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We develop and apply a semiempirical shell-correction method to calculate the binding energies of
open-shell, neutral and charged, simple-metal clusters, which can be modeled as triaxially deformed
jellium droplets. Systematics of ground-state properties of clusters with sizes up to 100 atoms, such
as ionization potentials and electron affinities, are studied and compared to available experimental
measurements on sodium, potassium, and copper clusters. We also report on systematics of the
energetics of fission channels for doubly charged cationic and anionic species, as well as the energetics
of monomer and dimer separation channels, and compare them to experimental data. Pertaining
to characteristic patterns as a function of cluster size in the above quantities, triaxial shell effects
exhibit a rich structure, yielding overall substantial improvement in the agreement between theory
and experiment. In particular, we show that the lifting of the degeneracies in the electron spectra
via cluster triaxial-shape deformations underlies the appearance of odd-even alternations in such
patterns. Furthermore, our analysis of ground-state properties can lead to unambiguous assignments
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of equilibrium cluster shapes, as well as shape isomers.

I. INTRODUCTION

Early in the study of alkali-metal clusters, it was
recognized that their ground-state properties portray
manifestations of electronic shell effects.!™* An impor-
tant step toward understanding these effects has been
achieved by modeling the clusters as spherical-jellium
droplets, where the ionic structure of the cluster was
modeled by a continuous positive charge distribution
having a sharp-step spherical profile, and the electrons
were treated using density functional theory in the local-
density approximation?47¢ (LDA). However, while anal-
yses restricted to consideration of spherical shapes have
been able to account for the main discontinuities ob-
served at cluster magic-number sizes (associated with
the filling of degenerate levels of valence electronic states
which are grouped into a major shell), the results ob-
tained by such spherical models, pertaining to the over-
all behavior of cluster properties versus size, are not in
satisfactory agreement with the experimental data.® For
example, for ionization potentials, the spherical jellium
yields typical sawtoothed curves, which lack fine struc-
ture between major shells, a feature that is prominent
in the data. In addition, each arc of the sawtooth rises
steeply above the data before falling sharply at the next
discontinuity associated with a major-shell closure. This
behavior contrasts with the observed ionization-potential
(IP) curves, which remain rather flat between magic
species, exhibiting a staircase profile.

The merit of the early spherical-jellium model of clus-
ters derives from the recognition of the importance of
level bunching in the single-particle spectra of finite sys-
tems. The degree of level bunching is related to the de-
generacies imposed by the symmetry of the systems. As
is well known in various branches of physics (i.e., atomic,
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molecular, and nuclear physics), the high degree of degen-
eracy pertaining to spherical symmetry is associated with
closed-shell systems. Open-shell systems, on the other
hand, lower their energy via various symmetry breaking
mechanisms which result in diminished degeneracies. In
atomic systems, the spherical symmetry of the nuclear
central-field potential felt by the electrons is broken by
the repulsive interelectron Coulomb interaction leading
to a level-filling scheme favoring high-spin multiplicity
according to Hund’s rule.” In molecules (and solids), the
lifting of orbital degeneracies occurring through struc-
tural distortions is known as the Jahn-Teller effect.® In
open-shell nuclei, energy stabilization occurs via shape
deformations® 3 (a mechanism that may be thought of
as akin to the Jahn-Teller effect).

For open-shell clusters, in analogy with atomic nuclei,
it has been suggested that consideration of quadrupole
shape deformations could lead to lifting of the spher-
ical degeneracy and to an improvement in the agree-
ment between theory and experiment. A first imple-
mentation of this idea was carried out by Clemenger!4:15
and Saunders!® [the Clemenger-Nilsson (CN) model],
who applied to metal clusters the anisotropic, harmonic-
oscillator model introduced by Nilsson!® in nuclear
physics. Unfortunately, this model does not provide a
full expression for the total energy of an interacting sys-
tem, and therefore cannot describe either binding en-
ergies for neutral clusters or charging energies for ionic
ones. Nevertheless, in spite of such shortcomings, the CN
model is still widely used to interpret the data.®'7 Natu-
rally, such an interpretation is restricted to a handful of
experimentally observable ground-state properties, i.e.,
abundances, IP’s, and electron affinities (EA’s). More-
over, for IP’s and EA’s the analysis is carried out at a
qualitative level by following the relative shifts of the
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highest-occupied-molecular-orbital (HOMO) or lowest-
unoccupied-molecular-orbital (LUMO) levels.

Several Kohn-Sham local-density-approximation (KS-
LDA) studies with spheroidal jellium backgrounds!®1®
have also been reported. Such KS calculations are rather
time consuming and have been carried out only for a
small number of sodium®'® and copper clusters!® com-
prising less than 40 atoms and have addressed only
a limited number of ground-state properties [IP’s and
monomer separation energies (MSE’s) for Nay, and elec-
tron affinities (EA’s) for Cuy]. Systematic theoretical
results for triaxial shapes are not yet available?? even
though there exists a wealth of experimental observa-
tions for IP’s, EA’s, fission dissociation energies (FDE’s),
as well as MSE’s and dimer separation energies (DSE’s),
which all exhibit characteristic shell effects.

In addition to the steps at shell and subshell clo-
sures, the experimental IP’s, EA’s, FDE’s, and MSE’s ex-
hibit a characteristic odd-even alternation, which has at-
tracted substantial interest.?!"23 One mechanism, which
has been proposed???3 as an explanation, involves phe-
nomenological Cooper pairing of electrons in analogy
with the nuclear case, where nucleons form a BCS-type
ground state.! 3 However, it is difficult to justify?3 such
a pairing in the case of clusters. Alternatively, for the IP’s
of simple-metal clusters, My, with N < 9, such odd-
even alternation has been obtained in both spheroidal-
jellium calculations'® and ab initio quantum chemical
calculations,?* suggesting that these oscillations are of
a geometric (i.e., cluster-shape) origin.

The aforementioned considerations motivate investiga-
tions aiming at a systematic assessment of relationships
between observed patterns and the size evolution and
dimensionality (i.e., the character and number of multi-
polar components) of the relevant cluster deformation
spaces pertaining to the ground-state properties men-
tioned above. While in this study, we focus on the sys-
tematics of the influence of cluster shapes on ground-
state patterns, we remark that cluster deformations have
also been discussed previously in the context of optical
absorption via plasmon excitations.?5729

In this paper, we study the influence of triaxial
quadrupole shapes (ellipsoids) on the ground-state prop-
erties mentioned above and provide an extensive compar-
ison with the available experimental data. The method
adopted is a semiempirical version of the shell-correction
method (SE-SCM), familiar from nuclear physics as the
Strutinsky method.3® [For other studies applying the
semiempirical Strutinsky method to calculating barriers
for metal cluster fission, see Refs. 31, 32, and to axi-
ally symmetric deformations for describing the optimum
shapes of large neutral sodium clusters, see Ref. 33. For
a microscopic LDA version of a shell-correction method
(LDA-SCM), see Refs. 34-37.]

The specific elements introduced by the present work
which allowed for an adaptation of the SE-SCM to metal
clusters follow.

(1) Consideration of an anisotropic three-dimensional
(3D) modified harmonic-oscillator potential (triaxial
Nilsson potential®®) for calculating the single-particle
spectra. This potential has two advantages: (i) it al-

1903

lows for an easy treatment of triaxial deformations, and
(ii) it allows for an analytic formula for the smooth part
of the single-particle spectrum.

(2) Generalization of the liquid-drop model (which was
previously considered for the ground states of neutral
clusters3®33) to the case of the ground states of multi-
ply cationic or anionic species (this extension is based on
our previous LDA-SCM study of multiply charged clus-
ters, modeled as spherical jellia®%3%).

Preliminary results of our SE-SCM from triaxial
droplets were presented in Refs. 34 and 35, in the con-
text of an investigation of multiply charged anionic metal
clusters.

II. SEMIEMPIRICAL SHELL-CORRECTION
METHOD (STRUTINSKY METHOD)

A. Liquid-drop model for charged clusters

For neutral clusters, the liquid-drop model®*31:39
(LDM) expresses the smooth part, E, of the total energy
as the sum of three contributions, namely, a volume, a
surface, and a curvature term, i.e.,

E = Eyol + Esurt + Ecurv

=A,,/d‘r+a/dS+AC/dSn, (1)

where d7 is the volume element and dS is the surface dif-
ferential element. The local curvature « is defined by the
expression k = 0.5(R;L, + R} ), where Rpax and Rumin
are the two principal radii of curvature at a local point on
the surface of the jellium droplet which models the clus-
ter. The corresponding coefficients can be determined
by fitting the extended Thomas-Fermi- (ETF)- LDA to-
tal energy for spherical shapes3%:3%:3%:41 to the following
parametrized expression as a function of the number N

of atoms in the cluster:42:43

EPr. = a,N + a,N*¥/3 4 o, N3, (2)
The following expressions relate the coefficients A4,, o,
and A. to the corresponding coefficients (’s) in Eq. (2),

3 o 1 o A 1
=0y , O = —— , =
Y 4mr3 4mr2 " ° 7 4mr,

ac . (3)

In the case of ellipsoidal shapes the areal integral and
the integrated curvature can be expressed in closed ana-
lytical form with the help of the incomplete elliptic inte-
grals F(v,k) and £(3, k) of the first and second kind,**
respectively. Before writing the formulas, we need to in-
troduce some notations. Volume conservation must be
employed, namely,

dV'd/Ry=abc=1, 4)

where Ry is the radius of a sphere with the same volume
(Ro = r,N'/3 is taken to be the radius of the positive
jellium assuming spherical symmetry), and a = a'/Rp
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etc., are the dimensionless semiaxes. The eccentricities
are defined through the dimensionless semiaxes as

e2 =1—(c/a)?,
e; = 1— (b/a)?, (5)
e2=1—(c/b)?.

The semiaxes are chosen so that

a>b>c. (6)

With the notation siny = e;, k2 = ez2/e1, and k3 =
es/e1, the relative (with respect to the spherical shape)
surface and curvature energies are given*® by

E<! ab [1— €2
EZ:: =3 [?1?(1%’93) + e1&(¢Y, k) + 63} (M
surf

and

E(?&rv bC 0,3 2 2
B — 00 14 210 = P ) + @ )] -
®

The LDM for neutral clusters has a direct analogy with
the liquid-drop model of atomic nuclei, but for charged
clusters differences arise compared to the nuclear case.
These differences originate from the fact that (i) the ex-
cess charge in metal clusters is distributed over the sur-
face (classical conductor model*?:37) instead of through-
out the volume as is the case of nuclei, and (ii) the elec-
tron gas in metal clusters is treated quantum mechani-
cally, while the positive charge of the nucleus is usually
treated using classical electrostatics. As a result, in addi-
tion to an electrostatic term, the LDM for charged metal
clusters has a term accounting for the size-dependent
electron affinity, or ionization potential, and through it
for the work function W of the bulk metal (it is to be
noted that for fission processes, the information about
the work function can be ignored, since its contribution
cancels when considering energy differences between par-
ent and daughter clusters).

A proper form of the LDM for charged clusters
with spherical symmetry was developed by the present
authors,34:3537 who found that the energy contribution
due to the excess charge, Z, is given by

~ ~ ~ ~ Z(Z — 1)e?
AE(ZY=FE(Z)—E(0) = -A1Z + ———— 9
(2) = B(z) - BO) = -Az+ SZ—0S )
for negatively charged states, and by
~ = = = Z(Z — 1)e?
AFE(Z)=E(Z)—-E(0) =1LZ + 2(Ro + 0) (10)

for positively charged states. The dependence on the
number N of atoms in the cluster is not explicitly in-
dicated. The electronic spillout-type parameter § =
8o + d2/R2 is determined by fitting the corresponding
ETF-LDA total energies (for details, see Refs. 34, 35,
and 37). The smooth first electron affinity Zl and ion-
ization potential I; are also size dependent, and relate as

follows to the bulk work function W':

5 &2 o~ 2
° L=wi3_°

A =w-2 < .
1 8Ro+d’ sm s (1

Combining Egs. (9)—(11), one gets

Z(Z + 0.25)e?

AE(Z)=E(Z)-E@0)=FWZ + 2(Ro 1 9)

» (12)

where the upper and lower signs correspond to negatively
and positively charged states, respectively.

To generalize the above results to an ellipsoidal shape,
¢(Ro + 8) = e2/(Ro + J), which is the value of the po-
tential on the surface of a spherical conductor, needs
to be replaced by the corresponding expression for the
potential on the surface of a conducting ellipsoid. Ac-
cording to Ref. 46, this latter potential is given by
3€% [7 du/y/(u+ a’?)(u + b'2)(u + ¢'2) (which is an in-
complete elliptic integral of the first kind, see Eq. 3.131
of Ref. 44), and thus the final result, normalized to the
spherical shape, is given by the expression

AEYNZYLEWZ b
2 Cd) = k), (13)
AE®R(Z)+WZ e

where the + sign in front of WZ corresponds to nega-
tively and positively charged clusters, respectively.

B. The modified Nilsson potential

A natural choice for an external potential to be used for
calculating shell corrections with the Strutinsky method
is an anisotropic, three-dimensional oscillator with an 12
term for lifting the harmonic-oscillator degeneracies.!®
Such an oscillator model for approximating the total en-
ergies of metal clusters, but without separating them
into a smooth and a shell-correction part in the spirit of
Strutinsky’s approach, has been used® with some success
for calculating relative energy surfaces and deformation
shapes of metal clusters. However, this simple harmonic-
oscillator model has serious limitations, since (i) the total
energies are calculated by the expression*” % > €:, and
thus do not compare with the total energies obtained
from the KS-LDA approach, and (ii) the model cannot
be extended to the case of charged (cationic or anionic)
clusters. Thus absolute ionization potentials, electron
affinities, and fission energetics cannot be calculated in
this model. Alternatively, in our approach, we are mak-
ing only a limited use of the external oscillator potential
in calculating a modified Strutinsky shell correction. To-
tal energies are evaluated by adding this shell correction
to the smooth LDM energies.

In particular, a modified Nilsson Hamiltonian appro-
priate for metal clusters!%® is given by

Hy = Hp + Uphwo(1? — (1%)n) , (14)

where Hy is the Hamiltonian for a three-dimensional
anisotropic oscillator, namely,
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A2
= A+ %‘3@0?:1:2 + wiy? + w2z?)
e

2 1
) (a;ak + 5) ok

k=1

fi

(15)

Up in Eq. (15) is a dimensionless parameter, which for
occupied states may depend on the principal quantum
number n = ny + ny + n3 of the spherical-oscillator ma-
jor shell associated with a given level (nq,n2,n3) of the
Hamiltonian Hy (for clusters comprising up to 100 va-
lence electrons, only a weak dependence on n is found,
see Table I). U, vanishes for values of n higher than the
corresponding value of the last partially (or fully) filled
major shell in the spherical limit.

I? = Y3 _ 12 is a “stretched” angular momentum
which scales to the ellipsoidal shape and is defined as

13 = (q1p2 — @2p1)? (16)
(with similarly obtained expressions for /2 and I2 via a
cyclic permutation of indices), where the stretched posi-
tion and momentum coordinates are defined via the cor-

responding natural coordinates gP** and pf** as

@k = g2 (mewy /R)Y/? = (k=1,2,3),

.
%t ok +2“’° (17)

T
Pk = p}w“"‘(1/)‘2.7'ne<‘1k)1/2 = iu

V2

The stretched I? is not a properly defined angular-
momentum operator, but has the advantageous property
that it does not mix deformed states which correspond
to spherical major shells with different principal quan-
tum number n = n; + na + ns (see the Appendix for the
expression of the matrix elements of 1?).

The subtraction of the term (%), = n(n +3)/2, where
{ )n denotes the expectation value taken over the nth-
major shell in spherical symmetry, guarantees that the

(k=1,2,3). (18)
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average separation between major oscillator shells is not
affected as a result of the lifting of the degeneracy.

The oscillator frequencies can be related to the princi-
pal semiaxes a’, b, and ¢’ [see Eq. (4)] via the volume-
conservation constraint and the requirement that the sur-
face of the cluster is an equipotential one, namely,

wla' = wzbl = (.U3CI = wORo 5 (19)

where the frequency wg for the spherical shape (with ra-
dius Ry) was taken according to Ref. 15 to be

Fuwo(N) =

49 eV bohr? t
=L 20 [1 (20)

—2
YV r,N1/3] '

Since in this paper we consider solely monovalent ele-
ments, N in Eq. (20) is the number of atoms for the
family of clusters My 4%, r, is the Wigner-Seitz radius
expressed in atomic units, and ¢ denotes the electronic
spillout for the neutral cluster according to Ref. 15.

C. Shell correction and averaging
of single-particle spectra

The single-particle energies €; of the Hamiltonian (14)
are used to obtain the semi-empirical Strutinsky shell

correction, AESY, which is defined as

occ

AEJ =Y ei— By, (21)
T

where

Ep=Y cifi (22)
i
is the Strutinsky average of the single-particle spectrum
with f; being appropriate weighting factors.
Usually E,p is calculated numerically.*® However, a
variation of the numerical Strutinsky averaging method

TABLE I. Parameters entering into the SE-SCM calculations. Up is a dimensionless parameter [see Eq. (14)]. All lengths,
i.e., for the Wigner-Seitz radius r,, and the spillout parameters ¢ [see Eq. (20)] and o (see Sec. II A) are expressed in a.u. 4,
(see Sec. II A) is expressed in (a.u.)?. Energies for the bulk work function W [see Eq. (11)], and for the coefficients c.,, as, and

ac [see Eq. (3)] are in eV.

Uo Ts t® do 42 we Ay Qs Qe
Na  0.040 (n =2 —4) 4.00 1.44 1.16 (z = —1)° 23.33 (z = —1)° 2.70 —2.252P 0.541° 0.154"
0.035 (n > 5) 0.00 (2 = +1)® 0.00 (z = +1)®
K 0.040 (n =2 — 4) 4.86 1.78 1.51 (z = —1)° 0.00 (z = —1)° 2.39 —2.198 0.521° 0.072°
0.035 (n > 5) 0.00 (z = +1)° 0.00 (2 = +1)°
Cu 0.030 2.67  0.78 1.28 (z = —1)° 0.00 (z = —1)° 4.65 —8.875° 0.721° 0.359°
0.00 (2 = +1)° 0.00 (z = +1)°

“Experimental values according to a compilation of Ref. 15.

PSpecified through a fit of Eq. (2) to ETF-LDA total energy calculations for spherical clusters in conjunction with the jellium-

background approximation [see Refs. 34 and 35].

“Specified through a fit of Eq. (2) to ETF total energy calculations for spherical clusters in conjunction with a stabilized-jellium-

LDA energy functional [see Ref. 37)].
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consists in using the semiclassical partition function and
in expanding it in powers of A2. With this method, for
the case of an anisotropic, fully triaxial oscillator, one
finds!!*4® an analytical result, namely,5°

E:;c = ﬁ(w1w2w3)1/3
1 1 w? + w2+ w?
~(3N, 4/3 , + W 2 3 (3N.)2/3

X <4( ) 24 (w1w2w3)2/3 ( e) ’
(23)

where N, denotes the number of delocalized valence elec-
trons in the cluster.

In the present work, expression (23) (as modified be-
low) will be substituted for the average part Esp in Eq.
(21), while the sum Y ;““e; will be calculated numeri-
cally by specifying the occupied single-particle states of
the modified Nilsson oscillator represented by the Hamil-
tonian (14).

In the case of an isotropic oscillator, not only the
smooth contribution E;’;C but also the Strutinsky shell
correction (21) can be specified analytically,'' with the
result

1
AES™ () = ﬂfswo(3Ne)2/“’[—1 +12z(1 — )], (24)

where z is the fractional filling of the highest partially
filled harmonic-oscillator shell. We see that for a filled
shell (z = 0), AES%,(0) = —35hwo(3N.)?/3, instead of
the essentially vanishing value as in the case of the ETF-
LDA defined shell correction (cf. Fig. 1). To adjust for
this discrepancy, we add —AE5(0) to AES® calculated
through Eq. (21) for the case of open-shell, as well as
closed-shell clusters.

D. Overall procedure

We are now in a position to summarize the calcula-
tional procedure, which consists of the following steps.

(1) Parametrize results of ETF-LDA calculations for
spherical neutral jellia according to Eq. (2).

(2) Use above parametrization (assuming that param-
eters per differential element of volume, surface, and in-

Energy (eV)

FIG. 1. The LDA-SCM shell correction for spherical neu-
tral sodium clusters in the range 1 < N < 100.
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tegrated curvature are shape independent) in Eq. (1) to
calculate the liquid-drop energy associated with neutral
clusters, and then add to it the charging energy according
to Eq. (13) to determine the total LDM energy E.

(3) Use Egs. (14) and (15) for a given deformation
li.e., @', b, ¢, or equivalently w, w2, ws, see Eq. (19)] to
solve for the single-particle spectrum (g;).

(4) Evaluate the average, E’sp, of the single-particle
spectrum according to Eq. (23) and subsequent remarks.

(5) Use the results of steps (3) and (4) above to calcu-
late the shell correction AESY according to Eq. (21).

(6) Finally, calculate the total energy Eg, as the sum
of the liquid-drop contribution [step (2)] and the shell
correction [step (5)], namely, Eq, = E + AES,

The optimal ellipsoidal geometries for a given cluster
MpZ%, neutral or charged, are determined by systemat-
ically varying the distortion (namely, the parameters a
and b) in order to locate the global minimum of the total
energy Eqn(N, Z).

To illustrate the quantitative quality of results ob-
tained by our present method, we exhibit in Fig. 2
per atom total energies (normalized to the bulk value
|eso| = 2.252 €V) calculated by us for Nay clusters. In
Fig. 2(a), results obtained for spherical symmetry are
contrasted with corresponding results for spheroidally de-
formed clusters. The effect of triaxial deformations is
demonstrated in Fig. 2(b). While a detailed discussion
of the consequences of various deformation models will be
presented in Sec. III, we remark here on the quantitative
agreement between the results of Fig. 2 and correspond-

Esh/N (feel)

—091 L I . I L I

FIG. 2. SE-SCM results for the total energy per atom of
neutral sodium clusters Nay (in units of the absolute value
of the energy per atom in the bulk, |ew| = 2.252 V). (a)
Open squares: results for spherical symmetry. Solid dots:
results for the spheroidal model. (b) Solid dots: results for the
spheroidal model. Open diamonds: results for the ellipsoidal
model.
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ing results obtained via self-consistent KS-LDA calcula-
tions [i.e., for spherical and spheroidal sodium clusters,
compare Fig. 2(a) with Fig. 1 of Ref. 18 and for spheroidal
and triaxial deformations compare Fig. 2(b) with Fig. 3 of
Ref. 51 (note that in Ref. 51 the triaxial calculations for
neutral sodium clusters were performed only for clusters
with an even number of atoms in the range 8 < N < 20,
and consequently odd-even alternations in the total en-
ergy were not seen)).

III. RESULTS

The different parameters used in the present SE-SCM
calculations are summarized in Table 1.

A. Ionization potentials

We have calculated ionization potentials by subtract-
ing two ground-state energies, namely, the ground-state
energy of the neutral clusters from the ground-state en-
ergy of the singly charged cations,

Ln(N) = Egn(z = +1,N) — Equ(z = 0,N) . (25)

Note that the lower case z in Eq. (25) denotes the
algebraic value of the excess charge, namely, 2 < 0 for
anions, z > 0 for cations, and |z2| = Z.

1. Potassium clusters

The theoretical results compared to the experimental
measurements'®52 for the case of potassium clusters, Ky,
are displayed in Fig. 3 in the range 2 < N < 100. The
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inset of the figure displays the theoretical results in the
case of spherical shapes compared to the experimental
measurements. The theoretical results in the latter case
exhibit a pronounced sawtoothed profile which, with the
exception of major-shell closures, is in poor agreement
with the experiment, a trend previously known from LDA
calculations on spherical jellia.5:2:3%

Consideration of triaxial deformations leads to a sub-
stantial improved correspondence between the theoretical
and experimental results, especially pertaining to the fol-
lowing two trends: (i) between major-shell closures, the
overall shape of the theoretical curve is flat, resembling
staircases as is exhibited by the data, and (ii) noticeable
fine structure has replaced the monotonous sawtooths of
the spherical case.

An inspection of the theoretical curve reveals that the
fine structure exhibits a pronounced odd-even oscillation
for sizes up to N = 21 electrons. A comparable odd-
even oscillation is also seen in the experimental data.
For sizes larger than 20 electrons, the odd-even oscilla-
tions are not present in the experimental data (unlike the
case of low-temperature sodium clusters to be discussed
below), presumably because of the high internal temper-
atures of the clusters in this experiment. Nevertheless,
the data do show the expected major-shell closures, and
in addition they exhibit signatures of subshell closures
at N = 26 and N = 30 electrons. Overall, these trends
are reproduced by the theoretical results (in particular,
the N = 26 and N = 30 subshell closures are clearly evi-
dent). We note that for N > 21 electrons the importance
of nonaxial shapes decreases noticeably, and as a result
the theoretical odd-even effect weakens to the extent that
the theoretical points exhibit several well-defined quar-
tets (i.e., for N =21 —24, N = 27—-30, or N = 31— 34),
which are a reflection of four-fold degeneracies compati-

45 . ; . — , . .

FIG. 3. IP’s for Ky clusters in the range

EY)
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]

2 < N < 100. Solid dots: Theoretical re-
sults derived from the SE-SCM method in
conjuction with the ellipsoidal model. Open
squares: Experimental measurements from
Ref. 16. The inset displays corresponding
IP’s derived from the SE-SCM (solid dots)
in conjunction with the spherical model.
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ble with axial symmetry.

We stress that the agreement between theory and ex-
periment in the range N = 2 — 21 is particularly good
and detailed. Indeed, not only is the overall odd-even
oscillatory pattern predicted by the theory, but even a
subtler feature, namely, the absence of a sharp odd-even
step in the quartet N = 15 — 18, is well reproduced.

We conclude that, for potassium clusters, the triaxial
Strutinsky method yields an excellent detailed agreement
between theory and experiment for sizes smaller than 21
electrons. For larger sizes, theory still provides a good
agreement, in spite of the diminishing weight of triaxial-
ity, but this agreement is expected to degrade at lower
temperatures due to an anticipated reappearance of odd-
even alternations in the size range above 21 electrons (see
discussions on IP’s for cold copper and sodium clusters
below).

2. Copper clusters

Ionization potentials of cold copper clusters have re-
cently been measured.53 These results are displayed in
Fig. 4 together with our theoretical results for Cuy clus-
ters with 3 < V < 43.

To illustrate and elucidate the influence of cluster
shapes on the IP’s, we have carried out calculations for all
three shape families, namely, spherical, spheroidal, and
ellipsoidal deformations. An inspection of Fig. 4 reveals
that spherical shapes (top panel) exhibit the characteris-
tic sawtoothed profile, and that, apart from major-shell
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FIG. 4. IP’s for Cun clusters in the range 3 < N < 43.
Solid dots: Theoretical results derived from the SE-SCM
method. Open squares: Experimental measurements from
Ref. 53. Experimental data for N = 4, 6, and 8 are not avail-
able. Top panel: The spherical model compared to experi-
mental data. Middle panel: The spheroidal model compared
to experimental data. Lower panel: The ellipsoidal model
compared to experimental data.

closures, they describe the data rather poorly (note in
particular the absence of fine structure and the presence
of an exaggerated amplitude in the sawtoothed modula-
tion).

The spheroidal model (middle panel) shows substan-
tial improvement in coming closer to the experimental
trend. Furthermore, the ellipsoidal case (bottom panel)
improves the agreement between theory and experiment
even further. A noticeable improvement concerns the
better description of odd-even alternations between the
steps at shell and subshell closures (the subshell closures
appear at N = 14, 26, and 30). Again, as was the case
with potassium, the spheroidal quartet N = 11 — 14 is
strongly perturbed and exhibits strong odd-even alterna-
tions in accordance with the data. On the contrary, the
quartet N = 15 — 18 remains almost unaltered in agree-
ment with the observation. The amplitude of the the-
oretical odd-even alternations above N = 21 is smaller
than the experimentally observed one, however, the over-
all trend is reproduced. We note that the experiment
exhibits a well-defined quartet at N = 31 — 34, which is
also evident in the theoretical results.

3. Sodium clusters

Most recently, systematic measurements of the IP’s of
cold sodium clusters, Nay, were performed.’* The SE-
SCM results (for NV up to 105 atoms) as well as the exper-
imental data are displayed in Fig. 5. The overall agree-
ment between theory and experiment is very satisfactory
(note the close quantitative agreement of the absolute IP
values). The steps at major-shell closings (N = 8, 20, 40,
58, 92), as well as those at subshell closings (N = 14, 26,
30, 34, 44, 50, 54, 68), are comparable to the experimen-
tal ones. Additionally the theoretical results reproduce
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FIG. 5. IP’s for Nay clusters in the range 3 < N < 105.
Solid dots: Theoretical results derived from the SE-SCM
method in conjunction with the ellipsoidal model. Open
squares: Experimental measurements from Ref. 54.
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well the staircase profile of the experimental curve. The
overall weakening of the oscillations of the fine structure
with increasing size seen in the experimental data is also
portrayed by the calculations.

The odd-even oscillations are accurately reproduced
for 3 < N < 21. Above N = 21, however, the theory pro-
vides only a partial account for the odd-even alternations
(i.e., for N = 35 — 40, N =59 — 65, and N = 95 — 101).
Here, experimentally observed odd-even oscillations are
present throughout the N = 21 — 40 region and in the
beginnings of the major shells immediately after N = 40
and N = 58.

4. The size range N = 3 — 21

As aforementioned, ellipsoidal shapes reproduce espe-
cially well the trends in the experimental IP’s in the re-
gion 3 < N < 21. To further elaborate on this agree-
ment, we show in Fig. 6 and Fig. 7 a magnification of
this size region with respect to the IP curves of potassium
and sodium clusters. Theoretical results for exclusively
spheroidal shapes are also displayed, in order to further
demonstrate the improvement resulting from the consid-
eration of triaxial deformations. The spheroidal model
reproduces well the odd-even oscillation in the range
N =2 —9, but fails in the range N = 9 — 21. In fact, in
this latter range, two well-formed quartets (V = 11 — 14
and N = 15 — 18) are prominent in the upper panels of
Fig. 6 and Fig. 7 (as well as in the middle panel of Fig.
4 for the copper case), and result from the four-fold de-
generacy characteristic of the axial symmetry.'® On the
other hand, consideration of triaxial shapes lifts this de-
generacy [see also Fig. 2(b), Fig. 3, Fig. 4, and Fig. 5] and
allows for the strong odd-even effects for N = 11 — 14,
while at the same time producing a very weak (practi-
cally, the odd-even alternation is absent in accordance
with the experiment) modification for N = 15 — 18. It
is apparent that triaxiality is necessary to account for all
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FIG. 6. IP’s for Nay clusters in the range 3 < N < 22.
Solid dots: Theoretical results derived from the SE-SCM
method. Open squares: Experimental measurements from
Ref. 54. Top panel: The spheroidal model compared to exper-
imental data. Lower panel: The ellipsoidal model compared
to experimental data.
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FIG. 7. IP’s for Ky clusters in the range 3 < N < 22. Solid
dots: Theoretical results derived from the SE-SCM method.
Open squares: Experimental measurements from Ref. 16. Top
panel: The spheroidal model compared to experimental data.
Lower panel: The ellipsoidal model compared to experimental
data.

the details of the data.

We note that the proposed explanation of odd-even al-
ternations as originating from phenomenological pairing
forces fails to describe this behavior, since it predicts as
strong odd-even alternations for NV = 15— 18 as those for
N =11 —14.2223

We will see below that the exceptionally accurate
agreement between theory and experiment in this size
range is not limited to IP’s, but extends to all the quan-
tities studied, namely, electron affinities, monomer and
dimer separation energies, and fission-channel energet-
ics. In particular, the feature concerning the appearance
of strong odd-even oscillations for N = 11—14 simultane-
ously with the preservation of the quartet for N = 15—18
is also present in the electron affinities and monomer sep-
aration energies.

B. Electron affinities

Electron affinities have been determined by us as the
difference between two ground-state energies, namely, by
subtracting the ground-state energy of the singly charged
anions from the ground-state energy of the neutral clus-
ters,

Ash(N) = Esh(z = O,N) — Eqn(z = —-1,N) . (26)

The theoretical results for Cuy and K are displayed
in Fig. 8 and Fig. 9, respectively, and are compared to the
experimental measurements (Ref. 55 for Cuy and Ref. 17
for Kn). Again, in both cases, the sawtoothed profile as-
sociated with spherical jellia compares rather poorly with
the experimental data. We note that the magic numbers
(8, 18, 20, 34, 40) are associated with the minima of the
EA curve. Noticeable improvement in the agreement be-
tween theory and experiment is achieved when spheroidal
shapes are considered (middle panels). Consideration of
ellipsoidal shapes (bottom panels) results in a detailed
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EA (&V)

FIG. 8. EA’s for Cun clusters in the range 5 < N < 43.
Solid dots: Theoretical results derived from the SE-SCM
method. Open squares: Experimental measurements from
Ref. 55. Top panel: The spherical model compared to exper-
imental data. Middle panel: The spheroidal model compared
to experimental data. Lower panel: The ellipsoidal model
compared to experimental data.
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FIG. 9. EA’s for Kn clusters in the range 5 < N < 22.
Solid dots: Theoretical results derived from the SE-SCM
method. Open squares: Experimental measurements from
Ref. 17. Top panel: The spherical model compared to exper-
imental data. Middle panel: The spheroidal model compared
to experimental data. Lower panel: The ellipsoidal model
compared to experimental data.

agreement between theory and experiment, mainly due
to the enhancement of odd-even oscillations. In partic-
ular, the feature of strong odd-even oscillations in the
range N = 10 — 13 together with the preservation of the
quartet structure for N = 14 — 17 is evident in both the
Cup and Ky cases, and is accounted for only by the tri-
axial calculations. In the case of copper, the presence
of another well-defined quartet at N = 34 — 37 is also
accurately reproduced by the triaxial calculations. We
also note that triaxiality offers a detailed agreement for
the odd-even alternations in the EA curve of Cuy up to
N =41.

C. Monomer and dimer separation energies

Monomer and dimer separation energies associated
with the unimolecular reactions Ky ¥ — Ky_1 T+K,
Kyt — Ky_2 T+K3, and Nay ¥ — Nay_; T+Na have
also been calculated as follows:

DiN" = Eq(z=+1,N —1) + Eqn(z =0, N = 1)
—Esn(z = +1,N) (27)

and
Doyt = Egp(z=+1,N —2) 4+ Egu(2 = 0,N = 2)
—Ea(z=+1LN) . (28)

The theoretical results for D; 4+ and D,y for potas-
sium are displayed in Fig. 10 and Fig. 11, respectively,
and are compared to the experimental measurements.5%
The theoretical and experimental®? results for D; Nt in
the case of sodium are displayed in Fig. 12. An inspection
of all three figures leads to the same conclusion as for the
case of IP’s and EA’s, i.e., that results obtained via cal-
culations restricted to spherical shapes compare rather
poorly with the experiment, that improvement is evident
when spheroidal deformations are considered, and that
the agreement between theory and experiment becomes
detailed when triaxiality is taken into consideration. The
feature of the appearance of strong odd-even alternations
for N = 12— 15 (note the one-unit shift due to the single
positive excess charge) together with a well-defined quar-
tet in the range N = 16 — 19 is present in the monomer
separation energies of both potassium and sodium clus-
ters, and is again accounted for only after the inclusion
of triaxial deformations.

We note that in the case of dimer separation energies
(Fig. 11) the odd-even alternations cancel out. Parents
with closed shells or subshells correspond to maxima,
while daughters with closed shells or subshells are as-
sociated with minima (e.g., the triplets N = 9 — 11, or
N =15-17).

D. Fission energetics

Fission of doubly charged metal clusters, My2*, has
attracted considerable attention in the last few years.
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FIG. 10. Monomer separation energies, Di,n * [see Eq.
(27)], from singly cationic Kny* clusters in the range
5 < N < 27. Solid dots: Theoretical results derived from
the SE-SCM method. Open squares: Experimental measure-
ments from Ref. 56. Top panel: The spherical model com-
pared to experimental data. Middle panel: The spheroidal
model compared to experimental data. Lower panel: The
ellipsoidal model compared to experimental data.

FIG. 11. Dimer separation energies, D2,n ™ [see Eq. (28)],
from singly cationic Kyt clusters in the range 5 < N < 27.
Solid dots: Theoretical results derived from the SE-SCM
method. Open squares: Experimental measurements from
Ref. 56. Top panel: The spherical model compared to exper-
imental data. Middle panel: The spheroidal model compared
to experimental data. Lower panel: The ellipsoidal model
compared to experimental data.

FIG. 12. Monomer separation energies, D;,n * [see Eq.
(27)], from singly cationic Nay™ clusters in the range
5 < N < 39. Solid dots: Theoretical results derived from
the SE-SCM method. Open squares: Experimental measure-
ments from Ref. 57.

Nevertheless, LDA calculations have been restricted to
spherical jellia for both parent and daughters,5%:3° with
the exception of molecular-dynamical calculations for
sodium® and potassium®' clusters with N < 12. We
present here systematic calculations for the dissociation
energies Ay, p of the fission processes Kny?t - Kpt +
Kn_pt, as a function of the fission channels P.
We have calculated the dissociation energies

AN,p = Een(z = +1,P) + Ean(z = +1,N — P)
——Esh(z = +2, N) ) (29)

for the cases of parent clusters having N = 26, 23, 18,
and 15 potassium atoms, for which corresponding ex-
perimental results®? are available. The theoretical cal-
culations compared to the experimental results are dis-
played in Figs. 13-16 for N = 26, 23, 18, 15, respectively.
Again, while consideration of spheroidal shapes improves
greatly the agreement between theory and experiment
over the spherical model, fully detailed correspondence is
achieved only upon allowing for triaxial-shape deforma-
tions (notice the improvement in the range P = 12 — 14
for N = 26, and in the range P = 10 — 13 for N = 23).
In the cases N = 18 and N = 15 (Fig. 15 and Fig.
16), the biaxial and triaxial results are essentially iden-
tical, since no fragment with more than nine electrons is
involved. We note that the magic fragments K3t and
Kyt correspond always to strong minima, and that for
N = 18 the channel associated with the double magic
fragments (Ko%, Ko%) is clearly the favored one over
the other magic channel with K3*, in agreement with
the experimental analysis. Finally, we carried out cal-
culations of dissociation energies, AE°® and A%®8, of the
most favored fission channels over the whole range up to
N = 100 atoms for the cases of doubly charged cationic
and anionic sodium clusters, respectively. The triaxial
results compared to the spherical-jellia calculations ac-
cording to the LDA-SCM method3® are displayed®® in
Fig. 17 and Fig. 18. In both cases, the main difference
from the spherical jellium is a strong suppression of the
local minima, indicating that the critical size for exother-
mic fission is significantly smaller than N = 100, as in-
deed has been observed experimentally for hot cationic
alkali-metal clusters.52
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FIG. 13. Fission dissociation energies, Aze,p [see Eq. (29)],
for the doubly cationic K262 cluster as a function of the fis-
sion channels P. Solid dots: Theoretical results derived from
the SE-SCM method. Open squares: Experimental measure-
ments from Ref. 62. Top panel: The spherical model com-
pared to experimental data. Middle panel: The spheroidal
model compared to experimental data. Lower panel: The
ellipsoidal model compared to experimental data.
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FIG. 14. Fission dissociation energies, Azs,p [see Eq. (29)],
for the doubly cationic K232t cluster as a function of the fis-
sion channels P. Solid dots: Theoretical results derived from
the SE-SCM method. Open squares: Experimental measure-
ments from Ref. 62. Top panel: The spherical model com-
pared to experimental data. Middle panel: The spheroidal
model compared to experimental data. Lower panel: The
ellipsoidal model compared to experimental data.
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FIG. 15. Fission dissociation energies, A1s,p [see Eq. (29)],
for the doubly cationic K;s2* cluster as a function of the fis-
sion channels P. Solid dots: Theoretical results derived from
the SE-SCM method. Open squares: Experimental measure-
ments from Ref. 62. Top panel: The spherical model com-
pared to experimental data. Middle panel: The spheroidal
model compared to experimental data. Lower panel: The
ellipsoidal model compared to experimental data.
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FIG. 16. Fission dissociation energies, A1s,p [see Eq. (29)],
for the doubly cationic K152 cluster as a function of the fis-
sion channels P. Solid dots: Theoretical results derived from
the SE-SCM method. Open squares: Experimental measure-
ments from Ref. 62. Top panel: The spherical model com-
pared to experimental data. Middle panel: The spheroidal
model compared to experimental data. Lower panel: The
ellipsoidal model compared to experimental data.
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FIG. 17. Solid dots: LDA-SCM results for the dissociation
energies A%°® for the most favorable fission channel for doubly
charged cationic parents Nay 27 when the spherical jellium is
used. The influence of triaxial deformation effects (calculated
with the SE-SCM approach) is shown by the thick dashed
line.

E. Cluster shapes

In this subsection, we present systematics of the Nay
equilibrium triaxial shapes in the range 3 < N < 60. A
most economical way for such a presentation is through
the use of the Hill- Wheeler parameters® 3 and -y, which
are related to the dimensionless semiaxes a, b, and c [see
Eq. (4)] as follows:

a = exp [\/Wﬂcos (”r— %ﬂ)] )

b = exp [\/5/(Tﬂﬂcos (7+ 2?7‘)] , (30)
¢ = exp [/5/(47) Beosn]

where (3 is unrestricted and 0 < vy < 7/3. A value v # 0
indicates a triaxial shape, while v = 0 corresponds to a
prolate shape, and v = 7/3 denotes an oblate deforma-
tion. The origin corresponds to spherical shapes.

Using the above definitions, the cluster potential en-
ergy surfaces (PES’s) in deformation space may be easily
mapped and studied (see Sec. IID). In this manner, one
can analyze the topography of the PES’s, identify global

FIG. 18. Solid dots: LDA-SCM results for the dissociation
energies A%°® for the most favorable fission channel for doubly
charged anionic parents Nay >~ when the spherical jellium is
used. The influence of triaxial deformation effects (calculated
with the SE-SCM approach) is shown by the thick dashed
line.

as well as local minima (i.e., shape isomers), barriers sep-
arating them, and paths in deformation space by which
they may transform to each other. Since the values of
ground-state properties of clusters depend on the shape
of the cluster, the existence of shape isomers may be
manifested in experimental measurements. For example,
in the case of measurements of ionization potentials, ver-
tical ionization of a cluster My (e.g., starting from its
optimal ground-state configuration, or close to it) results
in an My T cluster in the configuration of the parent neu-
tral. If the My T cluster possesses shape isomers, it may
relax either to the optimal configuration (global mini-
mum) or to a local minimum (shape isomer), depending
on the relationship between the topology of the PES for
the My * cluster and that of the My parent. These two
channels will lead to different values for the adiabatic IP.
Moreover, the measured IP value may depend on the in-
ternal energy of the cluster (i.e., internal kinetic energy,
or temperature), since the rate of shape transformations
is expected to be enhanced at higher temperatures (i.e.,
at low temperature the cluster may be trapped at local
minima in “shape space”). We suggest that measure-
ments of cluster properties, and their temperature de-
pendence, may provide information about the topology
of the PES’s of clusters in shape space. Indeed, evidence
for the occurrence of structural isomers has been inferred
from photoionization studies®® of niobium clusters, where
multiple ionization energies were measured for Nbg and
Nb;,, and from kinetic studies®:66 of the reactivity be-
havior of niobium clusters reacting with D,.

The PES’s for Na;3, Na;3, and Na;4 are shown in Fig.
19 using the Hill-Wheeler parametrization. First we note
that all three clusters possess at least one shape isomer.
For Na;,, the optimal shape is triaxially deformed and
is separated by a potential barrier of approximately 0.5
eV from a shallow oblate isomer. On the other hand,
for Na;3, while the optimal shape is triaxial close to the
prolate axis, there exists a triaxial-shape isomer close to
the oblate axis. We note that the energy difference be-
tween the two minima is very small, reflecting the fact
that the topology of the PES of Na,3 is characterized
by a very flat valley in the v coordinate. This is cor-
related with the insensitivity of the total energy of this
cluster calculated via the spheroidal and ellipsoidal mod-
els [see Fig. 2(b)]. In this context, we remark that the
above observation concerning the flat nature of the Na,3
PES is in agreement with conclusions drawn from LDA
molecular-dynamics calculations.®” Finally, the PES for
Naj4 exhibits two axially symmetric minima, with the
global one being the oblate shape.

The PES for the case of a spherical cluster is shown in
Fig. 20 (upper panel) for Nage. Triaxial-shape isomeriza-
tion corresponding to variation of the 3 coordinate (dis-
tinguished from that for Na;3 where shape isomerization
involves variation of the y deformation parameter) is il-
lustrated in Fig. 20 (lower panel) for Naos.

In Fig. 21 and Fig. 22, we present the Hill-Wheeler pa-
rameters which correspond to the global minima of the
total energy of the clusters within our SE-SCM approach.
Results are shown for both the spheroidal (Fig. 21) and
ellipsoidal (Fig. 22) models. We note that, as a result of
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allowing for ellipsoidal deformations, many clusters as-
sume well-developed triaxial shapes, most notably Nas,
Naj1, Najs, Najz, Najg, etc. Overall the extent of de-
formation decreases with increasing size, as reflected in
the diminishing values of the 3 parameter. As expected,
clusters associated with major-shell closures lie at the
origin (i.e., they are spherical), except Na;g, which has
an oblate shape.

Unlike the present work, where deformed shapes
are inferred through ground-state properties, ear-
lier this was usually done through photoabsorption
measurements.>2?527 Indeed, phenomenological models
assign a different absorption energy for each axis and
divide the oscillator strength equally among them (1/3

FIG. 19. PES’s (according to the ellipsoidal model) for the
neutral Naj2 (bottom panel), Na;s (middle panel), and Na;4
(top panel) clusters. The radius (3) and the angle +y are the
Hill-Wheeler quadrupole deformation parameters. The scale
of B is marked on the horizontal axes. The contour lines
correspond to increments of 0.1 €V in the total energy of the
clusters.
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FIG. 20. PES’s (according to the ellipsoidal model) for
the neutral Nay; (bottom panel) and Nazo (top panel) clus-
ters. The radius () and the angle v are the Hill-Wheeler
quadrupole deformation parameters. The scale of 3 is marked
on the horizontal axes. The contour lines correspond to in-
crements of 0.1 eV in the total energy of the clusters.

each in the case of the three axes of an ellipsoid and 2/3
and 1/3 in the case of a spheroid). These phenomenolog-
ical models relate directly the resulting splitting of the
plasmon line to the semiaxes [and through Egs. (30) to
the Hill-Wheeler parameters 8 and ] and do not require
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FIG. 21. The Hill-Wheeler parameters specifying the equi-
librium shapes of neutral Napy clusters according to the
spheroidal model in the range 3 < N < 60.
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FIG. 22. The Hill-Wheeler parameters specifying the equi-
librium shapes (corresponding to the global minima of the
PES’s) of neutral Nay clusters according to the ellipsoidal
model in the range 3 < N < 60.

prior knowledge, or make explicit use, of the quantal
structure of the clusters, as is the case with calculations
based on evaluation of the total energies.

Recently, a systematic inference of shapes of Nay *
clusters has been carried out?? through an attempt to
draw a direct connection between shape deformations,
which were presumed spheroidal, and measured photoab-
sorption cross sections (which were accordingly fitted
with at most two Lorentz functions). Focusing on the
cluster range N = 11 —21—where our results for ground-
state properties for all metal clusters studied here (espe-
cially, sodium clusters) provide a detailed description of
available experimental data—we find discrepancies be-
tween the shapes predicted from our approach and those
suggested in Ref. 27. For example, while in Ref. 27 pro-
late shapes were assigned to Na;4+* and Na;s*, and a
spherical shape to Najg™t, our results yield a triaxial, an
oblate, and again a triaxial shape, respectively (note the
shift by one unit in NV with respect to the neutral clusters
of Fig. 22). This suggests that utmost caution must be
applied when shapes are inferred from experimental fits
of optical absorption cross sections in conjunction with
certain phenomenological models. Indeed, the difficulty
in interpreting the optical cross sections is due to a strong
broadening®® of each absorption line, which can mask
the plasmon splitting due to the deformation. In this
context, we remark that our SE-SCM yielded results in
overall agreement with the triaxial shapes inferred from
the simple Clemenger-Nilsson model,'®3 which has been
used previously in the analysis of photoabsorption cross
sections,?® for clusters with N < 40. On the other hand,
for clusters with N just above 40, we find oblate shapes
(see Figs. 21 and 22), in correspondence with the ex-
perimental analysis of the photoabsorption experiments
described in Ref. 27.

IV. CONCLUSIONS

We have adapted the semiempirical shell-correction
method (familiar from nuclear physics as the Strutinsky
method3®) to calculations of total energies of open-shell
metal clusters. Our method allows accurate computa-
tions for a broad range of cluster sizes which are less
arduous than KS-LDA calculations, thus allowing explo-
rations of systematic trends and confrontations between
experimental observations and theoretical models for var-
ious quantities and materials.

A successful adaptation of the Strutinsky method to
metal clusters was achieved by us through use of an
anisotropic harmonic oscillator as the external potential
mimicking the mean field acting upon the valence elec-
trons (see Sec. IIB), and generalization of the liquid-
drop model to adequately describing ground-state ener-
gies of multiply charged clusters (see Sec. IIA). Using
our method we have calculated ground-state properties
(IP’s, EA’s, monomer and dimer separation energies, as
well as fission dissociation energies) for Nay, Ky, and
Cuy clusters, obtaining values and trends in good agree-
ment with experimentally measured ones.

The present paper focused on a systematic investiga-
tion of the effects of shape deformations on the energetics
of metal clusters. Shape deformations in open-shell sys-
tems provide a symmetry breaking mechanism, result-
ing in lifting of degeneracies in the electronic spectra
and lowering of the total energy of clusters. In particu-
lar, we have shown, via comparative studies, that allow-
ing for triaxial- (ellipsoidal) shape deformations yields
an overall substantial improvement in the agreement be-
tween theory and experiment, in comparison with models
which are limited to consideration of spherical shapes and
spheroidal deformations only. In this context, we remark
that shape triaxiality provides a complete interpretation
of the fine structure (including odd-even alternations) for
clusters with less than 21 atoms, thus allowing for un-
ambiguous assignments of cluster shapes in this range
(see Sec. IIIE). For larger sizes, while the agreement ob-
tained by us between theory and experiment is quite sat-
isfactory, remaining discrepancies (e.g., the rather weak
odd-even alternations obtained by the ellipsoidal model
in comparison with the pronounced odd-even alterna-
tions in the IP’s of cold Nay and Cupy clusters) sug-
gest that additional shapes may come into play via the
emergence of shape isomers generated either by reflection
asymmetric octupole deformations or by hyperdeformed
ellipsoidal shapes (work towards studying such additional
shapes and their consequences is in progress®?).

Along with underlying characteristic patterns observed
in ground-state properties and those which may be ob-
tained via ground-state total energy differences, shape
deformations are portrayed also in photoabsorption data
(i.e., splitting and shifting of plasmon resonances associ-
ated with anisotropy of the collective excitation spectra).
Furthermore, shape deformations lead to occurrence of
shape isomers (local minima of the potential energy sur-
face in deformation space), which, depending on the con-
ditions of the experiment (e.g., total energy content, or
kinetic temperature of the clusters being investigated),
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may result in multiple values for measured quantities.
Indeed, inspection of such potential energy surfaces cal-
culated by us suggests that measurements of cluster prop-
erties, and their temperature dependence, may provide
information about the topology of such deformation po-
tential energy surfaces. Finally, since the lifting of degen-
eracies via shape deformations modifies the level-filling
scheme from that predicted by Hund’s rules, we expect
that such deformations would also influence the magnetic
properties’ of simple metal clusters. For example, triax-
ial deformations, which have been demonstrated to pro-
vide an effective mechanism for generating odd-even al-
ternations in ground-state energetics of clusters, may also
serve to quench their paramagnetism. The magnetic be-
havior of metal clusters, as well as thermal effects, are
under investigation®® in our laboratory.
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APPENDIX

In this appendix we present the complete matrix ele-
ments of the pseudoangular momentum operator 12. Us-
ing the definitions (16)—(18), one first derives the opera-
tor identities,

2= a;azala.l + a{alaza;

—(a})?(a2)* - (a})*(a1)*, (A1)

and likewise for 12 and [? via cyclic permutation of the
indices.
As a result, one has

(n1,m2,n3l5[n], ny, n3) = [n2(ny + 1) + n1(n2 + 1)]0n, n1 0ng ng g my

—5n3,ng5n1-2,n;5nz,n;—2\/n1(n1 — 1)nb(n, — 1)

~Orna,m O i ~20ms —2,m /74 (1 — D)ma(nz — 1) .

(A2)

The matrix elements of I2 and 2 are again determined through a cyclic permutation of the indices 1, 2, and 3.
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