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The linear transport behavior of metallic multilayers is studied by using the real-space Kubo
formula, for a model Hamiltonian consisting of zero-range spin-dependent impurity-scattering po-
tentials. The resulting theory allows a direct comparison with the Boltzmann equation approach in
the quasiclassical limit, which is expected to be a good approximation for most magnetic multilayers.
Furthermore, the regimes for which quantum corrections might be needed are explicitly indicated. It
is explicitly shown that: (i) periodicity is not required as a mechanism for giant magnetoresistance,
and (ii) the two main geometries, current in the plane of the layers and perpendicular to the plane
of the layers, exhibit very difFerent size sects, the latter yielding the so-called series resistor model.

I. INTRODUCTION

The phenomenon of negative giant magnetoresistance
(GMR) has drawn considerable attention in recent years.
It was first observed in Fe/Cr superlattices, i and later
found in a large number of ferromagnetic transition-
metal/nonmagnetic-metal multilayers. 2 s

Giant magnetorisistance is a magnetotransport phe-
nomenon. In order to understand the magnetotransport
problem one has to address the following two issues: how
to describe transport in layered media and how to incor-
porate the spin degree of &eedom in a transport theory.
It is generally recognized that this giant effect is d.ue to
the reorientation of the magnetizations of the magnetic
layers across the nonmagnetic spacers under the action of
the externally applied magnetic field. The main under-
lying mechanism is spin-dependent scattering, first pro-
posed in Ref. 1, and now well established. In effect, if
the conduction process is viewed as taking place in two
difFerent independent channels associated with up and
down electrons (two-current models), the global or mea-
surable resistivity is the parallel combination of the resis-
tivities of these two channels; therefore, by varying the
magnetic configuration (ferromagnetic, random, partially
aligned, or antiferromagnetic) one can obtain difFerent
values of the resistivity, and in particular, the configu-
ration associated with the largest degree of order (fer-
romagnetic), which corresponds to the saturation field,
yields a short-circuit effect between the two channels.

With these considerations in mind, two conceptually
distinct transport theories have been used to account
for the observed giant magnetoresistance: (i) the qua-
siclassical or Boltzmann-equation approach; and (ii) the
quantum approach, based on the Kubo formula. The
calculation of the ensuing transport properties poses dif-
ficulties related to the inhomogeneous nature of the scat-
tering.

The Boltzmann-equation approach ' is an extension
of the Fuchs-Sondheimer theory. It is very popular, due
to its simplicity, which can be understood as a conse-

quence of its treatment of inhomogeneous scattering in
real space. However, it cannot be regarded as a satisfac-
tory approach unless a justification for its use is given in
terms of a quantum theory, and the conditions for its va-
lidity are correspondingly stated in this paper. Moreover,
the quasiclassical approach affords an ad hoc treatment
of interfaces, a problem that is resolved in this paper in
a natural way by starting &om its quantum counterpart.

The quantum approach starts from a model Hamil-
tonian (which accounts for impurity scattering) and
uses the Kubo formula, which provides the cor-
rect quantum-statistical calculation of linear response
coefIicients. ' ' The model Hamiltonian used in Ref. 7
describes spin-dependent scattering by impurities in the
different layers of the system, as well as at the inter-
faces; thus providing a unified description of bulk and
interface scattering. Even though the approach of Ref. 7
has been regarded as experimentally successful and more
fundamental than the quasiclassical approach, it has not
been fully appreciated due to its apparent complexity,
which is due to its treatment of inhomogeneous scatter-
ing in reciprocal space, a procedure that is reminiscent
of the quantum treatment of transport in thin films by
Tesanovic et al.

On the other hand, in support of the quasiclassical ap-
proach, there are some indications that the Boltzmann
equation works extremely well for metallic superlattices
on a phenomenological level. Moreover, as pointed out
by Johnson and Camley, the goal of accounting for bulk
and interfacial scattering in a unified way can be achieved
in the quasiclassical regime by treating interfacial scat-
tering more realistically in terms of additional thin layers
representing regions of interdiffusion.

The main goal of this paper is to develop a better
theoretical &amework for the transition kom the Kubo
formula to the Boltzmann equation, a task that can
be naturally accomplished by using the real-space Kubo
formula. ' In effect, the apparent simplicity of the qua-
siclassical solution seems to be related to the fact that
the inhomogeneous problem is tackled by solving for the
distribution function in real space, where it is reduced

0163-1829/95/51(3)/1855(11)/$06. 00 51 1855 1995 The American Physical Society



1856 HORACIO E. CAMBLONG

to a differential equation. The real-space solution that I
derive in this paper, unlike its reciprocal-space counter-
part, is relatively simple and closer in form to the qua-
siclassical solution. The ensuing transport theory still
provides a unified treatment of bulk and interface scat-
tering, like that of Ref. 7. Furthermore, the direct par-
allel with the quasiclassical approach permits an explo-
ration of the regimes for which quantum corrections are
expected. Most of these results were anticipated but not
derived in Ref. 8.

This paper is organized as follows. In Sec. II, I carry
out a length scale analysis and define the quasiclassi-
cal regime (for which Boltzmann-equation treatments
are applicable). In Sec. III, I define impurity averages
as a generalization of Kohn and Luttinger's impurity
averages, and I introduce the ensuing self-energies and
diagrammatic structure. In Sec. IV, I find analytically
the one-particle propagator as the solution to a difFer-
ential equation in real space. In Sec. V, I develop the
real-space &amework of linear response in metallic mul-
tilayers, and compute the full-Hedged electrical linear re-
sponse, as given by the impurity-averaged two-point con-
ductivity function. In Sec. VI, I discuss the measurable
resistivities in multilayers, and I derive the peculiar cur-
rent perpendicular to the plane of the layers (CPP) self-
averaging behavior. ' Finally, in Sec. VII, I present my
conclusions and directions for future and ongoing work.

II. LENGTH SCALE ANALYSIS
AND QUASICLASSICAL REGIME

The main goal of the transport theory of multilayered
structures is to predict the so-called size effects, i.e. , the
dependence of transport properties with respect to the
different characteristic length scales. Therefore in order
to understand in more detail the physics of transport
in multilayers, it is useful to analyze the length scales
intrinsic to this problem and to characterize the different
possible regimes.

Transport in metallic multilayers corresponds to the
picture of an electron propagating throughout the whole
structure and experiencing different impurity scattering
rates in different regions. Therefore the first length
scale is associated with the propagation of an electron
through the structure. For an electron with Fermi en-
ergy ez = h k&/(2m), and Fermi wave number k~,
the corresponding reduced Fermi wavelength A~ ——k+
(de Broglie wavelength at the Fermi level) is typically a
"small" parameter of the order of 1 A for metallic mate-
rials (i.e., k~ as a "large" spatial frequency). This propa-
gation is affected by the existence of impurity scattering
(dissipation), by the inhomogeneous nature of multilay-
ers, and by the presence of outer boundaries.

First, in every layer Z~ (labeled with the index j), and
for each spin channel o, , there is a characteristic local
mean &ee path l~ associated with the spatial damping
experienced by the propagating electron. The local mean
free path can be regarded as a stepwise function l (z) of
the longitudinal coordinate z. It can be defined as the
mean &ee path that the electron would have if it were

propagating in an infinite structure made up of the same
material and with the same type of distribution of impu-
rities. More precisely, it is the characteristic length scale
that governs the decay of the one-particle propagator in
the neighborhood of the point z; as such, and by analogy
with the case of a homogeneous metal, it can be directly
extracted &om the eigenvalues of the imaginary part of
the self-energy Z(z), in the following way:

h2
l (z) = k~ [

—ImZ (z)j (2.1)

Second, the inhomogeneous nature of multilayers cor-
responds to the fact that translational invariance is bro-
ken along the z axis, as its "local" properties vary &om
layer to layer. Notice that, even though translational
invariance is restored in the plane of the layers after im-
purity averaging (see Sec. III), the resulting longitudi-
nal noninvariance is unavoidable due to layering. The
corresponding inhomogeneity lengths are just the layer
thicknesses a~.

Third, the presence of the outer boundaries confines
the electrons inside the metallic structure. The confine-
ment length is the total length I of the multilayered
structure, and the corresponding size efFects are quan-
tum external size effects.

In this paper I show that the characteristic length pa-
rameters of multilayers make these systems behave qua-
siclassically. The quasiclassical regime is defined by the
absence of quantum corrections: quantum size efFects
and quantum interference corrections, and of atomic in-
homogeneity corrections.

Quantum size effects arise from the confinement of
electrons with Fermi wave number k~ in a finite well of
size L. However, when I )) l~, A~ (for all j ), size effects
are unaffected by the external boundaries; as these condi-
tions are typically satisfied for the magnetic superlattices
studied to date, only internal size effects will be consid-
ered in this paper (metallic sandwich structures are an
exception as their total thickness is usually comparable
with the mean free paths).

Quantum interference effects arise from the interfer-
ence of electron paths and play a fundamental role when
A~ + l~, as in the phenomenon of weak localization.

Finally, atomic inhomogeneity corrections refer to the
"discreteness" of a crystal, which can only be probed on
a scale of the order of the distance between atomic planes
D t, which for metallic systems is comparable to A~. On
the other hand, &om the viewpoint of transport prop-
erties, a length scale can be probed only with a mean
&ee path of the same order of magnitude, because oth-
erwise any local inhomogeneities are "averaged" over a
much larger length scale. Thus the condition l~ && D t
guarantees that the conduction electrons propagate, with
regard to their transport properties, in an effective lo-
cally homogeneous medium. " This can also be seen as
an additional requirement for quasiclassical propagation.

In short, the quasiclassical regime is defined by the
set of three conditions: k~I &) 1, k~l~ &) 1, and
l~ && D t. For metallic systems in general and for
metallic multilayered structures in particular, the rela-
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III. IMPURITY AVERAGES AND SELF-ENERGY

Let us now deal with the problem of impurity scat-
tering. The impurity-doxninated transport behavior at
low temperatures can be described in terms of an en-
semble X of distributions (r) of a large number N; p of
impurities, located at positions r, with a = 1, . . .N;
(rj = (rq, rq, . . . , r~ ). For every given distribution
of impurities fr), the corresponding one-electron model
Hamiltonian is

II = IIp+ ) v (r), (3.i)

where Ho is the unperturbed &ee-electron Hamiltonian
and v (r) is the spin-dependent scattering potential due
to an impurity or defect located at position r . For an
impurity located at the point r, the corresponding one-
site impurity potential is

v(r)=(ur +j M d)d(r —r), (3.2)

which has been chosen as a zero-range potential due to
the short range of the actual scattering. In Eq. (3.2)
the coupling strength provides the required spin depen-
dence through the Pauli spin vector operator cr, which
couples to the unit vector M in the direction of mag-
netization of the respective magnetic layer. In Eq. (3.2),
m and j are constants that measure the strength of the
spin-independent and of the spin-dependent parts of the
coupling strength; in particular, j g 0 for the magnetic
layers and j = 0 for the nonmagnetic layers.

tively small value of A~, which is of the same order of
magnitude as D t, makes both types of quantum correc-
tions negligible, unless the mean free path becomes of
the order of the atomic scale D t or A~. It should be exn-

phasized that these conclusions refer only to transport
properties, which are defined at the Fermi level, and rely
upon a nearly &ee-electron picture and the existence of a
common Fermi level for all layers, extending above local
potential wells.

It should be noticed that there is another length
scale in this problem, the spin-difFusion length, which
is the characteristic length for spin difFusion between
the two channels. For ferromagnetic metallic elements,
even though electron-magnon processes become &ozen at
low temperatures, there exist residual spin-fIip scattering
processes due to spin-orbit coupling. From the experi-
mental data of Ref. 22 and the theory of Ref. 23, one
concludes that the condition of channel independence is
actually fulfilled, and that in practice we can regard the
spin-difFusion length as infinity.

Summarizing, if a multilayered structure is considered
in the non-spin-fIip limit, transport properties exhibit
characteristic internal size effects governed only by (i) the
inhomogeneity lengths or layer thicknesses, which char-
acterize the spatial distribution of scatterers; and (ii) the
mean &ee paths, which measure the strength of the scat-
tering.

(E((r)))r = f d rr . . f d r rv (r )r. . . r

x&mp rn rq" r (3.3)

for any function F[(r)] = P f ..., of the po-
sitions (r), where the sum Z' excludes repeated indices;
if repeated indices were included in the sum, the average
should be calculated as a sum of terms, each one of which

A digression is now in order. An important aspect
of giant magnetoresistance and transport in multilayers
is that disorder at or near the interfaces seems to play
an important role in the observed electrical resistances.
The roughness of the interfaces xnight play some role in
this, but the phenomenon of interdiKusion alone causes
a significant increase in the amount of disorder (com-
pared to the bulk value). The simplest possible model
to account for this interdifFusion is therefore its represen-
tation in terms of additional "regions of interdifFusion, "
most simply in terms of additional thin layers, typically
with a thickness of the order of 4 A. ; this is the proce-
dure introduced in Refs. 16 and 8. The relevance of this
model lies in the fact that it not only provides a realistic
picture of interface scattering but also it allows a simple
treatment of the quantum theory. In Sec. IV, I indicate
how this is actually implemented.

Transport properties are described in terms of
"impurity-averaged" functions, such as the averaged one-
particle propagator, T matrix, and two-point conductiv-
ity. The "impurity average" eliminates the dependence
of transport properties with respect to specific configura-
tions of impurities within each layer. Moreover, with the
aid of the quasiclassical condition l~ )& D t, it is also
defined so as to eliminate the discreteness associated with
atomic sites and planes.

Let R be the range of the impurity potentials, D; p the
mean interimpurity distance, and D;„~ the inhomogene-
ity length scale (typical layer thickness a~), respectively.
An arbitrary N-layered system consists of layers Z~, with

j = 1, . . . , N. For layer Z~, let Nz be the number of im-
purities.

The system is assumed to satisfy the following condi-
tions: (i) quasiclassical regime: I, /~ )& A~, D t, (ii)
local homogeneity: D;„g )) D~t, R.; (iii) locally homo-
geneous randomness: the impurities are distributed ran-
domly, with a probability distribution that is uniform
and statistically meaningful (that is, N~ && 1) in each
layer; and (iv) dilute limit: D; ~ &) R, A~.

The condition of local homogeneity can be trivially sat-
isfied by having layers that consist, of, at least, just a few
atomic monolayers.

The property of locally homogeneous randomness
yields, for an impurity in layer Z~, a probability den-
sity function gz(r) = 8 (r; Cz) /Vz, where V~ = A a~ is
the volume of layer Z~, assumed to have a cross-sectional
area A and length a~, and 6 (r; Z~) is zero everywhere
except in layer Z~, where it takes the constant value one.
The average is performed locally and simultaneously over
the whole system; thus this amounts to the following av-
eraging procedure [see example (3.4) below and Ref. 29]:
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being similar to Eq. (3.3) but having as inany integration
variables and concentration factors n; & as distinct impu-
rities there are. is iP'is'i4 In Eq. (3.3), the local impurity
concentration (volume density of impurities at position
z) is

namely, a piecewise-constant or locally homogeneous con-
centration, with a "local" value n~ = K~ /V~ in each layer.

The main difBculty encountered in the computation of
the quantum-statistical Kubo formula for magnetic su-
perlattices lies in their inhomogeneous nature. Let us
now carry out a diagrammatic analysis with the defini-
tion of impurity-averaged quantities just introduced. In
the following analysis I will omit the subscript that la-
bels the two spin channels; actually, it will be explicitly
restored in the following section.

Starting from the total potential acting on the electron,

=) v

for homogeneous systems; in the dilute limit the irre-
ducible self-energy is restricted to be given essentially by
the same sum of diagrams that defines the one-site ofF-

shell T matrix

t (e) = v + G (e) t (e), (3.11)

(r
~
Z(e) j

r') = n; p(z) t(z) b'(r —r '), (3.12)

where the one-site T matrix t(z) is explicitly evaluated in
Appendix A. It should be emphasized that this amounts
to considering a subset of all possible diagrams, namely,
those that are presumably dominant in the dilute limit.

This can be confirmed with an analysis in momentum
space; the usual diagrammatic analysis leads in the di-
lute limit to an additive contribution ' ' ' &om every
locally homogeneous region

provided that the zero-range condition be maintained. In
effect, the conditions D; p && R A~ amount to neglect-
ing multiple-interference scattering events. As in the ho-
mogeneous problem the dilute limit yields the following
local self-energy for a random distribution of short-range
impurity potentials:

Zi, i, (e;z) =n; (z)ti, i, (e;z) (3.13)
and &om the unperturbed retarded one-particle propaga-
tor Gp(e) = (e —Hp —iO+), one finds that the dressed
propagator G(e) and the total off'-shell T inatrix T(e) are
the solutions to the integral equations

to the total self-energy

CL T
(kiZ(e) ik') = Zi, ,i, (e;z)e '" " ', (3.14)

G(e) = Gp(e) + Gp(e) V G(e) (3.6)

T(e) = V + V Gp(e) T(e) (3 7)

respectively.
A similar scheme arises when one applies the impurity-

averaging procedure described above to the infinite series
that results by iteration of the integral equations (3.6)
and (3.7). The only change is that the "new" irreducible
insertion becomes the irreducible self-energy Z(e) rather
than the total potential V. Correspondingly, the one-
particle propagator and the T matrix have impurity av-
erages given by the solution to the integral equations

provided that R (& a~; in efFect, when R is small
enough, the finiteness of the locally homogeneous re-
gion cannot be probed by the significantly more lo-
calized potential. Integration on a plane parallel to
the layers, namely, f d2 p e

II &

stores translational invariance in the "parallel" direc-
tions, because the reciprocal-space matrix elements
ti, i, (e; r ) = V(k

~
t(e; r ) ~

k') = t are momentuin inde-
pendent (see Appendix A).

An alternative derivation and straightforward deriva-
tion of the result Eq. (3.12) is provided in Appendix B,
where a particular solution of the integral equation (3.9)
is considered, a procedure that amounts to the same
choice of a subset of all self-energy diagrams.

(G()).=G.()+G.()Z() (G()). (3 8) IV. ONE-PARTICLE PROPAGATOR

(T(e) ). = Z(e) + Z(e) G'(e) (T(e) ). (3 9)

respectively. In particular, the one-particle propagator
becomes

(G(e) ) = [e —Hp —Z(e)] (3.1O)

From the structure above, the one-particle irreducible
self-energy Z(e) for the impurity-averaged functions can
be calculated by isolating, either in real space or in re-
ciprocal space, the one-particle irreducible parts of the
diagrammatic expansion for the impurity-averaged total
(reducible) off'-shell T matrix ( T(e) ) . This is a straight-
forward generalization of the impurity averages

Let us now consider the "Green's function problem, "
i.e., the problem of finding the corresponding one-particle
propagator. First, to simplify the form of the equations
and to clarify the physics, I use the local mean &ee path
l (z) that was defined in Eq. (2.1). In the language de-
veloped in the preceding section, this amounts to looking
at the exponential decay of the one-particle propagator
(r

~
(G (e) ) ~

r') in the neighborhood of a given point
r = (p, z), where the individual spin channels o. =g, $ are
treated independently, e = e~ = 52k&2 j2m, and the real
part of the self-energy can be absorbed as a redefinition
of the energy reference level. Rxrthermore, as a result
of the restoration of translational invariance in the plane
of the layers (due to impurity averaging), it is most can-
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venient to work in the mixed (k~~, z) representation, for
which, according to the results of Sec. III,

(k~~, z
~
Z~(c)

~ kI~, z') =
bk~~ k b(z —z') Z (z), (4.1)

with a corresponding one-particle propagator

(k((, z( (G~(s)) [kI(, z') = „„i, g (k(), z, z');

[s-IIo —~-(s)l (G(s)). = ~ (4 3)

where Il. is the unit one-particle operator. In the mixed
(k~~, z) representation,

(4.2)

even though g (k~~, z, z') is k~~ dependent, I will omit this
explicit dependence in the remainder of this section, as
the main focus will be on its z dependence.

Therefore the Green's function problem can be formu-
lated by recalling that the one-particle propagator satis-
fies Dyson's equation (3.10), which I now rewrite as

nite potential wall, Dirichlet boundary conditions are re-
quired to account for external size effects, that is, those
due to the finiteness of the system: quantum size effects,
when k~I & 1, and quasiclassical external size efFects,
when k~L )) 1 but jtj ~ & L. However, for the systems I
discuss in this paper, L )) li )) A~ (for all j), and size
efFects become asymptotically independent of any exter-
nal boundary conditions, except for the detailed behavior
of internal fields near the boundaries. Therefore, for the
sake of simplicity, I replace Dirichlet boundary conditions
by outgoing boundary conditions, as if the system were
efFectively infinite. Notice that the bound. ary conditions
are taken to be outgoing for the retarded Green's func-
tion G"t(s). The Green's function calculated with these
boundary conditions describes local transport behavior
everywhere except near external boundaries, and global
transport behavior or size effects.

The Green's function can be found as follows. Let @
and @& be the particular solutions to the homogeneous
counterpart of Eq. (4.5), that is,

I, h2 d'
( (i I el I(

') = — i„,i, , —
(( ( — '). +k (z) @(z) =0,

W

(4.9)

(4.4)

Then, substitution of Eqs. (4.1), (4.2), and (4.4)
in Eq. (4.3) leads to the one-dimensional differential
equations 24 for the reduced Green's function g (z, z')
in each spin channel a,

that satisfy the proper boundary conditions at 0& and
0&, respectively. Then, the Green's function g (z, z') is
simply given by

d2
+ k (z) g (z, z') = h(z —z'),

dz2 (4 5)

k'(z) = k'+i
Z

(4.6)

and k is the efFective longitudinal momentum for elec-
trons at the Fermi level, defined by

(4.7)

Notice that, in the quasiclassical limit,

k (z) = &+i k~
2k l z

(4 8)

Equation (4.5) is the main result of this section. It
is the final outcome of a diagrammatic analysis com-
bined with a properly executed impurity-averaging pro-
cedure. Mathematically, it defines a typical Green's func-
tion problem for a Schrodinger-like equation with a com-
plex potential. Most importantly, its physical content is
exactly the one that was anticipated in Sec. II.

Of course, finding the solution to the differential equa-
tion (4.5) requires the knowledge of the boundary con-
ditions satisfied at the end faces of the multilayer: 0&
(boundary at z = 0) and 8& (boundary at z = L). For
a finite system confined to a region of size I by an infi-

where k (z) is a complex wave number or propagation
constant given by the solution to

where W[g, @ ] is the Wronskian of Q and @
These auxiliary functions are given in every local re-
gion, for outgoing external boundary conditions and up
to proportionality constants, by @ oc exp [ik (z) z]
and g oc exp( i k (z) z]. Of co—urse, their complete
expressions include factors that guarantee their continu-
ity across internal boundaries.

I now introduce some additional useful notation. An
arbitrary N-layered system consists of layers Zj, with
z C [z~ i, zi] and j = 1, ..., K. For layer l:~, let k~
be the local propagation constants (let ai and l~ be
the layer thicknesses and mean &ee paths, respectively).
The resolution z = ajuj + zj i, for z in l'.j, is unique
and permits the identification z = (j, u~), which leads to
a "layer-index notation, " according to which the contin-
uous variable z can be replaced by both a discrete layer
ind. ex j and a reduced continuous dimensionless variable
u~. F [0, 1]. For example, g (z, z') = g~i (u~, u~ ), for
z Q JCj and z' p Zjr, yielding an K x % matrix Green's
function.

An additional simplification, which follows &om the
piecewise-linear character of multilayers, is that Eq. (4.9)
becomes a Helmholtz equation in each layer, with solu-
tions @ ~ and @ z that have to be determined by
the external boundary conditions (at 8& or 8&) and by
the internal boundary conditions (continuity of g and
d@ jdz). Notice that this allows a simple treatment of
the interfaces as regions of interdiffusion; instead, if dis-
order at or near the interfaces were interpreted in terms
of interface roughness, this could be modeled in terms of
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g~' (u~, u~ ) = {2ik) exp i k~ a~ u~

—k~ a~ u~

j)—1

+ ) k, a, (4.11)

which in the quasiclassical limit becomes [cf. Eq. (4.8)]

g~'~ (uz, u~. ) = (2ik) exp ik ]z —z
~

t
x exp ——(A,. u,. —A~ u~

+Al'(, 2& —1) (4.i2)

In Eq. (4.12), the convention A~'~ i = 0 was adopted,
the terms

-1 —1
A~& ~)-' = —Im

t

2)

) k, a,
2

(4.i3)

guarantee that the internal boundary conditions will be
satisfied, j& (j&) denotes the layer corresponding to the
smaller (larger) of z and z', and the dimensionless vari-
able

t=
k

(4.14)

was defined, with the following simple interpretation in
the quasiclassical limit: For electrons at the Fermi level,
the variable k can be interpreted as an effective longi-
tudinal momentum [Eq. (4.7)]; then, for a quasiclassical
electron propagating at an angle 8 with respect to the z
axis, t = (cosa)

In Eq. (4.12) the quasiclassical limit ky l~. )) 1,
for all j, has been used in order to arrive at
what might be called a quasiclassical propagator, that
is, one for which the "layer-diagonal" elements are
g (z z&) ~ eik~z z'~e —(kp. ~z —z')/—

zeal~

)

Thus it follows that when an electron moves through a
perpendicular distance B~ in a given region, its coherent
amplitude (one-particle propagator) decreases according
to the exponential damping exp [ Bi (2 cos Hl~ )—j,
and its "coherent intensity" as the square of that ex-
pression.

b-function potentials at the interface, a model that re-
duces to thin layers of infinitesimal thickness (order of
inagnitude: 1 A.). Moreover, one is able in many cases
to regard these regions as small enough to be modeled
by b functions, even when the physical mechanism is in-
terdiffusion; see the interpretation of the resulting quasi-
classical Fuchs-Sondheimer coeKcients in the discussion
following Eqs. (4.12)—(4.14). In the quasiclassical regime
size effects can be completely characterized in terms of
the set of dimensionless size parameters A~ = a~/l~
alone.

The Green's function for outgoing boundary conditions
is, then,

This characteristic exponential decay of the one-
particle propagator applies to any distance or region
through which the electrons propagate; in particular
this should be true of the additional interdiffusion lay-
ers. Thus, by treating interfaces as additional thin layers

8~, with layer thicknesses a-', and with characteristic

surface-local mean &ee paths l.', a unified treatment of
bulk and surface scattering, based upon Eq. (3.1), arises.
Consequently, all the formulas derived so far apply also
to a multilayered structure with interface scattering con-
sisting of any number of layers C~b and interfaces S~ .
One could go one step further and replace the real inter-
face regions by mathematical interfaces, assuming that
a-' (( a, , and interpreting the exponential decay in
t6e one-particle propagator in terms of an efFective "co-
herent transmission coefficient" T (t), given by

1 Z)
g (z, z') = exp i dzk (z)2ik

(4.i6)

1
exp

2ik
ik /z —z'/ —— /z —z'/ ( (z, z')

(4.i7)

1 dz"
( (z, z') = ],

)

t, „) ~ (E (z"))z„~(z
Z ~(Z

(4.18)

with z& (z&) being the smaller (larger) of z and z'.

(4.i5)
as dictated by the geometrical optics transmission pic-
ture. These transmission coefFicients represent the frac-
tion of electrons transmitted across the interface. The
complementary fractions 1 —T.' (t) represent scattering
at the interface, which is usually described as diffusive. "
The coefficients T '

(t) play the same role as the ones
required in a quasiclassical theory of multilayers with dif-
fusive interfaces in order to match boundary conditions at
the level of the distribution function, as first introduced
by Carcia and Suna as a generalization of the specular-
ity parameters of the Fuchs-Sondheimer theory. How-
ever, these new transmission coeKcients, unlike the ones
used by Carcia and Suna and in all subsequent quasi-
classical papers, are not constant parameters but de-
pend upon the angle of incidence 0 of the electrons on
the interface. In particular, these angle-dependent trans-
mission coeFicients favor the passage of electrons with
nearly normal incidence and suppress exponentially the
contribution &om electrons moving nearly parallel to the
interfaces.

This and other features of quasiclassical real-space
transport can be more thoroughly understood by look-
ing at an alternative way of deriving Eq. (4.12). In ef-
fect, Eq. (4.S) can be solved globally within a WKB ap-
proximation, that is, for small changes ~Ak

~

in k (z):
~b.k ] (& k~, which amounts to the quasiclassical limit
1/I (z) && kz., then,
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Equation (4.18) defines a symmetric two-point function
(z, z') that gives the decay or attenuation constant in

the one-particle propagator in terms of the average scat-
tering between the two given points. Equations (4.17)
and (4.18) are the equivalent of Eqs. (4.12) and (4.13),
because

for uniform external fields, it is sufBcient to consider the
reduced two-point function

z(z, z') = p(k~~ = 0;z, z') = f d*prr(p;z, z') . (5.4)

Then, resolving it into spin components,
/I

= (A,„u,-, —A, , u, , +A&&» —') . Z) Z = CT~ Z) Z (5.5)

4.19
Eq. (5.2) reduces to

This gives a simple interpretation of the expression (4.12)
in terms of the effective average attenuation constant be-
tween the points z& and z&.

o (z, z') = —— —k 1lii + k e,e,
vr h (2~) 2

x [A (k((, z, z') (5.6)

V. REAL-SPACE KUBO APPROACH

The linear electrical response of a system can be char-
acterized in terms of conductivity functions. In this pa-
per, I only consider time-independent phenomena. Then,
all possible dc conductivity functions can be derived &om
the two-point conductivity tensor o(r, r'), which estab-
lishes, in real space, the most general linear relationship
between the current density j(r) at a given point r and
the electric field E(r') at a difFerent point r', namely,

where A (k~~, z, z') is the corresponding Fourier trans-
form of Eq. (5.3), with the rescaling of Eq. (4.2), and as-
sociated with the retarded Green's function g (k~~, z, z')
that was calculated in Sec. IV. In Eq. (5.6), the sym-
metry property of the Green's function Q (k~~, z, z')
g (k~~ ,'z', z) has been applied, as well as the opera-
tional identity d/dz = i k in the quasiclassical limit. From
Eq. (4.17),

A (k~~', z', z) = = cos (k ~z —z'~) exp ——P (z, z')

j(r) = f d r'm(r, r') E(r') . (5.1) (5.7)

The electric field in the formula above is the internal ef-
fective field in the medium, which usually difFers &om the
external or applied field. It corresponds to what might
be called "internal" conductivity, which can be directly
calculated with the real-space Kubo formula

4e' (Ii')
cr r, r'

x ) A p(r, r') V,V Ap (r', r), (5.2)
~ P=t, l

where V,= (V, —V, ), the greek indices label the two
spin channels (ck =g and $), and

A p (r, r') = —[G '& (r, r') —G & (r, r')]

= —Im[G 'p (r, r')] . (5 3)

In this paper I will only analyze the particular but im-
portant case of collinear magnetization configurations,
for which the Green's functions in Eqs. (5.2) and (5.3)
become diagonal: A p(r, r') = h pA (r, r'), for a choice
of the quantization axis along the collinear direction, pro-
vided that spin-flip processes are neglected (two indepen-
dent current model). Also, I would like to simplify the
two-point formalism by using the in-plane symmetry of
multilayers; due to in-plane translational invariance (ho-
mogeneity in the plane of the layers), the two-point con-
ductivity satisfies the property o (r, r') = cr(p —p'; z, z'),
whence, a Fourier transform with respect to (p —p')
yields the conductivity function o (k~(, z, z'); moreover,

where I have defined for convenience

8Z
(t (z, z') =iz —z'i ( (z, z') =

t (z") (5.8)

[cf. Eq. (4.18)]. Notice that the real-space Green's func-
tion g oscillates rapidly with a characteristic spatial &e-
quency of the order of k~, a property which is relevant
for quantum size eKects; in the quasiclassical limit, the
linear response can be probed only over distances of at
least a few times A~, and Eq. (5.6) is automatically av-
eraged. The momentum integral in Eq. (5.6) is reduced
to exponential integral functions

EA
E„(x) = —e ™;

1
(5.9)

(5.10)

and

(5.11)

Equations (5.10) and (5.11) introduce a nonlocal linear
transport theory of multilayered structures. The charac-
teristic length for nonlocality is precisely the mean &ee

in effect, calling CD = ne /2mvy = e k&/6m h, &om
Eqs. (5.6) and (5.7), the two-point conductivity functions
are given by
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path. This nonlocality, called spatial dispersion, is an
essential ingredient in any inhomogeneous system. This
is precisely the general &amework that we set out to de-
velop in this paper. It should be pointed out that such
a general &amework is absent in all treatments based
on the Boltzmann equation, and it was not developed
in the momentum space Kubo approach of Levy et al. ,
which is restricted to one-point functions, thus requir-
ing a "local approximation" for the calculation of CPP
conductivities. The success in developing a complete
nonlocal theory is entirely due to the choice of a "real-
space" approach.

VI. GLOBAL PROPERTIES

From the two-point conductivity derived in Sec. V, the
measurable or global properties can be derived by impos-
ing proper constraints on the currents or on the Gelds.

In order to gain insight into the physics of GMR, it is
useful to define two limiting cases:2~ (i) the local limit,
when l~ &( az, for all j, and (ii) the homogeneous limit,
when l~ )) a~, for all j. In the local limit, as all mean
&ee paths are negligibly small with respect to the in-
homogeneity lengths, the linear response within a given
layer is like that of an infinite medium made up of the
same material and with the same type of distribution of
impurities; as 'a result of the local nature of the response,
the neighborhoods of all points in the medium are un-
correlated and become effectively independent resistors,
which means they can be added as "classical" resistors:
in series for current in the plane of the layers (CIP) and
in parallel for current perpendicular to the planes of the
layers. On the other hand, in the homogeneous limit, as
all mean &ee paths are effectively very large, the linear
response becomes very nonlocal and contributions to the
resistivity &om all layers are added; in effect, the electron
propagates, probing all the scattering within a mean &ee
path, which includes several layers, and it therefore aver-
ages all sorts of scattering in the medium. If the amount
of local scattering in channel o. is 4 (z), then the global
resistance in the homogeneous limit is given by the aver-
age (4 (z)) (as the local resistivity is proportional to the
local scattering rate); this process is called self-averaging,
and effectively it amounts to adding all local resistors in
series.

The following conclusions can be immediately drawn.
First, for the CPP geometry both limiting cases can be
described with a "series resistor model;" instead, for the
CIP geometry very different limiting behaviors are ex-
hibited: series resistor model in the homogeneous limit
and parallel resistor model in the local limit. Thus size
effects are much more manifest in the CIP case, where
complete transport, theories should provide the correct in-
terpolation between the two limiting cases; typically, this
interpolation is given by linear combinations of exponen-
tial functions. An interesting possibility is that the CPP
conductances be just given by the series resistor model
for all length scales; below we see that this is precisely the
case. Second, the series resistor model yields maximum
magnetoresistance because a short-circuit effect between

(6.1)

where the linear response for each individual spin current
is

j (z) = f dz'z~ ~(z, z') E (z'), (6.2)

with spin-dependent conductivities cr (z, z') given by
Eq. (5.11). In Eq. (6.2) the fields are explicitly spin de-
pendent because they are subject to the simultaneous
constraints

V' j (r) = 0, (6.3)

that is, the continuity equation for each spin channel in
the liinit of no spin mixing. In particular, j (z) is inde-
pendent of z, i.e., from Eqs. (5.11), (6.2), and (6.3),

ja—3CD, dt
2

I~
~

» a 7

I ~a I I~dz' —exp[ —tP (z, z')] E (z') (6.4)
1 t'

[with P (z, z') defined through Eqs. (4.18) and (5.8)] is
a constant.

Therefore Gnding the global CPP resistivity leads to

the two channels actually takes place for resistors in series
(within one channel). This is always true for the CPP
case (see below) and for the homogeneous limit. Instead,
when a parallel resistor model holds, all resistors (includ-
ing those corresponding to the two different channels) are
added in parallel; as a consequence, the final equivalent
combination of resistors is the same for the antiferromag-
netic and ferromagnetic configurations, and leads to zero
magnetoresistance. Then, the local limit of the CIP ge-
ometry has no magnetoresistance, in sharp contrast with
the CPP geometry. An important corollary is that the
CPP magnetoresistance is always larger than the CIP
magnetoresistance; as the local limit is approached their
differences become rather dramatic.

The derivation of global properties is straightforward
for the CIP geometry. As our results are quasiclassical,
they are essentially in agreement with those derived &om
the Boltzmann equation; ' as this has been done in
several papers I will not write here the rather cumber-
some general expressions that follow &om this theory.
The only caveat is again that interface scattering should
be modeled with interface layers, which physically repre-
sent the effect of interdiffusion.

On the other hand, the problem for the CPP geometry
requires further analysis. For the CPP geometry the cur-
rent is uniform throughout, and even though a uniform
electric Geld is applied to the layers, the actual field in
the solid varies &om one layer to another and is spin de-
pendent. In the remainder of this section I will work out
the consequences of this real-space model for the CPP
geometry.

In order to focus on the spin-dependent nature of the
scattering and on the implications of this for the internal
fields, I explicitly resolve the total current into two spin
currents, that is,
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solving the integral equation (6.4). This can be inter-
preted as searching for the steady-state internal Geld dis-
tribution that is consistent with current conservation.
This turns out to be a trivial problem; in efFect, the form
of the exponent, Eq. (4.18), and the piecewise-constant
nature of the scattering imply for an in6nite multilayered
structure (L » l~, az) that

d~' ) d~"
l (z'), l (z")

II
=2 d~ exp t — „~=2 (6.5).. ~-( ") )

(two perfect difFerentials: one for z ) z' and one for
z ( z'). This gives the solution for the internal field by
direct inspection, if one inverts the order of integration
in Eq. (6.4), that is,

(6.6)

which amounts to an internal field that is inversely pro-
portional to the local mean &ee path. An alternative
but lengthier proof follows by using the discrete version
of the two-point conductivity, i.e. , integrating Eq. (6.4)
layer by layer; after an infinite series of cancellations (pro-
vided that L » l~, a~), one obtains the same result as
before.

With the result that E (z) (x 1/l (z), it follows that
the contribution to the CPP resistivity due to channel 0;
is

P,pp. = = (c'~)-' ) ~ (a.(z)), (6.v)
(z)

l (z)

which is solely determined by the average scattering
in the medium. Therefore the CPP resistivity is self-
averaging and given by the series resistor model, not just
for the local and self-averaging limiting cases, but for all
length scales. Then, &om the two-current model,

(
&CPP = +D ) (6.8)

This is the result that had been predicted in Ref. 19 and
that has been found to be in impressive agreement with
experimental results.

VII. CONCLUSIONS

In this paper, I have analyzed the electrical transport
properties of magnetic multilayers. Although most re-
sults rely on the metallic character of these structures, I
placed particular emphasis on the magnetoconductance
due to a reorientation of the magnetization vectors of
the diferent regions of these inhomogeneous structures.
This is motivated by the huge interest attracted by the
phenomenon called giant magnetoresistance, whose un-

derlying physical origin is believed to be spin-dependent
scattering.

The main purpose of this paper has been to develop a
general solution of the Kubo formula for metallic multi-
layers. In particular, I have clarified the emergence of the
quasiclassical regime for multilayers &om the quantum-
statistical Kubo formula, and indicated where such a
regime is to be found experimentally in terms of the ad-
justable parameters of the model.

The solution I developed &om the Kubo formula has
the following features. First, it is a real-space approach,
i.e., it is based upon the real-space Kubo formula. Sec-
ond, the Green's function problem is tackled only after
the self-energy has been cast into a simple form in the
dilute limit. Third, the Green's function problem is re-
duced in real space to the solution of a difFerential equa-
tion with matching boundary conditions at interfaces.
The transport coefBcients that are actually computed in
this real-space approach amount to the two-point con-
ductivity function, which expresses the most general lin-
ear and nonlocal relationship between the current density
and the internal fields in the solid.

Using this real-space Kubo approach, I derived gen-
eral analytical formulas for the two-point conductivity
for the quasiclassical regime. One interesting feature of
this clarification is that it suggests an improved form for
the phenomenological coherent transmission coefBcients
of the quasiclassical approach, an improvement that in-
cludes both an angle dependence and a clear physical
interpretation. The striking difFerences between the CIP
and CPP conductances and magnetoconductances were
discussed, and the emergence of simple limiting cases was
recovered &om this more general formalism. In particu-
lar, I derived a proof of the so-called series resistor model
for CPP.

Finally, I would like to emphasize that this real-space
theory constitutes a first approach towards a more com-
prehensive theory of transport in metallic multilayers.
Generalizations of the formalism that are immediately
suggested are transport in the presence of noncollinear
magnetization configurations for multilayers, transport
in three-dimensionally inhomogeneous magnetic struc-
tures such as magnetic granular solids, and transport in
multilayers in the presence of "superlattice potentials. "
These generalizations involve new efFects that can be nat-
urally dealt with within the real-space approach, and will
be presented elsewhere.

In conclusion, the general real-space Kubo approach
developed in this paper provides a remarkably simple,
both intuitive and analytic, understanding of magneto-
transport in multilayers, and it constitutes a rather fIex-
ible tool that naturally paves the way for further gener-
alizations.
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APPENDIX A: PROPERTIES OF ZERO-RANGE
POTENTIALS

The basic equation for the total T matrix is given by
Eq. (3.7), which can be iterated to give the perturbative
series

A zero-range potential of coupling strength A, i.e. ,
T = V+VG V+ VG VG'V+ (Bl)

v(r) = Ab(r —rp),

has real-space matrix elements

(r
~

v
~

r') = Ab(r —rp) b(r' —rp),

(A1)

(A2)

(where I have omitted explicit reference to the energy
dependence) .

For a zero-range potential v (r) = A h(r —r ), the
real-space matrix elements of the total T matrix are

that is, it is "bilocal. " The corresponding one-site T
matrix is given by the solution to Eq. (3.11), that is,
using symbolic operator notation,

t = v (1 —G() v) = v+ v G v+ v G v G v+
(A3)

(r)(T)r') = ) A h(r —r ) h(r' —r )

+) A h(r —r )
a

x dr2G r, r2 r2 T r' (B2)

its real-space representation always has two Dirac b func-
tions in excess of integration variables, thus yielding the
bilocal one-site T matrix

In this appendix, for the sake of notational simplicity, I
do not explicitly write the spin-channel index o. and I use
the symbol n(r) rather than n; &(r) for the concentration
of impurities. Using a "multiple-site technique"

(r
~

t
~

r') = A (1 —A S) b(r —rp) b(r' —rp), (A4)

where S = g (0) for g(B) = g(~r —r'~) = G (r, r'); notice
that S is proportional to the trace tr[Gp(s')] of the unper-
turbed one-particle propagator, which could be written
in terms of the unperturbed density of states per unit
volume, "pp(s).

The following result then follows &om Eqs. (3.12) and
(A4): For a random distribution of zero-range potentials,
if the self-energy happens to be local and given Eq. (3.12),
l.e. )

T=)
one obtains

) w (r, r') =) A h(r —r )b(r' —r )

+) A b(r —r )
a,b

x d r2G r, r2 wg r~ r'

(B3)

(B4)

(r l~ lr') = ~(r) h(r -r') (A5)

then its diagonal elements are

Z(r) = n(r) A(r) [1 —A(r) S] (A6)

where n(r) = n; ~(r) in this appendix. The correspond-
ing impurity-averaged off-shell T matrix, which is the
solution to Eq. (3.9), namely,

T(rr') = f d rr n(rr, ) r„(r, r'), (B5)

where w (r, r') = (r ~w~~ r').
Applying the impurity-averaging procedure described

in Sec. III, and using the notation T(r, r')
(r [ (T(e))& [ r'), one finds that the real-space matrix el-
ements of the total impurity-averaged T matrix are

(T(s))& = ~(s) 1 —G'(s) ~(s) (A7) where w, (r, r') = w (r, r'), and the following integral
equation is satis6ed:

has the following symbolic form [from Eqs. (A5) and
(A6)]:

T(r, r') = n(r) A(r) 1 —A(r) S —A(r) n(r) G (r, r'),
(As)

T(r, r') = n(r) A(r) b(r —r')

+n(r) «(r) f d rr G (r, rr ) r (rr, r')

+n(r) «(r) f d r r G (r, rr)T(rr, r') . (B6)

where the notation T(r, r') = (r
~
(T(s))z

~

r') was used. In the dilute limit, the second term on the right-hand.
side can be replaced with the approximation

APPENDIX B: INTEGRAL EQUATION
FOR THE TOTAL T MATRIX n(r) f d rr G (r, rr)r, (rr, r') = dT(r, r ), '(B7)

In this appendix I give an alternative derivation of the
result of Sec. III that in the dilute limit the self-energy
is given by Eq. (3.12) for zero-range potentials.

where S = g (0) = G (r, r) was defined in Appendix A;
this can be understood as having r2 and r' close to r in
the "dilute approximation. "
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From Eqs. (B6) and (B7), using symbolic operator no-
tation,

T(r, r ) = n(r) A(r) 1 —A(r) S —A(r)n(r) G (r, r ),
(»)

which is identical to Eq. (A8). Therefore, by comparison

with the analysis of Appendix A, one concludes that the
self-energy is local, with the real-space representation

Z(r, r') = h(r —r')n(r)t(r)
= h (r —r') n(r) A(r) [I —A(r) Sj

and the results of Sec. III follow.
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