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Laughlin-liquid —Wigner-solid transition at high density in wide quantum wells
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Assuming that the phase transition between the Wigner solid and the Laughlin liquid is first order, we
compare ground-state energies to find features of the phase diagram at fixed p. Rather than use the Coulomb
interaction, we calculate the effective interaction in a square quantum well, and fit the results to a model
interaction with length parameter ) roughly proportional to the width of the well. We find a transition to the
Wigner-solid phase at high density in very wide wells, driven by the softening of the interaction at short
distances, as well as the more well-known transition to the Wigner solid at low density, driven by Landau-level
mixing.

In the past few years, experiments with two-dimensional
electron systems in a perpendicular magnetic field have
shown a long-expected behavior as the strength of the field
increases. At comparatively low fields, the now-familiar frac-
tional quantum Hall effect appears, as the longitudinal resis-
tivity p falls exponentially to zero as the temperature
T~O at fractional filling factors v. As the field increases,
however, an insulating state appears, with p ~(x when
T—+0. Optical experiments ' show a new spectral line
developing at the same fields. This behavior is commonly
thought to signal the presence of a Wigner solid, predicted
many years ago, and pieces of an experimentally derived
phase diagram between the Wigner solid and the fractional
quantum Hall (FQHE) or Laughlin liquid can be sketched
out.

There are several experimental parameters that affect the
boundary between Wigner solid and FQHE liquid. The
most important is the magnetic filling factor v=2m. n&,
where n is the electron density and the magnetic length
8= (Iic/eB) '~ . The FQHE appears only at certain fractional
filling factors p=p/q, where p, q are integers and q is odd.
The Wigner solid exhibits no such detailed dependence on
v, but becomes gradually more favorable as the particles are
localized with decreasing v. Also important is the electron
density n, par ametrized by the ion-disk radius
r, =(7m) ' . (Here we use atomic units, where length is
measured in units of the Bohr radius att = Ii /me and energy
in units of e /as .) As the Landau-level separation is
fi, to, =2/vr, , the energy cost of localizing the particles by
Landau-level mixing falls rapidly with increasing r, at fixed
v, until at some critical r, the Wigner solid becomes more
favorable than the FQHE liquid and the system freezes.

Finally, the experiments are all done in real systems,
which must be considered quasi-two-dimensional, with some

finite thickness L characterizing the width of the electron
layer. On average a pair of electrons is separated in the z
direction by k(L, so their effective interaction at distances
r((k in the xy plane becomes much softer than the Coulomb
interaction, while at large distances r)) X, the interaction is
essentially Coulombic. This preserves the long-range charac-
ter of the interaction while weakening the short-range part.
Because the formation of the Wigner solid is driven by the
long-range part of the interaction, while the FQHE liquid
derives its energy advantage from the short-range part, the
quasi-two-dimensional character of a real experimental sys-
tem might be expected to favor the solid somewhat. There
have been several recent experiments and theoretical
studies ' of finite thickness effects on the incompressible
FQHE state and, in general, it is now well established that
finite layer thickness tends to destroy incompressibility by
reducing the short-range part of the Coulomb interaction. To
the best of our knowledge, however, the enhancement of the
Wigner solid phase by the finite thickness effect has not been
examined theoretically.

In this paper, we study the quantitative effects of the three
length scales 8, r, , and particularly X on the Laughlin-
liquid —Wigner-solid phase diagram. We compare ground-
state energies and excited states of variational wave func-
tions for the Wigner solid and the FQHE liquid as both r,
and X are allowed to vary. We find that at small X., such as
that found in GaAs heterojunctions, the zero-temperature
phase transition from liquid to solid at large r, does not vary
much from the Coulomb case. At large k we find that the
FQHE liquid gives way to the Wigner solid at low density, as
expected, but most unexpectedly, we find that the Wigner-
solid phase dominates the FQHE liquid at high density as
well. Only in an intermediate range of r, does the liquid have
lower energy than the solid when X is large. The interplay
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fitted to the cosine solution. Here y=0.277I. gives the
Gaussian wave function shown in Fig. 1. The effective po-
tential for the two wave functions is almost identical. The
Gaussian wave function gives

10 V',q(r) =
2%7

( r2
~2/4 y2

0 „Z'.r/ (3)
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where Ko is a modified Bessel function. We would like to
use the simpler model interaction of Zhang and Das Sarma,

Vo(r) =
r +k (4)

FIG. 1. The effective interaction (solid line), Coulomb interac-
tion (dash-dotted line), and model interaction (dashed line) for a
square well of width I.. The model interaction parameter
k =0.2L. The lowest subband cosine wave function and Gaussian
fit are shown in the inset.

among the length scales 8, r, , and k can, in principle, there-
fore lead to a reentrant Wigner-solid transition at large X. as

r, is varied.
The electrons in a quantum well are confined to a small

number of subbands, usually just one, and then can be
thought of as extended rodlike charges in the z direction
which are allowed to move only in the xy plane. ' This ap-
proximation has been used in the past to study the weakening
and eventual collapse of the FQHE state in a wide quantum
well. ' The interaction between these model charges is given
by

z&
2

z2
2

Vefr i d 2 [ 2+( )2jl/2 .

Csq(z
( 2)1/4 e (2)

Here ((z) is the envelope wave function describing quanti-
zation in the z direction and r is the separation between
electrons in the xy plane.

The confining potential in the z direction enters into this
equation only through the envelope wave function f(z) This.
wave function should be obtained in a self-consistent proce-
dure which takes into account the interaction of the electrons
in the xy plane. At low electron density, in quantum wells
where the subband splitting is large, ((z) is simply the z
component of the single-particle wave function. When elec-
tron density becomes higher, or the well is made wider bring-
ing the subbands closer together, g(z) will be modified.

In a square well, however, li. and r, are (roughly speak-
ing) independent parameters, as the width of the well L is to
lowest order independent of the density of the electrons in
the xy plane. It is only when subband mixing begins to be-
come important that the electron density begins to affect the
envelope wave functions g(z). We expect that when only the
lowest subband is occupied the single-particle wave func-
tions will be adequate for f(z) The usual cosine. solution for
an infinite well is shown in the inset to Fig. 1, as well as a
Gaussian wave function

so we choose the parameter X to fit Vqa(r) best when r is
large. A least-squares fit, shown in Fig. 1, yields k/L = 0.2.

Because X/L is small for the square well, we need a wide
well if we are to investigate a system with reasonably large
X. For example, a well with X. =1 in an electron system in
GaAs is approximately 500 A wide. In these wide wells,
subband mixing can become important, and the envelope
wave functions will tend to spread out toward the edges of
the well as the electrons reduce their potential energy. We
have used the self-consistent approach taken in Ref. 10 to
estimate the density distribution n(z), and we find that k/L
will vary anywhere from 0.15 to 0.30 in the presence of
subband mixing. ' If we choose the lowest subband value
X=0.2L for the square well, Vo(r) is nearly identical to
Vqfr(r) for r~0.2L, and differs significantly from Vqir(r)
only for r~0.1L. The pair correlation function for both liq-
uid and solid is small below about r=r, , so we believe
Vo(r) to be a good description of V',qa(r) for k~2.

In extremely wide quantum wells, n(z) will be modified
further as it peaks near the well edges. The well then begins
to resemble a highly coupled double-layer system. Electrons
in the well may lower their potential energy by localizing
near the edges of the well, at the cost of some kinetic energy.
In this more complicated situation, the approximation (1)
begins to break down. At high density, the interaction be-
tween electrons that are adjacent in the xy plane becomes
small, as they become separated in the z direction. The in-
teraction between electrons localized on the same side of the
well becomes stronger, however, and the net effect is a small
potential energy savings. We should note, however, that the
magnetic field will tend to suppress subband mixing, as at
v= 1/3 the filling in the lowest subband will be at most 1/3.

In this paper, we determine the zero-temperature phase
boundary between Wigner solid and Laughlin liquid by com-
paring ground-state energies of variational wave functions
for the liquid and the solid. Because we are simply compar-
ing energies, we are assuming that the phase transition is first
order, and we neglect the possible presence of any other
states in the vicinity. At high electron density we regard the
approximation (1) as a qualitative guide only, and do not
attempt to predict a critical r, and k quantitatively for the
low r, transition.

A variational wave function for the liquid which interpo-
lates in some sense between a wave function with the lowest
possible kinetic energy, the Laughlin wave function, and a
wave function with the lowest possible potential energy, in
which the electrons are completely localized, might be ex-
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P~ (z;) = exp( —4[~z; R;~ — (z—,*R; —z;R,*)])—. (7)
FIG. 2. The variational liquid energy (dashed line) and solid

energy (solid line) shown after subtracting fico, /2 and the Madelung
energy for various Axed values of r, .

pected to be a good variational choice. To that end, we have
chosen a variational wave function that consists of the
Laughlin wave function t/i (m=1/v) multiplied by a Ja-
strow factor II;~je /~~, where r;~ is the distance between
the ith and jth particles and n is the variational parameter.
When n=o, we recover the Laughlin wave function, and
when a 4 0, the wave function is no longer analytic and
higher Landau levels are mixed in. The Jastrow factor intro-
duces more correlations into the wave function, lowering the
potential energy, while introducing a kinetic energy cost.

Details of the calculation are given in Ref. 8, so we will
only review it briefly here. (Note that Ref. 8 uses units of
energy e /2aa, while this paper uses atomic units e /as. )
We use the spherical geometry, in which our wave function
becomes

Here z;=x;+iy; is the ith particle position and
R;=L;+iY; is the ith lattice site. W is the harmonic crystal
wave function restricted to the lowest Landau level, and the
variational parameters B;J are calculated by using the values
derived from the harmonic crystal. However, in order to
make a reasonable comparison of solid and liquid wave func-
tions, we need, as discussed above, a wave function which
includes Landau-level mixing.

A study of the ground-state energy of the Wigner crystal
including Landau-level mixing has recently been completed,
using the Coulomb interaction. We have extended their work
to use the modified potential (4). This calculation is similar
to that of Lam and Girvin, except that two more variational
parameters n and P are added to the wave function to put in
more correlations at the expense of some Landau-level mix-
ing. First, the Gaussians in the single-particle wave functions
(7) were "squeezed" to move the electrons farther away
from each other, by making the replacement

exp( —-'lz;-R;I') ~exp(- Plz; —R;I') (8)

where u; =e'~'/ cos—(0/2), v; —=e'@'/ sin(8/2) are conve-
nient spinor coordinates, and the distance between particles i
and j is taken as the chord distance r;/=2R~u;v. —u v;~.
Evaluating the energy of this wave function by Monte Carlo
and minimizing at a fixed r, and k gives the results shown

by the dashed lines in Figs. 2 and 3.
In order to find the liquid-solid phase boundary we need a

rather accurate evaluation of the solid. Lam and Girvin
evaluated the energy of a correlated Wigner-solid wave func-
tion

Varying the parameter p away from 1/4 introduces Landau-
level mixing into the wave function because the single-
particle wave functions Pz (z;) are no longer eigenstates of

r

the single-particle Hamiltonian. An additional Jastrow factor
is then introduced, and the final wave function, with two
variational parameters a and P, is then

where

/,
exp g FBi O' II 4R, (z;)

'J /

where g;=z; R;, B;,=B(R; R~),—and— —

(6)
and F is a constant chosen to optimize the pseudopotential at
small r. Zhu and Louie varied B;J as well as P, but found
that varying B;, had very little effect on the energy, as Lam
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and Girvin had suggested. The quantum Monte Carlo calcu-
lations were done with modified periodic boundary
conditions, which require the addition of a phase factor to
the single-particle wave functions (7). The results are shown
as solid lines in Fig. 2 and the triangular data points in Fig. 3.

The r, =2 curves in Fig. 2 are very nearly the lowest
Landau-level energies, since A, co, is large at r, =2. In fact, if
each of the curves in Fig. 2 were plotted as a function of
J /r, and there were no Landau-level mixing, they would lie
on top of each other. Only the increased Landau-level mixing
at r, =10 and 20 reduces the energy there somewhat. The
parameter k/r, can be thought of as the ratio of the average
separation in the z direction X and the average separation in
the xy plane r, (actually -2r, ) of two nearby electrons. The
lowest Landau-level energies cross at k=6 at r, =10 and
X = 12 at r, =20, but the variational energies here predict a
freezing transition at X =4 at r, = 10 and possibly X=6—7 at
r, =20. These results illustrate the fact that Landau-level
mixing does, in general, tend to favor the solid somewhat.

The variational wave functions use the fact that localizing
the electrons by mixing in higher Landau levels will keep
nearest-neighbor electrons farther apart, and since the Cou-
lomb potential rises rapidly at small r the energy savings can
be significant. As the interaction softens, however, the energy
savings become small, and as a result the liquid and solid
energies at r, =2 are nearly identical to the lowest Landau-
level energies. Ortiz, Ceperley, and Martin have recently
used their fixed-phase quantum Monte Carlo method to im-
prove the liquid energy shown here somewhat. The differ-
ence in energy is significant at r, =10 and 20, but at r, =2
the change in energy for the Coulomb interaction is only
-0.006, a shift on the order of 10%.

The rapid descent of the solid energy with P leads to a
freezing transition at about k = 1.2 at r, = 2, brought on by
the softening of the short-range part of the interaction. Keep-
ing the well width constant and lowering the density gives a
smaller X/r, , and the system melts once again until the in-
creased Landau-level mixing at high r, causes the system to
freeze again. Figure 3 shows the energies of solid and liquid

when X. is fixed and r, is allowed to vary. At X =0.5 we find
no significant lowering of the solid energy at low r, , but at
k = 1 the solid energy at r, =2 is nearly as low as the liquid
energy, and at X = 2 and 3 the solid energy at r, = 2 is much
lower than the liquid energy. In all cases the liquid becomes
favorable at lower density until Landau-level mixing again
causes the system to freeze. The transition at high density
has been seen in the experiment of Suen, Santos, and
Shayegan, where an insulating phase was observed in an
800-A well at v= 1/3, r, = 1.7, which became a well-defined
FQHE state when the density was lowered to r, = 2.2.

We wish to emphasize again the qualitative nature of our
calculation. The approximations leading to the model inter-
action Vo begin to break down at high density and wide well
width, where the system begins to take on a three-
dimensional (3D) character as the coupling between sub-
bands (neglected in our model) starts becoming important. In
addition, as the interaction softens, the influence of impuri-
ties on the system is strengthened, and disorder plays a more
prominent role. With these caveats in mind, however, we
have shown that a softening of the interaction occurs at high
density which may lead to a reentrant freezing transition in
wide wells.

We can contrast the wide well (i.e., large X) situation,
which we have argued in this paper may be favorable to the
solid phase both at large and smaller r, , with the situation
of a heterojunction with a metal gate which screens
the interelectron Coulomb interaction, changing it to
V,tt(r~~) —I/rs and V,tt(r~0) —1/r. For the gated hetero-
junction case clearly the Laughlin liquid will be preferred
because the effective interaction remains Coulombic for
small r. Thus, careful experiments in which wide wells con-
trasted with those in gated heterojunctions would go a long
way in establishing the liquid-solid phase boundary in
strong-field 2D systems.
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