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Thermoelectric resonant transport through the Anderson impurities

V.V. Afonin and A.M. Rudin
A F .Io.ge Physico Tec-hnical Institute, 19/081 St P.etersburg, Russia

(Received 13 January 1995; revised manuscript received 8 March 1995)

The low-temperature thermoelectric resonant transport through the Anderson impurities under
the Kondo resonance conditions is studied. It is shown that for the smooth Anderson impurity
(AI) density of states the thermoelectric current is parametrically larger than that in the absence of
on-site Coulomb correlation, which is the signature of the Kondo eKect. In the case of singular AI
density of states some new characteristic temperature appears. For temperatures smaller than this,
the Kondo-type contributions to the thermoelectric current are important, while in the opposite
case the conventional picture of thermoelectric transport returns.

Recently, transport in mesoscopic systems with a
strong electron-electron interaction has received consid-
erable interest. ' In particular, in small tunneling
systems, this interaction suppresses tunneling in cer-
tain temperature and voltage regimes. This so-called
Coulomb blockade ' leads to various anomalies in trans-
port coefIicients including the conductance ' and the
ther mopower.

As one further reduces a sample size, a problem of the
resonant tunneling through an Anderson localized state
with an on-site Coulomb repulsion arises. At sufIiciently
high temperatures, this on-site electron-electron interac-
tion leads to a shift of the resonance energy. At small
temperatures and small applied voltages, the Kondo
resonance anomaly becomes important and dominates
the tunneling transport. The first time the impor-
tance of the Kondo anomaly for tunneling transport was
pointed out and studied above the Kondo temperature
by Appelbaum and Anderson. For a wide temperature
range, both higher and lower than the Kondo tempera-
ture of Anderson impurity (AI), this problem has been
reexamined by Glazman and Raikh and Ng and Lee
within the linear response approximation. Very recently,
the nonlinear current response on an applied voltage '

and efFects of the external magnetic field on this were
studied.

At the same time, all research on the low-temperature
transport through the Anderson impurities has been fo-
cused on the current-voltage characteristics, while the
thermal and the thermoelectric transport have not been
under discussion. This is mainly due to the fact that
the latter are more difBcult to measure. However, re-
cent experiments on difI'erent nanometer-size structures
showed that it is, in fact, possible to study in these
structures the "off-diagonal" transport coefIicients like
the thermopower and the Peltier coefIicient. In par-
ticular, the thermoelectric transport through the quan-
tum point contact, and through the quantum dot
in the Coulomb blockade regime ' were analyzed both
experimentally ' and theoretically. 2'

The purpose of the present paper is to study the low-
temperature thermoelectric transport through the An-
derson impurities under the Kondo resonance conditions.
It is well known that in such typical Kondo systems as

the dilute magnetic alloys, the thermoelectric transport
is anomalously effective and is characterized by a giant
thermopower. This makes it attractive to study ther-
moelectric resonant-tunneling transport via an ensemble
of Anderson impurities. The important difference be-
tween these two systems is that while the dilute magnetic
alloy can be characterized by one Kondo temperature T~,
AI with levels being scattered in energy space have a dis-
tribution of Kondo temperatures (TP1). We will show
that the thermoelectric current is sensitive to this distri-
bution. For a smooth AI density of states the thermo-
electric current has a large additional factor = I'/T, with
respect to that in the absence of the on-site Coulomb
interaction, which is the signature of the Kondo effect;
I' is the characteristic level broadening (see below), T is
the temperature. In the case of singular AI density of
states, we show that a new characteristic temperature
T yy T~ appears. If T (g T the Kondo contribu-
tions to the thermoelectric current are important, while if
T )) T the many-body effects are unimportant and the
conventional picture of thermoelectric transport returns.

We consider the system in the standard setup. Elec-
trons tunnel resonantly via AI levels positioned in a bar-
rier of the device (see Fig. 1). The Hamiltonian of such
a system, taking account for on-site Coulomb repulsion
(W is the Coulomb energy), has a form:4

H = ck~aLk~aLl a + g ek~aRk~aRk
ko. kcr

+) e) dd, +Wdtd dt d;
i cr

+) (vg~'„„.d;. + v~'d,'.~c».)
kyar

+) (vzazz d; + vz*d, aR|, ) .

Here, aLk, aRk, and d, are the second-quantization
operators for the electrons with the wave vector k and
spin cr in the left, right leads, and on the ith AI corre-
spondingly; e;—energy of the ith AI level; VL and VR
hybridization constants.

Thermoelectric current through the junction is a result
of the applied temperature shift between left and right
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FIG. 1. Resonant tunneling through the Anderson impuri-
ties.

leads of the device LT = TL, —T~, which is considered
as small AT &( TL„TR = T. In the spirit of Landauer
approach, we express this current in terms of the trans-
mission probability D(s', T) of the electron with energy s
through the barrier:

T/max( ~s; —s~ ~, (r&+ r&) ), which is due to the particle-
hole symmetry, characteristic for degenerate Fermi sys-
tems.

Finite on-site Coulomb interaction (W g 0) makes the
many-body eKects important. In particular, for the AI
level positioned far below e~ and with large enough on-
site Coulomb constant W )) e~ —r, )) I'0, an increase of
junction conductance with the temperature decrease,
in analogy with the well-known Kondo effect in dilute
magnetic alloys, takes place. Let us study this quantita-
tively. For the sake of simplicity consider first only one
AI, with parameters co, xo, VL, and V&. Following Glaz-
man and Raikh, we introduce new second-quantization
operators o.k and Pk

k ——uaLk~ + VORk

Pk —iiaRk U&Lk

where u = VL/V, v = V~o/Vo, V = (~V~o~ + ~VR~ ) y

This transforms the Hamiltonian, Eq. (1), to a form

Iz ——2 —AT
6 (2)

H = ) skao'k~ciko + ) ~kc /3k~Pk~ + so ) dp~do~

where f (s, T) is the Fermi distribution function.
If the tunnel barrier is thin enough, one can neglect the

processes involving two or more AI simultaneously and
consider them all as independent transmission channels.
That gives D(e, T) = P,. D''(s, T), where i indices the AI
with the energy r; and the coordinate x, .

In the absence of the on-site Coulomb interaction
(W = 0), Eq. (I) describes standard resonant tunneling.
As it is well-known, the transmission coefficient D (s, T)
in this case is given by the Breit-Wigner formula and
does not depend on temperature if one neglects many-
body eKects in the leads:

4I'~I'~
D'(s, T) = D*(s) =

where r&~&l
——z~V&l&l ~

vF is a width of quasilocal level
with respect to electron decay from c; to the left

(right) lead, v~ is the density of electron states at the
Fermi level in the leads. Widths I'& and I & depend ex-
ponentially on x;:

(2x; l
r*L, +. r*R ——2I' h E&r'

o 271' e OD (s)
3h 0. (4)

The thermoelectric current, Eq. (4) is proportional to

where I o = (rLr&) ~ oc exp( —d/A) does not depend on
i, A is the tunneling constant, d-barrier thickness. From
Eq. (3), it is clear that resonant transport via those
impurities close to the Fermi level ~s; —s~~ ( rL + r& is
mostly effective.

I'n the case W = 0, the transmission coefFicient as a
function of c changes weakly in the T vicinity of chemical
potential, and we expand D in powers of r —c~. Leading
nonvanishing term of this expansion gives from Eq. (2),

ko.

+Wdp dp d„dp + V ) (pp„p4 + dp ppp ),

in which only one sort of quasiparticles (o.) is coupled
with the AI. This Hamiltonian (without PtP terms) is
equivalent to the standard Kondo 8d Hamiltonian, with
both the potential scattering constant P,' and the ex-
change scattering constant J,' depending on the electron
energy c and being of the same order. For the electrons
with energies close to the Fermi level, they are estimated
as19

2 r*, +r'
7lVF Ez

—EP''
The quasiparticle scattering amplitude S k~ k in the

new representation is related to the tunneling amplitude
as SL,k~~k = [VL VR*/(V ) ]S~k~~k . As a result, with
taking into account only elastic electron scattering on AI,
the transmission coefficient D'(s, T) has a form

D'(s, T) = Do(sp), , [sin(h: ~)],
ran+ra '

where Dp(s) is the transmission coefficient under the full
resonance conditions (x' = 0, s; = s~), and h', & is a scat-

7

tering phase in terms of which the scattering amplitude
S k~ k in a homogeneous metal" is expressed. This
phase is determined by the relationship between T and
the so-called Kondo temperature ' of AI T~'.

2 „. . . i)2 r'

T~ ———[2s,**(rL + r~)] exp
~

— .
'

. ~, (&0)
7r 2(r'i+ r* ))
r;+r„, r' w )

vr g 4s,*. *)
+I
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In the case T )& T~, the Born approximation [b,' &
——

8,
'

7, + b,
'

T, +, and, correspondingly, D'(e', T)
D'~ l(e, T) + D'l ~(e, T) + . ] is valid. The first-order
value of the transmission coefficient D'l l (e, T) coincides
with Eq. (3) in the lowest approximation and does not
depend on temperature:

In the next-order approximation, the temperature-
dependent terms appear. For the electrons with c
they are

(12)

IT ——Sp
8/2

d/2

2e
dx; de, g(e, , x, ) b,T

(14)

The first, logarithmic, term in Eq. (12) is proportional
to the exchange scattering constant Q; squared and is
responsible for the low-temperature Kondo-type conduc-
tance enhancement. The second, [2f(e, T) —1] term is
proportional to (Q,') V,' and gives smaller contribution to
the conductance. However, only the latter term is odd,
with respect to e —c~, lifts the particle-hole symmetry
and, thus, gives rise to the thermoelectric current.

When T becomes smaller than T~, Anderson impurity
becomes strongly screened by the electron cloud. The
scattering phase for electron scattering on such a "com-
plex" tends to n/2 (unitary limit) and may be written
as"

(13)

where p is constant of order unity. In this case, particle-
hole symmetry recovers and thermoelectric current due
to tunneling via ith AI vanishes.

Strictly speaking, Eq. (9) is valid only at zero temper-
ature, when only elastic electron scattering is present. In
the case T g 0, electrons can be scattered inelastically2
on a complex "Anderson impurity + screening cloud"
via a polarization of the screening cloud. This scattering
channel also gives rise to the transmission coeKcient. In
the limit of small temperatures, T « T~ AI is nearly
completely screened by the electron cloud and the inelas-
tic scattering contribution to the temperature-dependent
part of D' is of the order of the elastic scattering contri-
bution, Eq. (13). However, this temperature limit does
not contribute to the thermopower under discussion. In
the case T &) T~, screening of the impurity by electrons
is very weak. The inelastic scattering contribution to the
transmission probability is correspondingly weak, and it
can be neglected. Therefore, studying thermopower we
will not take the inelastic electron scattering channel into
account.

Let us now turn to the calculation of the thermoelectric
current via an ensemble of AIs. This has a form

with D'(e, T) given by Eq. (9); g(e, , x;) is the AI density
of states, Sp the cross section of the contact. We will
consider two limiting cases for g(e;, x, ): constant density
of states and singular distribution of e, . These cases are
most likely to happen in real structures.

(1) Constant density of states g(e, , x;) = gp. Accord-
ing to Eq. (12) the dominant contribution to the ther-
moelectric current is due to those AI with (e~ —e;)
(I'L +I'&), for which the odd, with respect to e —e~, con-
tribution to the transmission coefFicient becomes large.
On the other hand, in the region T « T~, particle-hole
symmetry recovers and the contribution of the ith AI to
the thermoelectric current vanishes. With account of the
equality J(2f—1)[(e —e~)/ T]( 0f/—etc)de = 1/2 thermo-
electric current, Eq. (14) in this case can be estimated
as

I ~ —DDT
h

where D —a SpAgpI pDp is the resonant transmittance
without accounting for collective effects.

It is important to mention that neglecting the on-site
Coulomb interaction we would obtain estimate for the
thermoelectric current, which has an additional small fac-
tor T/I'p. Thus, we obtain a strong enhancement of the
thermoelectric transport efIiciency under the Kondo res-
onance conditions similar to that in the dilute magnetic
alloys.

(2) Singular density of states For sm.all contacts, the
number of AIs is small and their distribution is strongly
inhornogeneous. In this case, it is convenient to model
AI density of states as a sum of singular terms. For
simplicity, we take g(e, , x;) = (A/Spd)8(e; —e), where
JV is a total number of AIs, which all have the same
energy e.

In order to find the thermoelectric current, we have to
compare the contribution due to usual potential scatter-
ing, Eq. (11), with the Kondo contribution, Eq. (12).
For the potential scattering one obtains, combining Eq.
(ll) and Eq. (4),

I~~ = ——AT D
6 (16)

where D = JVDpl 2p/(eJ; —e) is the resonant transmit-
tance without account for collective effects. The Kondo
contribution gives from Eq. (14), (12) for T ) T~(x' =
0, e' =e),

e - A p2
IT, "" ——AT D —exp(2d/A)

h, d E'y —8'

For T (( TJc(x' = 0, e' = e), the Kondo contribution to
the thermoelectric current tends to zero.

One sees that there are two regions separated
by a characteristic temperature T(e) = [I p/(e&

e)](A/d) exp(2d/A) V,-* ~ Q,-
* "

(A/d)v~. For T &)

T(e) the potential scattering dominates, and the thermo-
electric current has the usual factor T/(ey —e) charac-
teristic for the degenerate Fermi systems. For the tern-
peratures T « T(e), the Kondo contribution dominates.
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To conclude, the low-temperature thermoelectric
transport through the Anderson impurities under the
Kondo resonance conditions is studied. It is shown that
for the smooth AI density of states, the thermoelectric
current is parametrically larger than that in the ab-
sence of on-site Coulomb correlation, which is the sig-
nature of the Kondo eKect. In the case of singular AI
density of states, some new characteristic temperature

T(Z ) )) TIAA.
1 appears. If T (( T(s), the Kondo-type con-

tributions to the thermoelectric current are important,
while if T )) T(e) the conventional picture of thermo-
electric transport is restored.
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