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Quantum conductance fluctuations and classical short-path dynamics
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We present numerical results for ballistic-electron quantum transport through weakly open integrable circle
and chaotic stadium billiards. The geometry of the pair of conducting leads is chosen in accordance with recent
experiments for semiconductor microstructures I Marcus et al , Phys. R. ev. Lett. 69, 506 (1992)].The conduc-
tance as a function of the Fermi wave number displays characteristic noisy fluctuations for both the integrable
and the chaotic systems. We show that structures in the conductance autocorrelation function as a function of
the Fermi wave number are related to short-length classical orbits. This correspondence permits incorporation
of effects of phase decoherence due to incoherent scattering into the quantum calculation.

During the last decade, remarkable advances in semicon-
ductor fabrication technology have made it possible to pro-
duce quantum devices of submicrometer size. ' The size of
such mesoscopic devices is large on the atomic scale but
comparable to or smaller than the phase-coherence length
l~ due to inelastic electron-electron (and electron-phonon)
scattering at low temperatures ((0.1 K). Both experimen-
tally and theoretically, there has been considerable interest in
the electronic and magnetic properties of such systems and
as a result, a number of physical phenomena have been ob-
served and predicted including universal conductance
fiuctuations, weak localization, and Aharonov-Bohm con-
ductance oscillations. One of the most interesting aspects is
chaotic boundary scattering in systems formed in high-
mobility GaAs/Al„Ga, As heterostructures, where the sys-
tem size is less than the elastic mean free path of electrons.
In such systems, the two-dimensional motion of noninteract-
ing electrons confined by a wall of arbitrary geometry is
ballistic. In the ballistic regime, the shape of walls directly
determines the motion of electrons colliding with them, and
the classical "billiard" model successfully explains the ex-
perimental results of those systems. Nonlinear dynamics of
the electrons play an important role in quantum transport
through the microstructures (see, e.g., Ref. 6, and references
therein).

One of the prototypes of conservative chaotic systems is
the "stadium billiard. " The study of its quantum mechanics
has played an important role in the identification of quantum
manifestations of classical chaos. ' Studies of opened bil-
liards pertaining to transport through mesoscopic devices
have only recently begun. ' Major progress has been
made in relating quantum conductance fluctuations with clas-
sical (non)integrable dynamics' ' employing Miller's semi-
classical formulation of the S matrix. Generic fingerprints
of regular and chaotic dynamics were identified that are re-
lated to long classical orbits and are universal (i.e., system
independent). Several quantum calculations (e.g., Refs. 6,
13, and 17) were performed for a symmetric geometry for
which entrance and exit leads are on opposite sides of the
device facing each other. Very recently, Marcus et al. ' re-
ported experimental results of the low-temperature magneto-
conductance in ballistic microstructures with the leads at an

angle of 90' relative to each other. This geometry has the
advantage that it suppresses the direct transmission (i.e.,
transmission without collisions with the wall) and thereby
enhances the sensitivity to (non)integrable dynamics inside
the billiard.

In the present paper we present numerical results for clas-
sical and quantum conductance fluctuations for weakly
opened billiards employing the same geometry as in the ex-
periment of Marcus et ah.

' We focus here on the transport
through the quantum dot in the absence of an external mag-
netic field and study conductance fluctuations as a function
of the Fermi wave number. The investigation of magne-
totransport properties for these systems is in progress. We
analyze the correspondence between the quantum conduc-
tance and the classical dynamics of short orbits. The impor-
tance of short trajectories, and hence, of nonuniversal prop-
erties of semiconductor microstructures has been highlighted
in the measurement of the coherence phase-breaking length

I& by Marcus et al. The finite value of I& implies the domi-
nance of the short-path trajectories and the suppression of
long orbits with L)I&. Because of the imperfect experimen-
tal billiard shapes and the poorly known potential distribu-
tion inside the microstructure, only a qualitative comparison
between theory and experiment is meaningful.

A stadium billiard is characterized by the radius of the
semicircle a and the half-length of a straight section I. The
aspect ratio o.—= l/a is continuously tunable, keeping the area
of the billiard A = ma +4al fixed. For a closed stadium, the
maximum Lyapunov exponent vanishes in the integrable
limit (o.=O) and reaches its maximum at the fully chaotic
limit (o.= 1). The limit o.=O corresponds to the circle bil-
liard. In the following we refer to the limit a.=1 as the
stadium. We use scaled lengths such that the enclosed area
for both billiards is A = 7r+4 (i.e., i=a =1 for the stadium).
In the opened billiard, leads 1 and 2 are situated on the left
and the lower sides of the billiard, respectively (see insets of
Fig. 1) and the dc electric current passes through the leads. In
the following, we call the region lying inside the billiard the
"cavity region. " We choose a small lead width d with
d/+4=0. 0935, which corresponds to a weakly opened bil-
liard in which an electron entering through one lead dwells
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FIG. 2. Fourier transform of transmission amplitude t tt(kF) and

corresponding classical paths for the open-circle billiard. The scaled
length L corresponds to a fixed area of the cavity region
A= ~+4.
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FIG. 1. Conductance G as a function of Fermi wave number

k„ for (a) circle billiard; (b) stadium billiard. Insets: geometry of
leads for open billiards.

inside the cavity region for a long time before exiting. Thus,
chaotic and nonchaotic scattering will affect transport prop-
erties of electrons. Classically, the (non)integrability of the
system manifests itself, for example, in the spectrum of
dwell times inside the cavity region.

We determine the quantum transport properties from the
solution of the time-independent Schrodinger equation using
the method of Nakamura and Ishio. The wave function is
subject to mixed boundary conditions: Hard-wall boundary
conditions PI =0 are imposed for the closed segments of
the boundary while the logarithmic derivative is matched
across leads 1 and 2. The conductivity follows from the Lan-
dauer formula,

N N

G=g G(")=
n=1 m, n=1

expressed in terms of the transmission amplitudes t „con-
necting incoming mode n in lead 1 with outgoing mode m in
lead 2. Each mode corresponds to a standing wave in the
lead perpendicular to the flux direction. The total number of
transmitted modes is N while modes m~N correspond to
evanescent waves.

The conductance 6 displays characteristic noisy fluctua-
tions as a function of the Fermi wave number kF (Fig. 1).
Since they are directly related to fluctuations in the 5 (or T)
matrix [see Eq. (I)], they can be identified as Ericson
fluctuations. This indicates the presence of a large number
of overlapping resonances (electron-scattering resonances)
with a broad distribution of widths in the weakly opened
billiard. Conductance fIuctuations are a common feature for
the circle and stadium billiards. There are, however, charac-
teristic differences: While for the open circle billiard the con-
ductance fluctuations o.=(8'G ) ~ increase with kF from
a.=0.37 (in units of 2e /h) for N= 1 to o.=0.63 for %=4,
they are, for the open-stadium billiard, of the order
o.=0.33 independent of kF. Furthermore, the average con-

ductance is smaller for the open stadium than for the circle
billiard. These features can be understood in terms of univer-
sal conductance fluctuations and weak localization, found
in diffusive disordered systems, and have also been observed
in other geometries.

In the following we explore the classical quantum corre-
spondence for conduction fluctuations in more detail. To this
end we have calculated the Fourier transform of the trans-
mission amplitude t»(kF) (Fig. 2). Note that in the
experiment several modes contribute. According to serni-
classical theory, ' '

/i I a1
t „=g gD' „exp — p. dx —ivr-

( fi ), 2 (2)

where n, is the Maslov index, the amplitude factor D' „
measures the spread of classical trajectories near the paths,
and a sum is taken over all classical trajectories s connecting
incoming channel n and outgoing channel m. The length-
dependent phase factor reduces for the billiard to
exp(ikF L,), where L, is the length of the trajectory s extend-
ing from the entrance to the exit lead. In the semiclassical
limit, the Fourier transform of t „, t „(L), is therefore ex-
pected to display peaks at values of I. corresponding to paths
connecting the two leads. In case of the open-circle billiard,
the power spectrum It»(L)I exhibits a sequence of promi-
nent peaks in the short-length region (L ~21), which corre-
spond exactly to a sequence of classical "asterisk" paths
connecting the entrance and exit in the cavity (Fig. 2). Other
modes give similar peak structures, however, with different
peak strengths. On the other hand, there appears to be no
comparably sharp peak structure for the open-stadium bil-
liard (not shown). The difference may be understood in terms
of the underlying classical dynamics. In the circular billiard,
different bundles of trajectories connecting the two leads are
separated from each other, each of which has a finite measure
characteristic of integrable systems. In turn, each bundle is
associated with a peak in It»(L)I . On the other hand, the
absence of sharp peaks in Ittt(L)I for the stadium billiard
reflects the fact that trajectories connecting the two leads are
more uniformly spread out over the, length spectrum, as dis-
cussed below in more detail. Furthermore, we have observed
that bundles of trajectories with small angles of incidence
display a propensity for influencing the quantum t matrix
elements while trajectories other than the asterisk trajectories
with larger angles of incidence are suppressed.
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Quantum conductance fluctuations can be characterized
by the wave-number-dependent autocorrelation function

I (lr) =(BG(k —I~/2) 8'G(k + I~/2))„, (3)

where BG—=G —(G)q . The average ( )I, is taken over

1.190~kFd/m~4. 584. This average corresponds in the ex-
periment to an average over the gate voltage or a thermal
average. The Fourier transform of the autocorrelation func-
tion

2
C (L) = —I'(0) ' der(K)cos(KL)

Jo
(4)

corresponds in the semiclassical limit to the normalized
classical path-length correlation function

t co

Cq (L)=C, (Lt) = dL 'P, t(L '+L)P, t(L ')
JO

(5)

where the classical path-length spectrum P,&(L) is given by a
Monte Carlo sampling of trajectories entering through lead 1
with uniform density across the lead. Based on simple clas-
sical arguments employing the ergodicity of the trajectories
for a weakly opened billiard whose closed counterpart is cha-
otic, the path-length distribution should be universal and
should be exponentially decaying, "'

Po(L) = ye "
with y=2d/Am. Equation (6) has been verified numerically
in the limit of long orbits. ' By inverse Fourier transform,
the exponential path-length distribution gives a Lorentzian
conductance autocorrelation function

r, (x)/ro(0) = 1/[I+(e/y) j . (7)

Our analysis of the conductance fluctuations in the stadium
shows that Eq. (6) is not yet valid in the region of path length
L~l& accessible in the experiment. From the measured
phase-breaking rate in GaAs/Al„Ga, „As ballistic quantum
dots at low temperatures, one can estimate i&=87 in our
scaled units. Elastic small-angle scattering, also present in
the experiment, does not break the quantum coherence. Fig-
ure 3 shows our Monte Carlo simulation of the classical
path-length distribution for the stadium billiard pertaining to
the geometry of Ref. 12. Within the region L«I&, the path-
length distribution is a highly structured function displaying,
in addition to the direct path connecting the entrance with the
exit lead, a sequence of almost equidistant broad peaks in the
short-length region L «70. The period of these peaks corre-
sponds approximately to the perimeter length of the cavity
region (whispering gallery trajectories). For longer path
lengths the proliferation of orbits tends to average out this
structure resulting in a coarse-grained exponential distribu-
tion with a decay constant y=0.0223 predicted by Eq. (6)
(dotted line in Fig. 3).

The structures in the classical short-length spectrum are
directly related to the conductance autocorrelation function
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FIG. 3. Classical path-length spectrum Pd(L) for the stadium
billiard. Dotted line represents exponential decay with exponent
y=0.0223 predicted by Jensen (Ref. 11).The scaled length L cor-
responds to a fixed area of the cavity region A = m+4.

(Fig. 4). I (Ir) clearly deviates from a simple Lorentzian
form predicted by Eq. (7). Similar deviations have been ob-
served previously for the magnetoconductances in a different
geometry. The prominent peak at l~d/m=0. 05 is directly
related to the oscillations in P,t(L). The point to be empha-
sized is that the strong deviation of r(~) from a Lorentzian
shape is not due to the breakdown of the semiclassical ap-
proximation itself (even at the comparably low mode num-
bers studied here and in the experiment), but is due to the
exponential approximation to the exact classical path-length
distribution.

Accordingly, inverse Fourier transform of the exact clas-
sical path-length correlation function C, (Lt) reproduces the
quantum autocorrelation function quite well (Fig. 4). In the
limit of very small Ir corresponding to large L (inset of Fig.
4), the Lorentzian approximation becomes valid as expected
from the convergence of the exact path-length distribution to
an exponential for large L. This limit is, however, not yet
accessible in the experiment since it exceeds the quantum
coherence length beyond which the description of the billiard
as a nondissipative and phase-coherent quantum system
breaks down.

The incorporation of phase breaking due to incoherent
scattering processes within the description of a Hamiltonian
quantum system is a priori not obvious. However, the close
classical quantum correspondence observed for the conduc-
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FIG. 4. Conductance autocorrelation function I'(Ir) (solid lines)
and Fourier transform of C„(L) for the stadium billiard averaged
over intervals /JL= ~2 (dashed line). Inset: Partial magnification
for xd/m«0. 03. Dotted curve represents the Fourier transform of
C,&(L) using P&&~exp( —yL), i.e., a Lorentzian I/[I+ (lr/y) ].
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tance fluctuation autocorrelation function lends itself to a
simple approximate prescription that exploits the fact that on
the classical level incoherent loss can be easily incorporated
treating the phase-breaking length I@ as an effective mean
free path from phase-breaking inelastic collisions. Phase-
breaking scattering events lead to an exponential decay of
contributing trajectories, —e '@. The path-length distribu-
tion can now be corrected for by taking into account the
incoherent loss,

P~(L) =P(L)e

0 0.1

xd/z
0.2

Since for large L, P(L) converges to the universal distribu-
tion Po(L), we can approximate C~ (L)=e ~ttWC (L).
Inverse Fourier transform yields the modified quantum auto-
correlation function

FIG. 5. Comparison between the conductance fluctuation auto-
correlations I (Ir) [Eq. (3), dashed line] and I &(e) [Eq. (8), solid
line] taking into account the coherence phase-breaking length
I@=87.

I ~(K)/I ~(0)= dL cos(L+)Cq (L)e
Jo

(9)

which takes into account incoherent scattering, i.e., long tra-
jectories beyond the phase-breaking length are exponentially
suppressed. Figure 5 illustrates the resulting correction of the
autocorrelation function for conductance fluctuations due to
finite l&. The peak at ted/sr=0. 05 is still present but the
negative "overshoot" in the conductance correlation func-
tion disappears. Structures in I (tr) are obviously sensitive to
the value of the coherence length. This dependence may of-
fer the opportunity of an independent determination of the
phase-breaking length in mesoscopic devices.

In conclusion, we have shown that conductance fluctua-
tions in the weakly open quantum billiard carry clear signa-

tures of the classical orbits with short path length. They are
expected to be observable in GaAs/AI, Gat As ballistic
quantum dots ' since the relevant path lengths are shorter
than the phase-coherence length in these semiconductor het-
erostructures. The remarkably close classical quantum corre-
spondence suggests a simple approximate recipe for taking
phase breaking into account by Fourier transform of the
modified path-length spectrum in which long orbits exceed-
ing the phase coherence length are exponentially suppressed.

This work was supported in part by the National Science
Foundation and by the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Chemical Sciences, un-
der Contract No. DE-AC05-84OR21400 with Martin Mari-
etta Energy Systems, Inc.

Present and permanent address: Department of Physics, Kyoto
University, Kyoto 606, Japan.

See, e.g. , Nanostructure Physics and Fabrication, edited by M. A.
Reed and W. P. Kirk (Academic, New York, 1989).

P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985);B.L.
Altshuler, Pis'ma Zh. Eksp. Teor. Fiz. 41, 530 (1985) PETP
Lett. 41, 648 (1985)];P. A. Lee, A. D. Stone, and H. Fukuyama,

Phys. Rev. B 35, 1039 (1987).
For a review, see, e.g. , G. Bergmann, Phys. Rep. 107, 1 (1984).
S. Washburn and R. A. Webb, Adv. Phys. 35, 375 (1986).
M. L. Roukes, A. Scherer, and B. P. Van der Gaag, Phys. Rev.

Lett. 64, 1154 (1990); M. L. Roukes and O. L. Alerhand, ibid.
65, 1651 (1990); C. W. J. Beenakker and H. van Houten, in

Electronic Properties of Multi layers and Low Dimensi onal-
Semiconductor Structures, edited by J. M. Chamberlain, L.
Eaves, and J.-C. Portal (Plenum, New York, 1990); in Solid State
Physics, edited by H. Ehrenreich and D. Turnbull (Academic,
New York, 1991),Vol. 44, p. 1.

H. U. Baranger, R. A. Jalabert, and A. D. Stone, Chaos 3, 665
(1993).

L. A. Bunimovich, Funct. Anal. Appl. 8, 254 (1974); G. Benettin
and J. M. Strelcyn, Phys. Rev. A 17, 773 (1978).

See, e.g. , M. C. Gutzwiller, Chaos in Classical and Quantum

Mechanics (Springer, New York, 1990).
E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984).

' R. A. Jalabert, H. U. Baranger, and A. D. Stone, Phys. Rev. Lett.

65, 2442 (1990).
R. V. Jensen, Chaos 1, 101 (1991).
C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkins,

and A. C. Gossard, Phys. Rev. Lett. 69, 506 (1992).
' K. Nakamura and H. Ishio, J. Phys. Soc. Jpn. 61, 3939 (1992).
' W. A. Lin, J. B. Delos, and R. V. Jensen, Chaos 3, 655 (1993).

M. J. Berry, J. A. Katine, C. M. Marcus, R. M. Westervelt, and A.
C. Gossard, Surf. Sci. 305, 495 (1994).

M. W. Keller, O. Millo, A. Mittal, D. E. Prober, and R. N. Sacks,
Surf. Sci. 305, 501 (1994).

' K. Nakamura, K. Ito, and Y. Takane, J. Phys. A (to be published).
sR. Bliimel and U. Smilansky, Phys. Rev. Lett. 60, 477 (1988).

t9W. H. Miller, Adv. Chem. Phys. 25, 69 (1974).
20X. Yang, H. Ishio, and J. Burgdorfer (unpublished).

C. M. Marcus, R. M. Westervelt, P. F. Hopkins, and A. C. Gos-

sard, Phys. Rev. B 48, 2460 (1993).
R. Landauer, IBM J. Res. Dev. 1, 223 (1957).
T. Ericson and T. Mayer-Kuckuk, Annu. Rev. Nucl. Sci. 16, 183

(1966).


