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Large-U limit of a Hubbard model in a magnetic field:
Chiral spin interactions and paramagnetism
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We consider the large-U limit of the one-band Hubbard model at half-filling on a nonbipartite two-
dimensional lattice. An external magnetic field can induce a three-spin chiral interaction at order 1/U .
We discuss situations in which, at low temperatures, the chiral term may have a larger effect than the
Pauli coupling of electron spins to a magnetic field. We present a model that explicitly demonstrates
this. The ground state is a singlet with a gap; hence the spin susceptibility is zero while the chiral sus-

ceptibility is finite and paramagnetic.

The ground-state and low-energy excitations of Heisen-
berg antiferromagnets have been extensively studied in
recent years. One reason for this interest is that the sim-
plest model for strongly correlated electron systems, the
one-band Hubbard model, reduces at half-filling to a
Heisenberg antiferromagnet in the limit of large on-site
Coulomb repulsion U. ' Specifically, the Hubbard Hamil-
tonian is

H= —g t, c, c +"Ugn;tn;t,

where t,"=t*, is the hopping integral from site j to site i,
and o =+1 or, equivalently, 1 and J, , and n, =c; c; . A. t
half-filling, g; n, is equal to the number of sites. In the
large-U limit, the low-energy subspace of the total Hil-
bert space consists of states with exactly one electron at
each site. To order 1/U, this subspace is governed by the
spin Hamiltonian

S, S.
H, =gJ," (2)P 'J g2

Here S;=(A/2)c; r c, , with r being Pauli spin ma-
trices (the indices o. and o' are summed over). The cou-
phngs JJ.=2~ t;J ~

/U are antiferromagnetic. At higher
orders in 1/U, J;. are renormalized and multispin in-
teractions appear in H, . These can be calculated as an
expansion in t; /U by relat. ing Eqs. (1) and (2) through a
unitary transformation.

In this paper, we examine what happens when this
model is placed in a magnetic field. The application of
the field has two effects. First, the t," pick up a phase
exp[(ie/ciit) JJ A dr], where A is the vector potential.
Hence the phase of the string t, tJk

.
tk; connecting

three or more sites forming a closed curve is proportional
to the fIux enclosed by that curve. Second, there is the
Pauli interaction given by vS;.B/A, where v= —eh'/mc,
with e (m) and c denoting the charge (mass) of the elec-
tron and the velocity of light, respectively. (As explained

below, the Pauli term takes the same form in the Hub-
bard and spin Hamiltonians. ) We are interested in finding
out whether the phases in t; induce any unusual terms in
H, , and what effects such terms may have. Since an
external magnetic field breaks invariance under time re-
versal T, we might expect H,„ to reQect this. That is, if
B—+ —B so that t, ~t;*., there should be terms in H,„
which reverse sign. It turns out that no T-violating terms
are induced in H, on bipartite lattices, as one can show
by using the particle-hole symmetry at half-filling. We
transform c,. ~o.c; on the sites of one sublattice, and
c; ~ —

chic,- on the other sublattice. This is a symme-
try of (1) if t; ~t; at the same time. Since S, remains in-
variant under this transformation, H,„must be the same
for B and —B. So the T violation appears to lie entirely
in the high-energy subspace (states with one or more dou-
bly occupied sites) for bipartite lattices. We also observe
that on any lattice, particle-hole symmetry implies that
H, must remain invariant if t;.~ t; in (1). H—ence if
the t, 's are all real, H,„cannot have odd powers of t,".

We must therefore consider nonbipartite lattices to ob-
tain something interesting. The simplest example con-
sists of three sites i, j, and k forming a triangle. The per-
turbative expansion in t; /U is obtained by first writing
the hopping term in (1) as the sum of three terms To, T,
and T, =T&, where T increases the number of doubly
occupied sites by m when it acts on a state. The unitary
operator relating (1) and (2) is then given by exp[iK],
where EC is a power series in T /U. (Note that the Pauli
interaction commutes with all the T 's and therefore
with K.) At half-filling, the low-energy subspace (states
with no doubly occupied sites) is annihilated by both To
and T

&
since any hopping necessarily takes us to a state

with one doubly occupied site. We then find that

H =—QS 8— TT+ T —TTv 1 1

U2

When rewritten in the language of spin- —,
' operators, the
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second term on the right-hand side of (3) is the same as
Eq. (2},while the third term is a three-spin chiral interac-
tion of the form pS, S X S& /fi, where

24p= Im(t; t&t&.; ) .
U2

(4)

One can estimate the relative magnitudes of this chiral
term and the Pauli term for some typical values of t,", U,
and the area of the triangle A. For A =2 A, the num-
ber e@/cubi is much smaller than 1 unless the field B
reaches the fantastically large value of 10 T. Hence we
replace the sine in Eq. (5) by its argument, so that

p= B cosO,
24t ed

(6)
cA

where 8 is the angle between B and the normal to the
plane of the triangle. We then find that for t=0.5 eV and
U =5 eV, the magnitude of the Pauli term is about 40
times larger than the chiral term. This estimate follows
from comparing the splitting in the ground-state energy
produced by the Pauli and chiral interactions for a trian-
gle in which the three J;.'s are equal. That is, we take the
Hamiltonian on a triangle to be

H,p=J[S;.SJ+SJ SJ, +Sd S;j

+ 3S; SJ XSI, +—(S;+S)+Sf,) B .
g3 ' J

If B=O, the ground state of this Hamiltonian has a four-
fold degeneracy with all states having total S=—,'. The
magnetic field breaks this degeneracy completely with the
Pauli and chiral terms contributing +vB /2 and
+V'3p/4, respectively. For the excited states with S=—'„
we observe that the chiral term has no effect. Thus the
chiral interaction can only lower the energy of a state if it
is nonferromagnetic.

Although the Pauli term appears to be numerically
much larger than the chiral term, one can think of two
possible situations in which the chiral interaction dom-
inates. The first example is one in which the ground state
is a spin singlet and is chiral euen in the absence of the
magnetic field. We have in mind here the two-
dimensional models discussed by Wen, Wilczek, and Zee
where a spin Hamiltonian has two degenerate singlet
ground states with opposite chiralities. We can say that
each ground state has a nonzero chiral moment M,
(defined below). Then an applied magnetic field picks out
one of the two ground states due to an interaction of the
form M, B The Pa—uli term. S B (where S=g;S;) plays
no role here because the ground states are singlets. How-
ever, these kinds of models often require a special choice
of the two-spin couplings J,z as well as peculiar multispin
interactions in order to produce the required ground-
state degeneracy. There are also papers which argue that

This vanishes if the t, 's are real. Let the magnetic flux
enclosed by the triangle be N. If we denote the magni-
tude

~ t,J t~j, tI,; ~:t for—simplicity, then

24t . eN
sin

U2

C8, =H0+P (8)

where

and

0 tJ ~2

C= g S3.S4X(S2—Sq} .

The chiral term C is a sum over rhombuses labeled by the
index a, with each rhombus contributing the sum of two
three-spin terms as indicated in Eq. (8). (See Fig. 1 for
the site labels 1 —6 in and around a typical rhombus. )

Note that the Pauli term has been included in an unper-
turbed Harniltonian H0, while the chiral term will be
considered perturbatively in the following. If we define

FIG. 1. The model showing six sites labeled 1 —6 in and
around a typical rhombus. The three different antiferromagnet-
ic couplings J&, J2, and J3 are also indicated.

frustrated antiferrornagnets with only two-spin interac-
tions can have chiral ground states. However, this
has been questioned, and it seems to be quite difficult to
have chiral ground states in the absence of an external
magnetic 6eld.

The second example, which has only short-range two-
spin interactions and does not require a fine tuning of the
couplings, is one in which the ground state is a singlet,
unique and nonchiral in the absence of the magnetic field.
Further, there is a gap 6 to states with total spin greater
than zero. Then the ground state continues to be a
singlet in the presence of a field if ~vB

~
((b.. But it may

develop a chiral moment M, to 6rst order in 8, and one
can define a chiral susceptibility g, = (dM, /"—dB)z o. So
one may have a 6nite g, even though the spin susceptibil-
ity y, =B(S) /BB =0. We now present a two-
dirnensional model which explicitly demonstrates all this.
Incidentally, it is the only two-dimensional spin model
that we are aware of in which the ground state and the
low-lying excitations can be found exactly (for the Hamil-
tonian Ho given below).

Our model, shown in Fig. 1, consists of chains of rhom-
buses which are coupled to each other in the form of a
brick lattice. Each rhombus is formed out of two trian-
gles with a common base. The number of rhombuses is
N/3 if the number of sites is N Startin. g from a Hubbard
model with only nearest-neighbor hoppings, the spin
Hamiltonian in a magnetic field is given up to order 1/U
by
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parity to be the transformation which exchanges the top
and bottom sites of the vertical bonds inside all the rhom-
buses simultaneously (namely, 3= =4 in the figure), then C
is odd under parity while Ho is even under parity.

In H, , the couplings J,- on the vertical bonds inside
the rhombuses, the slanted bonds, and the vertical bonds
joining the chains are denoted by J1, J2 and J3, respec-
tively, as shown in Fig. 1. Let us assume that J, )2J2
and that

~

vB
~

is much less than both (J, —2Jz )A' and J3A.
Then one can prove that the ground state of Ho is a
singlet, unique, and has a gap 60 to all excitations. Let us
first introduce the notation 0,. and 1; for the singlet and
triplet states, respectively, formed from the spins at sites i
and j. Note that 0; J=1 /& 2(~i1jl)'—~iLjt)) is an-
tisyrnrnetric under an exchange of i and j, while the three
states collectively denoted by 1; are all symmetric. Then
the ground state of Ho is the state go given by the prod-
uct of singlets. . .0,2(3034@056. . . following the labels
in Fig. 1. That is, each of the vertical bonds form a
singlet. The ground-state energy is Ep= —(N/8)(2J,
+J3).

To prove that go is the ground state and that there is a
gap Ao, let us write HO=H1+H2, where H, is the same
as Ho except that the couplings J1 are replaced by
J1 —2J2 and the couplings J2 are replaced by zero. Thus
H1 is a sum of disconnected two-spin Hamiltonians in-
volving only the vertical bonds, while H2 is a sum of
disconnected four-spin Hamiltonians of the form
(Jz/2)[(Sz+S3+S4) +(S3+S4+S~) ] for each rhombus.
It is then easy to find the complete spectra for both H1
and Hz. For H „go is the unique ground state and there
is a finite gap h, =min(J, —2Jz —~vB ~, J3 —~vB ) to the
space of states orthogonal to fo. For Hz, go is a ground
state but there is no gap to its orthogonal subspace. It
then follows that go is the ground state of H, +Hz and
there is a gap Ao~ 6, to all other states. We also note
that the total spin on any bond of type J

&
[e.g., (S3+S4) ]

commutes with Hp, so that there are X/3 operators
which can be diagonalized along with Ho ~ This impor-
tant property proves to be very useful. For instance, it
implies that a low-lying excitation can only have a finite
number p of J, bonds forming triplets. [Such a state is
separated from the ground state by a gap
b, ~p (J, —2Jz —~vB ) by a similar argument involving

H, and Hz]. Further, such an excitation can only differ
from the ground state in a local neighborhood of those p
triplet bonds or due to some isolated J3 bonds forming
triplets instead of singlets. Hence all low-lying excita-
tions are localized and dispersionless (with energy in-
dependent of the momentum).

One can check that gp is none hiral; that is,
(Q~~C~go) =0. The simplest way to show this is to write
C=g C, where C is the sum of the two chiral terms
in a rhombus a. Consider the rhombus made out of sites
2, 3, 4, and 5 in Fig. 1. Both gp and C for that rhombus
are odd under the parity transformation 3~4. Hence
C ~gp) is even under parity, i.e., it contains 134 rather
than 034. Hence (Po~C ~1ito) must be zero. We will now
assume that the term pC in (8) only changes the ground

' 1/2
J3

E+ Eo J1 J2+ 2 J3+ J2+ (10)

respectively. (E+ and Ep are independent of the magnet-
ic field B since all the states being considered are spin
singlets. ) We eventually find that

J& —Jz+2J3
8 (E+ Ep )(E —E—

p )

This is of order t /U since the couplings JJ-t /U.
This and Eq. (6) yield a paramagnetic susceptibility

2
24t e A

cosO
4 U2 cubi

J1 —J2+2J3
(E+ E p )(E Ep )

(12)

to order t /U
We emphasize that (11) is not the complete expression

for the ground-state energy to order 1/U, since we have
ignored terms of order 1/U in deriving H,~ in (8).
These terms do contribute to the energy in first-order
perturbation theory. However, one can show that these
terms are not chiral because they are even under parity.
They are independent of p and hence do not contribute to
the chiral quantities M, and y, to order t /U .

At finite temperatures, this model no longer has g, =0.
But if the temperature is small compared to the gap, then
g, will continue to be much larger than y, .

Our model is somewhat peculiar in that the two-spin
correlation in the ground state of Ho is exactly zero
beyond a short distance. However, this property is un-
likely to survive once we take into account the chiral
terms and higher-order terms in 1/U which couple spins
on non-neighboring sites. We then expect the two-spin

state perturbatively because we expect the gap to survive
for a finite range of p around p=0. We can therefore use
second-order perturbation theory to compute the
ground-state energy Eo(p) to order p . Since p is propor-
tional to B, this will give us the chiral moment
M, =——

BEo (p ) /BB and the chiral susceptibility

q, =aM, /aB.
The second-order expression is

)o (Cp) o
Eo(i ) Eo=—V'& X E En&0 a, P n 0

where (C ) „=(g ~C P„) and m and n label the
eigenstates of Hp. Now we know that the state C&~gp)
has the J

&
bond in rhombus p forming a spin triplet,

while the J1 bonds in all other rhombuses are singlets.
This implies that all the terms in (9) with asap must van-
ish. Next let us consider a particular rhombus labeled P
and the six sites in and around that rhombus as labeled in
Fig. 1. Then (Cp) p can only be nonzero for aconite num-
ber of states P„since the singlet subspace of those six
spins is five dimensional. Also, (C&)„o can be nonzero
only if the vertical bond in the rhombus p is a triplet in
the state g„. An explicit calculation shows that (C&)„p is
actually nonzero for only two states for which E„—Eo
are given by
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correlation to go to zero exponentially at large separa-
tions because of the gap above the ground state. The
ground state is therefore a spin liquid which is dominated
by short-range valence bonds.

More realistic models which do not have a gap to spin
excitations will generally have both y, and g, nonzero
even at zero temperature. For instance, one can consider
a Hubbard model on a triangular lattice, or on a square
lattice with both nearest-neighbor and next-nearest-
neighbor hoppings. Whether y, will be comparable to or
much smaller than g, will then depend on the properties
of low-energy excitations in the absence of the magnetic
field. For instance, if there are singlet chiral states lying
very close to a nonchiral ground state, then one would

expect y, to be large. An important (and perhaps experi-
mentally observable) difference between the two suscepti-
bilities is that y, depends on the orientation of the mag-
netic field with respect to the plane containing the sites of
the spins.

To conclude, we have seen that a spin system which
arises from an underlying Hubbard model can develop
chiral interactions when placed in a magnetic field. Al-
though these interactions are small, they may lead to an
interesting low-temperature phase resembling a chiral
spin liquid.
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