect 1 and its values increases
further with relaxation.! Based on these considerations
defect 1 was assigned to a more complex structure, con-
sisting of Cd and four vacancies. On the other hand, a
PAC study of the formation of defect 1 and defect 2 after

TABLE VI. The three components of the diagonal EFG ten-
sor for the Cd probe in a Cd-monovacancy pair in Al. The com-
ponents are given in units of 10?° V/m? and the directions of
the principal axis are shown.

EFG 4 d Total Direction
cd Vix —17.8 3.1 4.7 (1,—1,0)

V,y —16.3 0.9 —154 (0,0,1)

V, 24.1 —4.0 20.1 (1,1,0)
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TABLE VII. Experimental and calculated values of V,
(units of 10® V/m?) and 7 for the Cd probe in a Cd-
monovacancy pair in Al.

RS LMTO ASA Expt. Point charge
Va +20.1 342 —112
n 0.54 0.41 0.0

quenching? has indicated that defect 1 consists of fewer
vacancies than defect 2. Since it is agreed that defect 2
has two vacancies, this experiment would be consistent
with the assignment of defect 1 to the monovacancy-Cd
pair in Al. Linear augmented plane-wave calculations for
several hcp metals,® which agree rather well with experi-
ment, make it clear that the point-charge model often
fails to give the correct magnitude and sign for the EFG
in these simple systems. Due to its simplicity, the point-
charge model is still used, but it is agreed that it frequent-
ly fails when applied to metals and more reliable calcula-
tions are needed. Here we use our RS LMTO ASA re-
sults for the Cd-monovacancy pair to help to understand
the structure of defect 1.

In Table VII we show the RS LMTO ASA calculated
values of ¥, and 7 for a Cd probe in a Cd-monovacancy
pair, together with experimental values obtained for the
same quantities.!”* Results inferred from point-charge
model calculations! are also shown for comparison. Con-
trary to the point-charge model, our results associate a
high value of 7 to the Cd-monovacancy pair. We can see
that the point-charge value for V,, is much larger than
both the calculated RS LMTO ASA and experimental
values. Also its sign is negative, while the present work
predicts a positive sign for V,,. A similar situation is ob-
served for the V,, at an Al probe close to a vacancy in Al.
We find (see Table IV) ¥V, =3.6X10%° V/m?, while the
point-charge calculations yields —12.8 in the same
units.! This is to be compared with an experimental
value of 4.0X10% V/m? obtained in the NMR experi-
ment,® where the sign was not determined. We note that
exact values for the EFG are difficult to obtain since it
depends on very small differences (of the order of one
hundredth of an electron) between occupations of orbitals
of different symmetries. Within the expected errors, the
agreement between the calculated RS LMTO ASA values
of Table VII and experiment is quite good. Our calcula-
tions clearly indicate that defect 1 can indeed be assigned
to a Cd-monovacancy pair.

V. CONCLUSION

We have performed first-principles self-consistent cal-
culations to obtain the electronic structure around mono-
vacancies in Cu and Al and divacancies in Al. The case
of a monovacancy-Cd probe defect in Al was also con-
sidered. In all cases we observed a large transfer of elec-
trons (0.8-0.9) into the vacant site. For monovacancies
in Cu and Al, there is an overscreening of this charge by
the first shell of atoms (which loses electrons), compensat-
ed by a gain of electrons by the second and third shells.
The behavior around the vacancy is qualitatively the
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same for the divacancy and the monovacancy-Cd defect
in Al

The electronic-structure results were used to obtain the
EFG tensor and values of ¥V, and 7 for atoms close to
the vacant sites. For a monovacancy in Cu, our absolute
value of V,, at the Cu site is in excellent agreement with
experiment and previous KKR GF calculations. Since
we find 7 close to one, the sign of V,, could not be deter-
mined.

We also calculate the EFG tensor for atoms close to
vacancies in Al. We find V,,=3.6X10* V/m? and
7n=0.57 at an Al atom close to a monovacancy and
V,,=20.1X10* V/m? with 7=0.54 if a Cd probe is
used. These values are to be compared with experimental
values of V,,=4.0X10%° V/m? with 7=0.65 for the Al
atom and ¥V, =34.2X10?° V/m? with n=0.41 for the Cd
probe. Considering the subtlety of the effect, which de-
pends on small differences between large numbers, the
agreement is rather good. Our calculated results for the
Cd probe allow us to identify the defect with quadrupole

frequency w,=64 Mrad/sec, which appears on low-
temperature implantation of In (decaying into Cd) in Al,
as a monovacancy-Cd pair.

Finally, the present calculations confirm that the
point-charge model fails when applied to metallic systems
and can be misleading when used to identify defects.
Here, not only were the sign and the magnitude of ¥V,
badly described, but we have also shown that the point-
charge model can lead to incorrect values of the asym-
metry parameter 7).
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