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An analytical formula for the diffraction from an initial transient layer-by-layer growth front has been
derived. The approach utilizes recently developed dynamic scaling models which describe the growth-
induced roughening evolution at the late stage of growth. The results can be applied to both out-of-
phase and non-out-of-phase diffraction conditions. At the out-of-phase conditions, the Bragg peak inten-

'tr wsity is given by Is„s~e [1+cos(2m.(h))], which oscillates with the growth of the film thickness
(h ) but decays with the increase of the interface width io due to the growth-induced roughening. The
derived diffraction formula is consistent with the peak intensity oscillation obtained from a transient
layer-by-layer process observed in low-temperature molecular-beam epitaxy growth of Si/Si(111).

I. INTRODUCTION

Growth of crystalline thin films can take place in sys-
tems with two phases such as crystal and vapor, crystal
and melt, or crystal and solution. A thin film can also be
grown by direct deposition of particles on a substrate as
in molecular-beam epitaxy (MBE) processes. The study
of the growth carried out by techniques such as MBE and
metal-organic chemical-vapor deposition (MOCVD) has
been a very important topic for both scientific research
and industrial applications.

Under near-equilibrium conditions, the growth usually
starts with the formation of nuclei. It is well known that
the nucleation growth processes can be classified into
three conventional types (1) layer by layer grow-th, -
i.e., two-dimensional (2D) nucleation growth [Frank-
van der Merwe (FM) mode]; (2) island growth, i.e., 3D
nucleation growth [Volmer-Weber (VW) mode]; and (3)
layer growth followed by island growth [Stranski-
Krastanov (SK) mode].

The 2D nucleation-dominated growth processes have
been observed in many diffraction experiments using
techniques such as low-energy electron diffraction
(LEED), the reflection high-energy electron diffraction
(RHEED), x-ray diffraction, and He-atom diffraction.
The layer-by-layer growth manifests itself in the time-
dependent oscillation of the measured Bragg peak intensi-
ty. Very often, the amplitude of the intensity oscillation
decays continuously during growth until it finally van-
ishes at the later stage of the growth. Two possible
mechanisms have been proposed to interpret the tran-
sient oscillatory behavior. One is that the damping of the
intensity oscillations reflects the emergence of a steady-
state (step flow) growth from the 2D nucleation regime
without a significant increase of surface roughness. This
mechanism is believed to occur at higher growth temper-
atures. An example has been shown in the MBE growth
of GaAs film on a GaAs(001) surface at 555'C. Another
mechanism is suggested to occur at lower growth temper-
atures, where, due to the low atomic mobility, the
diffusion is unable to compete with the growth-induced
Auctuation. Therefore, a steady-state step structure is

unlikely to occur. Under this circumstance, the decay of
intensity oscillations is likely an indication of the oc-
currence of kinetic roughening below the equilibrium
roughening transition temperature. In this paper, we
shall focus on the topic of the roughening-induced tran-
sient layer-by-layer growth.

It was shown by Saarloos and Gilmer in their polynu-
clear growth (PNG) model that if multiple nucleation
events occur in layer growth at a sufficiently high nu-
cleation rate, the global interface can grow into a dynam-
ic roughening morphology which resembles the simple
random-walk picture. Thus, as far as the nonequilibrium
dynamics is concerned, even the 2D nucleation-
dominated growth could eventually evolve into a mul-
tilevel rough surface. The roughening evolution can be
described by stochastic Langevin equations which include
kinetic effects, the random fluctuation, and the relaxation
mechanism. Two kinds of stochastic Langevin models
have been proposed: one considers growth conditions
dominated by the evaporation-condensation process-
es; ' another one describes growth processes which
proceed with the deposition and atomic diffusion but
without desorption. ' ' Both models can predict the ex-
istence of an initial layer-by-layer growth process. The
growth-induced roughening will finally evolve into a re-
gion where the morphology shows a dynamic scaling
behavior.

Roughening-induced transient layer-by-layer phenome-
na were studied previously using various microscopic
(lattice) models. ' A modified Eden model simula-
tion showed that at the initial growth stage, the inter-
face width which measures the surface roughness oscil-
lates itself, and the scaling properties of kinetic roughen-
ing can only be observed once these oscillations are
damped out. Such an initially nonmonotonous change of
the interface width originates from the intrinsic substrate
effect where holes, overhangs, and multiple steps are not
allowed, so that the morphology cannot become rough
quickly at the beginning stage of growth. However, a re-
cent simulation indicated that an effective scaling can
occur even in the early growth regime, and that the
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where m denotes the interface width. This implies that
under circumstances where the intrinsic substrate effect is
less inAuential, so that the oscillation of interface width is
negligibly small, then the dynamic scaling properties can
be observed in the early stage of growth. One such exam-
ple is the low-temperature MBE growth of materials with
strong chemical bonding (such as Si), where multiple
steps might be created due to the slow atomic mobility
and fast deposition. In this paper, we present a quantita-
tive study of diffraction characteristics from a
roughening-induced transient layer-by-layer growth
front. Considering the cases where intrinsic substrate
effect is at a minimum, we have derived analytical form
for the damped Bragg intensity oscillation based on the
growth dynamics described by stochastic Langevin mod-
els. Detailed discussion of these models is given in Sec.
II, and the derivation of the decay in intensity oscillation
is presented in Sec. IV. In Sec. V, we give an example of
the low-temperature MBE growth of Si/Si(111). In addi-
tion, in Sec. III we show the diffraction characteristics for
an ideal layer-by-layer growth front. The study is expect-
ed to provide a useful analytical tool for the diffraction
study of layer-by-layer growth phenomenon.

II. GROWTH DYNAMICS: STOCHASTIC
LANGEVIN MODELS

A. Growth with surface tension: Evaporation, condensation
and 2D nucleation

A phenomenological Langevin equation that incorpo-
rates the processes of evaporation, condensation, and 2D
nucleation has been proposed as

a z(r, t)=vV Z(r, t)+Dip/T+rl(r, t)

2mZ(r, t)—Vsin
C

where r = (x,y) is the positional vector along surface, and
Z(r, t) represents the surface height of the position r at
the growth time t. Equation (1) is a Sine-Gorden equa-
tion. The Arst term on the right-hand side of the equa-
tion describes the relaxation driven by surface tension via
evaporation and condensation processes, where the
coeKcient v is the surface tension. The second term is re-
lated to the nucleation driving force for crystal growth,
where Ap is the chemical potential difference between the
crystal phase and the vapor phase. The term Db,p/T ac-
tually represents the deposition rate (impinging rate) of
atoms from vapor onto a crystal surface. g(r, t) is the
noise simulating random Auctuations that induce the
roughening during growth. q(r, t)'s are independent
Gaussian random variables which satisfy the statistical
relation

crystalline surface, which energetically favors integer
values of heights, Z(r, t), in units of the layer spacing c.
Vis the amplitude of the pinning force.

The physics implicated in Eq. (1) can be understood
from the following qualitative analysis. After taking a
statistical average on each term in Eq. (1), and based on
the fact that (V Z(r, t))=0, we obtain a growth rate
equation

(Z(t) ) =DAIJ, /T Vs—in
at

2~Z(r, t)
)C

~ W

Q

bQ

C4

One may notice that the term d/r)t ( Z(t) ), which
represents the actual growth rate, is not equal to the
impinging rate of deposition, D hp/T, because of the
contribution from the pinning force,
Vz,.„„,„s= —V( sin[2m Z(r, t)/c] ). The contribution from

Vp I can or iginate from the evaporation and reconden-
sation processes. In a layer-by-layer growth process, a
majority of atoms and islands are in the top layer of the
surface. The average surface height (film thickness) can
be approximately expressed as (Z(t)) =(m+8)c, where
m is the integral part of the film thickness and 0 is the
coverage of deposited atoms in the top layer. For the
purpose of discussion, we can roughly replace Z(r, t) by
(Z(t) ) in the pinning force, V;„„;„
= —

V sin[2'(Z(t) ) /c]= —V sin(2mO). As shown in
Fig. 1, V;„„;„ is negative between 0=0 and 0.5 (half-
monolayer) and then positive from 8=0.5 to 0= 1 (1
ML). The negative V~;„„;„s indicates the occurrence of
desorption (evaporation) events, while positive V;„„;„
implies the recondensation.

The behavior of the pinning force reAects qualitatively
the reality of the 2D nucleation-dominated growth pro-
cess. At 0~0.25, since few atoms exist in the top layer,
the probability that 2D clusters overcome the potential
barrier to reach the critical nuclei size is small. There-
fore, a number of deposited atoms which are not stable in
the crystal surface will evaporate onto the vapor phase.

0.00 0.25
I

0.50

Coverage e
0.75 1.00

(2)

where D is the mean square amplitude of the noise. The
fourth term, V sin[2mZ(r, t)/c], is the pinning force for a

FIG. 1. The pinning force V~;„„;„s= —Vsin[2n (Z(t) )/c] is

plotted as a function of the coverage for deposited atoms in the
top layer. The behavior of V~;„„;„grejects qualitatively the real-

ity of the 2D nucleation-dominated growth process.
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V„;„„;„thus makes an increasing negative contribution to
the growth rate, as shown in Fig. 1 between 0=0 and
0.25. With the increase of the coverage, the probability
for 2D nuclei to reach the critical nuclei size increases.
As a result, the negative pinning potential starts to de-
crease, as shown between 0=0.25 and 0.5 in Fig. 1.
when the coverage further increases, the top layer con-
tains so many atoms that the growth is much easier.
Vp g

thus becomes increasingly positive and the con-
densation processes are dominant at 0.5 ~ 0 ~ 0.75.
Beyond 0=0.75, the positive pinning force starts to de-
crease until 0=1. The reason for the decrease may be
due to the lack of nucleation events in a new layer, which
slows down the growth process.

It is shown that Eq. (1) captures the essential physics in
the growth processes which involve evaporation, conden-
sation, and 2D nucleation. This model exhibits a noncon-
servative dynamics because the sticking coe%cient of
deposition atoms is less than 1 due to evaporation.
Renormalization-group (RG) analysis"' of Eq. (1) fur-
ther indicates that the growth morphology depends
strongly on the chemical potential driving force, Dhp/T.
The dynamics can be classified into two categories.

1. Small driving force: ¹arequilibrium dynamics

For a very smail chemical potential difference, Ap-0,
the growth proceeds in near-equilibrium dynamics. The
corresponding morphology is similar to that on an equi-
librium surface. Below the equilibrium roughening tran-
sition temperature Tz, the pinning force is dominant and
the surface forms a Bat phase, where the growth occurs
via ideal layer-by-layer nucleation. At T(Tz, the
growth rate R -0, which, to the first order, is consistent
with the general form of nucleation growth rate,—D /Ap
R -e ', where D0 depends on temperature. In con-
trast to the low-temperature growth, at high ternpera-
tures above Tz the surface will remain rough during
growth. In analog to the equilibrium case, the dynamic
phase transition "" of the growth morphology near Tz
is of the Kosterlitz-Thouless (KT) type. We must em-
phasize that the Aat phase discussed here is only mean-
ingful for certain length scale [such as the length scales
measured in scanning tunneling microscopy (STM) or the
correlation lengths in diffraction techniques]. On
suKciently large scales, the growing surface could be-
come rough no matter how strong the driving force is.
Therefore, we keep in mind that the Hat phase discussed
in this paper should always refer to a limited length scale.

2. Large driving force: Far from equilibrium p-rocess-es

In the presence of a finite chemical potential difference,
the large driving force can lead to a far-from-equilibrium
dynamics where the growth-induced roughening occurs
below Tz. Such a dynamic roughening is consistent with
the prediction from the PNG model. As pointed out by
Nozieres, ' the growth under a large driving force can be
compared with the thermodynamics of a vicinal surface
where the equilibrium roughening transition takes place
below Tz. A sufficiently large driving force is equivalent

to a large tilt angle of a vicinal surface, which blurs the
KT roughening transition and washes out the pinning
force to zero. In the absence of the pinning force, Eq. (1)
becomes an Edwards-Wilkinson model' that describes a
far-from-equilibrium growth dynamics where the mor-
phology undergoes both vertical roughing and lateral
coarsening evolution.

The vertical roughness can be characterized by the
root-mean-square height fluctuation, i.e., the interface
width w=+([Z(r, t) —(Z(t))] ), where (Z(t)) is the
average surface height (or film thickness) at growth time
t. The lateral coarsening can be described by a lateral
correlation length g, a distance within which the surface
height fm.uctuations are correlated but beyond which the
variations spread and are not correlated. For the
Edwards-Wilkinson model, shown as Eq. (1) with V=O,
the lateral correlation length is found to grow with time
as g=v'2vt and the interface width is given by (cf. Ap-
pendix A)

i /b 1
—2vtq

to —J dq =ln(l+t/r, ),
0

(4)

In addition, one can obtain analytically the height-
height correlation function, which is a measure of the rel-
ative height Auctuation in a surface

( [Z(r, t) —Z(0, r)]')
1/b 1

—2vtq—J dq [1—Jo(qr) ]
0

0

ln(r) for r «g
1n(t) for r ))g,

where Jo(x) is the zeroth-order Bessel function.
We should point out that the expressions in Eqs. (4)

and (6) agree with general dynamic scaling forms: to t~-
([&(r)—&(O)]')=2to f(r/g), where the scaling

function f (x) =1, for x ))1, and f(x)=x, for x «1.
a is the roughness exponent which describes the local
surface roughness. The exponent P is related to the
growth process. The dynamic scaling approach is a
very useful tool for describing the evolution of growth
fronts. For the present Edwards-Wilkinson dynamics,
a=@=0. Experimental evidence of this growth dynam-
ics has been reported recently in two growth cases.

B. Growth with surface diB'usion: Conservative
MBE growth dynamics

In one type of MBE processes, such as in Si epitaxial
growth, the primary relaxation mechanism is atomic
diffusion, where the deposited atoms can relax to the

where b, is the short length-scale cutoff (with an order of
the lattice constant), and r, is a time constant
r, '=2v/b, . The surface height distribution can be
shown rigorously (see Appendix A) to give a Gaussian-
type function:

Z 1 [Z —(Z(t) ) ]'
pZ = exp

&2mw 2w'
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2 . 2mZ(r, t)—VV' sin
C

(7)

where R is the impinging rate from a MBE source. The
term represents the local diffusion, and ~ is the

diffusion coefficient governed by the Arrhenius law,—E /k~T
sc —e ', where E, is the activation energy for
nearest-neighbor hopping. Note that the 7' term which
represents the surface tension in Eq. (1) is absent in Eq.
(7). We should point out that generically this Laplacian
term should be present due to the nonequilibrium statis-
tics of surface configurations. Compared with the V
term, the V term makes a more significant contribution
in longer time and larger length scale. We are more in-
terested in the earlier stage and shorter length scale
where the diffusion is the dominant smoothing mecha-
nism. Therefore, for simplicity, at the present time we
are not considering the contribution from the V term.
Besides, as a consequence of the conservation law, the
form of the pinning force, ' —VV sin[2mZ(r, t)/c], is
diFerent from that for the nonconservative growth shown
in Eq. (1). Since for any function of F(r), (V F(r)) =0,
we can easily show from Eq. (7) that the growth rate
d/dt (Z(r, t) ) is exactly equal to the impinging rate of R.
This is consistent with the conservative dynamics in con-
servative MBE processes.

Renormalization analysis' of Eq. (7) indicates that two
different morphologies can be produced during growth,
i.e., a high-temperature Hat phase and a low-temperature
nonequilibrium rough phase. The temperature-
dependent diffusion coefficient ~ is solely responsible for
such a phase change. At high temperatures (below Tz ),
the pinning force combined with a large ~ leads to a Aat

phase, which gives a model for the ideal layer-by-layer
growth. However, at low temperatures, the pinning force
is renormalized to zero. In the absence of the pinning
force, Eq. (7) becomes a Wolf-Villain model that de-
scribes the far-from-equilibrium dynamics undergoing
both vertical roughening and lateral coarsening evolu-
tion. ' ' This temperature-dependent behavior in MBE
growth is just opposite to that predicted from Eq. (1) for
the surface-tension growth model where a surface is Aat
at low temperatures but is rough at high temperatures
(see Sec. II A). Nevertheless, both predictions for the
temperature-dependent growth are supported by recent
experimental observations from different growth systems.

nearest kink or proceed to site-to-site hopping. The
diffusion relaxation is temperature dependent and follows
an Arrhenius behavior. Since the deposited atoms are
chemisorbed to saturate the strong chemical bonds in the
substrate, the surface tension type of relaxation via the
evaporation and recondensation process is negligible.
Therefore, this type of MBE process must be governed by
a mass conservative dynamics, which is in contrast to the
nonconservative model discussed in Sec. II A. Incor-
porating all these important characteristics, a I.angevin
equation for conservative MBE growth processes has
been proposed as'

a Z(r, r) =R xV'Z—(r, r)+ q(r, r)

For example, the temperature-dependent behavior in the
growth of He on He(0001) facet is more consistent with
the surface-tension model shown by Eq. (1). On the other
hand, the temperature-dependent growth of Si/Si(ill)
(Ref. 39) agrees with the conservative MBE dynamics
given by Eq. (7). It is understandable, that for the MBE
growth, the fast atomic diffusion at high temperatures is
able to smooth the fluctuation, while at low temperature
the diffusion is so slow that the Auctuation prevails to
produce a rough phase. Equation (7) thus captures the
essential physics in MBE processes.

For the Wolf-Villain model, shown as Eq. (7) with
V=O, dynamic scaling laws can be derived' ' to give a
lateral correlation length, g=(2a.t)'~ and an interface
width (cf. Appendix A)

1/bc 1 e
—2Ktq

'dq
0 q

Again, the surface height distribution function is found
to be identical to Eq. (5), i.e., a Gaussian distribution (see
Appendix A). The height-height correlation function
from Eq. (7) with V=O can be calculated as'

( [Z(r, r) —Z(0, r) ]')
1/b 1

—2atq—I dq [1—Jo(qr) ]
q

r ln(t/r ) for r ((g
for r»g. (9)

The growth-induced roughening in a conservative
MBE growth is distinctly different from that in the
surface-tension model. For MBE growth, a = 1 and
P= —„', while for the surface-tension model a =P=0. They
belong to different classes of dynamics. [The conserva-
tive MBE growth dynamics has been observed recently in
the growth of Si/Si(111) (Ref. 39). We shall show below
that different time-dependent interface widths w-t'
(MBE model) and w-Vln(t) (surface-tension model),
manifest themselves in the decay of Bragg intensity oscil-
lations in the region of transient layer-by-layer growth.

III. DIFFRACTION FROM AN IDEAL
LAYER-BY-LAYER GROWTH FRONT

Under appropriate deposition conditions, both growth
models discussed in Sec. II predict the existence of an
ideal layer-by-layer growth process in which the surface
contains steps that are confined within top two levels.
The distribution of steps can be completely random
or partially correlated. In the present study, we
shall consider only a random distribution of steps in two-
level systems.

A. Height difFerence function and height-height
correlation function

The height difference function is defined as
C(g, r)=(e'~"" "' ' ), where P is a phase constant re-
lated to the diffraction condition. h (r) =Z(r, t)/c
represents the surface height in units of c. C( P, r ) de-
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+ [1—48(1 —8)sin (P/2)], (10)

where C(g=m, r) is given by den Nijs and Rommelse as

C(g=m, r)-Coe " ~+p

with p =(1—28) and Co =48(1—8).
In Eq. (10), the constant term [1—48(1 —8)sin ((()/2)]

reAect long-range order while the exponential function
e ' ~ exhibits a short-range disorder. This type of ran-
dom distribution of steps can occur in many physical sys-
tems, including an equilibrium surface structure below
the roughening transition temperature. For the present
layer-by-layer growth problem, the correlation length g is
interpreted as the average size of 2D clusters.

The corresponding height-height correlation can be
simply calculated from Eq. (10) as

( [Q (r ) Q (0) ]2 ( &
&P(h {r)—h{0)) )

d'
A/2

=28(1—8)(l —e "~~) . (12)

The interface width w can then be obtained as

tc/c = lim Q —,'( [h(r) —h (0)] ) =&8(1—8) .

Since 0 8~ 1, w/c =&8(1—8) ~ [8+(1—8)]/2= —,'.
Thus the thickness of the crystal-vapor interface, 2m, will
not exceed the layer spacing c during layer-by-layer
growth.

scribes the statistical average of the phase difference be-
tween two points in a surface. Under the two-level re-
striction and the assumption of randomly distributed
steps, the expression for the height difference function
has been shown to have the following form:

C(g, r) =cos (P/2)+sin (P/2)C(g=vr, r)

=48(1—8)sin (P/2)e

$(kI, k~ ) -48(1—8)sin (P/2)Lz
+hk

+ [1—48(1 —8)sin (P/2)]5(kl —Cx„„), (14)

Two leveI surface:
e = 0.5

where o.I =g ' and L2(x) is the 2D Lorentzian function
given by L2(x) ~ (1+x )

In Eq. (14), the diff'raction intensity distribution has a
form of 5+L2, i.e., a sharp 5 peak (Bragg peak) superim-
posed on a broad Lorentzian line shape. The full width
at half maximum (FWHM) of the Lorentzian shape is in-
versely proportional to the average size of 2D clusters,
FWHM = 2crI't/2 ~ 1=1.5—3$ '. To show the 5+L2
type of line shape, in Fig. 2 we plot Eq. (14) at / =2' (in-
phase condition), / =0.5m, and P =a. (out-of-phase condi-
tion), respectively. Here 8 is assumed to be a half-
monolayer coverage and the 6 function is convoluted
with a Gaussian function which represents an instrument
response.

Since (h ) =m+8, the diffraction demonstrates an
undamped oscillatory Brag g intensity,

IB„ss~ 1 —48(1—8)sin (P/2), as a function of the film
thickness, (h ), as shown in Fig. 3(a). At out-of-phase
diff'raction conditions, P = (2n + 1)m, IB„ss~ (2—8),
which has a maximal oscillation amplitude due to the
destructive interference of the diffraction scattered from
the first and second layers in a surface. The oscillation
also exists in the diffuse Lorentzian intensity
[ ~ 8(1—8)sin (P/2)], as plotted in Fig. 3(b). As shown
in Fig. 2, at the half-monolayer coverages (h ) =m+ —,',

8. Dift'raction intensity from an ideal
layer-by-layer growth front

The diffraction structure factor S(k~{,k~), which is pro-
portional to the diffraction intensity, represents the
Fourier transform of the height difference function,

S(k~~, k~)= f drC(g, r)e (13)

where Ghk represents the Bragg lattice vectors in a 2D
surface, and k~~ and kz are diffraction momentum
transfers parallel and perpendicular to the surface, re-
spectively. The phase constant P is determined by
P=k~c. $=(2n+1)m, n =0, 1,2, . . . , is the out-of-phase
condition at which destructive interference occurs be-
tween the diffract ion from different surface layers.
$=2n~ is the in-phase condition at which constructive
interference occurs.

To study the diffraction from an ideal layer-by-layer
growth front, we insert Eq. (10) into Eq. (13). The
difFraction structure factor is obtained as

-0.6
I I I I I

-0.4 -0.2 0.0 0.2 0.4

I (A.-')
0.6

FIG. 2. Diffraction line shapes from a two-level surface at
/=2m (in-phase condition), /=0. 5~, and P=m (out-of-phase
condition), where 9 is assumed to be a half-monolayer coverage.
The line shape at /=0. 5m shows a sharp 5 peak superimposed
on a broad 2D Lorentzian diffuse profile. At P=n, the 5 peak.
vanishes, while, at {(=2m, the diffuse line shape disappears.
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(a) y=~ fore, the evolution from an initial smooth surface to the
later rough morphology may exhibit transient layer-by-
layer growth behavior. In this section, we shall study in
detail the diffraction aspects related to the transient
layer-by-layer process.

A. General difFraction form: Damped oscillatory
Bragg intensity

~ ~
V

~ I"+~I

N

C)

I ' I ' I ' I
' I ' I ' I ' I ' I

0 1 2 3 4 5 6 7 8

I ' I ' I '
I

' I ' I ' I ' I ' I

0 1 2 3 4 5 6 7 8

Film Thickness (ML)

Similar to the diffraction line shape for a two-level sys-
tem shown in Sec. III, the diffraction structure factor
during growth can be divided into two parts. One is a
sharp central 5 function associated with the long-range
behavior in a surface. Another has a broad diffuse com-
ponent and is related to short-range properties. The 2D
I.orentzian function shown in Eq. (14) is an example.
Equation (13) can be rewritten as

S(k,k, )=f dr C(y, r ~)e' ~~

+ f d gC(y ) )~
kk

((t, r )s(k„—Gh„)+s„,(k„,k, ), (15)

where

FIG. 3. The central intensity and the diffuse Lorentzian

intensity from a two-level surface are plotted as a function of
the film thickness in (a) and (b), respectively. The diffraction
condition is at II =m., i.e., an out-of-phase condition.

bC(g, r) =C(g, r) —C(g, r~ co ),
and the diffuse structure factor is given by

(k kt )=fdl Q( (p r )

(16)

(17)

the Bragg intensity vanishes while the diffuse intensity
reaches a maximum as a result of destructive interfer-
ence. At integer monolayer coverages (h ) =m, where
the surface is completely Oat, the Bragg intensity reaches
a maximum while the diffuse profile vanishes. However,
the Bragg intensity does not oscillate with (h ) at in-
phase diffraction conditions, $=2nm. , due to the con-
structive interference. Note that similar results were ob-
tained also from a 1D two-level model.

IV. DIFFRACTION FROM TRANSIENT
LAYER-BY-LAYER GROWTH FRONT

As shown in Sec. II, the growth-induced roughening
can take place under far-from-equilibrium conditions
after the pinning potential is renormalized to zero. After
a sufficiently long time, i.e., at the late stage of growth,
the roughening evolution exhibits dynamic scaling
behaviors, as shown in Eqs. (4) and (6) for a surface-
tension model and in Eqs. (8) and (9) for a MBE model,
respectively. However, since film growth processes usual-
ly start from a Rat substrate surface, the pinning potential
cannot be washed out at the initial stage where the sur-
face morphology has not grown rough enough. There-

The 5 component in Eq. (15) corresponds to the Bragg
peak intensity, which is proportional to C(g, r~ao ).
From the definition of the height difference function,
C((t), r)=e'~["" "' ']), we can obtain C(g, r~ac) as

C(y, r~ ac ) = (e'&"")(e'&"' ) ) =
~

(e'&h(o) ) ~
(lg)

where the derivation is based on the fact that, over a dis-
tance much larger than the lateral correlation length, the
surface height Auctuations should not be correlated.

The calculation of the average phase factor (e'~"' ')
requires knowledge of the surface height distribution. In
Sec. II, we have shown that for both MBE and surface-
tension models, the height distribution at a late stage is
represented rigorously by a Gaussian function shown in
Eq. (5). The Gaussian distribution might not describe ex-
actly the morphology for the growth of first several lay-
ers. However, for the subsequent growth, the Gaussian
function should be a reasonable approximation when cer-
tain roughness has been built up. In addition, consider-
ing the discrete lattice effect for a crystalline surface, we
have to employ a discrete height distribution instead of a
continuous one. With a discrete Gaussian distribution,
the calculation of (e''h" ( ) ) is straightforward. As shown
in Appendix B, the result is given by Eq. (B5) as

( eigh(0) ) eiP(h ) [
—()/2)[(()] (w/c) + +i2n(h ) —()/2)(2n. —][(I])) (w/c)

7
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+2 cos[2vr( h (t) ) ]e
—( 1/2)(2m I [P] I ) ( /c)e (19)

which is an oscillatory function of the film thickness,
( ((I ( t) ) . The oscillatory amplitude depends on

f 0] e
— ) —

I [0]I ) ( / a Debye-Wailer-1&ke7

factor which is very sensitive to ur. Since the interface
width increases due to the roughening evolution during
growth, as shown in Eqs. (4) and (8), the oscillatory am-
plitude must decay with time until it finally vanishes.
Therefore, the Bragg intensity shown in Eq. (19) exhibits
a damped oscillation, which reAects the transition from
the layer-by-layer to multilayer growth.

The Bragg intensity in Eq. (19) also depends on the
difFraction condition, P=kic. At out-of-phase condi-
tions, one has

IH„(m ) ~ e ("~' [1+cos(2~(h (t) ) }] . (20)

where (h ) denotes (h(t)) and [P] means P modulo 2n.

such that ~—~ [P] ~ m.

The corresponding Bragg intensity or the 5 intensity
( ~

~

(e'( "( ~)
~ ) is given by

(A, ) ~ —[(Ij (w/c) + —(2' ~[y}~) (wlc)
Bragg

Both the oscillation and the intensity decay originate
from the destructive interference of the diffraction from a
surface having more than two levels. For a film with a
thickness of a half-integer number of mon olayers,
( h(t) ) =m + —,', the Bragg intensity vanishes, similar to
that in an ideal layer-by-layer growth process, shown in
Fig. 3(a). Note that Eq. (19) does not hold at the exact
in-phase condition $=2n~, where a rigorous expression
gives ~(e' " "' ')

~

=1 (see Appendix B). At $=2n~, the
intensity neither oscillates nor decays because of the con-
structive interference between different layers of atoms.
An example for this in-phase diffraction condition is
shown in Fig. 5(a).

B. DiÃraction from transient layer-by-layer
growth: Surface-tension model

For the surface-tension model, the characteristics of
the transient layer-by-layer growth at the initial stage can
be demonstrated by a simple mean-field analysis from the
growth rate equation (3). Using the Gaussian distribu-
tion of Eq. (5) as a mean-field approach, we are able to
carry out the average of the pinning force in Eq. (3) as

(
Sill

2mZ(r, t) 1 dz exp
c v'2~(J

[Z —(Z(t) ) ]'
sin2'

2PZ

=e sin[2m (h(t) ) ],

a (h(t})=Ro —Yoe sin[2m (h(t)) ], (21)

where (h(t)) =(Z(t))/c and 2 =2(~/c) . The growth
rate equation (3) is then simplified as

1.5—

1.0—

(a)

where Ro=(Dbp/T)/c and Yo= V/c Note tha. t Eq.
(21) works only when the driving force is large enough so
that Rp & Yp.

To solve Eq. (21), we treat the interface width tc as a
constant based on the fact that m is a slowly varying
function shown in Eq. (4), tc -ln(1+ t /w, ), as compared
with the quick oscillatory function sin(2ir(h(t) ) ) during
layer-by-layer repetitions. (Actually, the interface width
m should also be modulated by the layer repetitions due
to the intrinsic substrate effect, as pointed out in Refs. 28
and 34. However, under the present approximation, in
which we have assumed that the effect is less significant,
we ignore such small modulations). Under the condition
of Ro) Yo, from Eq. (21) we obtain a solution which
shows an oscillatory growth rate

R2 (Y e
—Aw )2

R(t)= (h(t)) =
Ro+ Yoe " si [co(nt+t )+0@]

(22}

where co=2~"((/ R ~~
—( Yoe " ), tan(@) = Yoe " /

2
Ro —( Y'oe " ), and to is a constant determined by

0.5—

~ 0 I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I0.
0 1 2 3 4 5 6 7 8 9 10

(b)y=~

I ' I ' I ' I ' I ' I ' I ' I '
I

' I ' I0
0 1 2 3 4 5 6 7 8 9 10

8, t(ML)
FIG. 4. (a) The growth rate R (t) is plotted against the deposi-

tion Aux R Ot, as calculated according to the surface-tension
model. The oscillation is originated from the evaporation and
condensation processes during growth. (b) The corresponding
Bragg peak intensity as a function of Rot. The intensity oscilla-
tion decays in a form of power law, (1+t/~, )
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the initial condition. In Fig. 4(a}, we plot R (t) as a func-
tion of the deposition flux, Rot, where w ~ ln(1+t/r, ) is
given by Eq. (4). The growth rate R (t) shows a damped
oscillation, which originates from evaporation and con-
densation during growth, as discussed in Sec. II. Since

—Awthe oscillatory amplitude ~ Yoe, it decays when the
interface width increases. When the surface grows rough—Awenough so that Yoe ~0, the oscillation disappears
and R (t)~RO T.he growth-induced roughening eventu-
ally evolves into the late stage of dynamic scaling region.

The factor cos[2m( h(t) ) ] in Eq. (19) can be calculated
directly from the growth rate equations (21) and (22), i.e.,

I

cos [2m. ( h ( t) ) ]

QRO —( Yoe "
) cos[co(t +to) +4& ]

Ro+ Yoe "
sin[ co(t +t o)+@]

Using this oscillatory factor and the interface width,
w ~ ln( 1+t /r, ), we can calculate Eq. (19) for the
present surface-tension growth model. At the out-of-
phase difFraction condition [P]=sr, the Bragg intensity is
given by

QR,' Y,'(I—+ t/r, ) 'icos[-~(t+ t, )+e]Ia„(m.) o- (1+t/r, ) r 1+
Ro+ Yo(1+t/r, ) rsin[co(t + to)+ @]

(23)

where y is a constant. To show the damped oscillation,
in Fig. 4(b) we plot the Bragg intensity of Eq. (23) as a
function of the deposition Aux, Rot. As shown in Fig.
4(b), the oscillatory intensity decays with time as a power
law, (I+tlat, )

We also note that the minimal positions where the
Bragg intensity vanishes do not occur at the half-integers
of Rot. Recall that the Bragg intensity vanishes when the
film thickness reaches a half-integer of monolayers,
(h(t)) =m+ —,', as shown in Eq. (20). In Fig. 4(b), the
first minimal position occurs at Rot =1.1 ML. This im-
plies that with a total of 1.1-ML materials being deposit-
ed on the surface, only a half-ML of the material sticks
on the substrate while the rest of it simply evaporates.
Starting from a Bat substrate, the 2D nucleation in the
first layer is dificult, which leads to a delay of the first
minimal position occurring in the intensity oscillation
shown in Fig. 3(b). However, when the film grows thick-
er and rougher, a growing number of steps and kinks are
created to provide more sites which are energetically
favorable for nucleation. Accordingly, the growth be-
comes easier. As shown in Fig. 4(b), at Rot ) 3 ML, i.e.,
after growth of the first several layers, the interval be-
tween nearest minimal positions are roughly equal to 1.
This indicates that the average growth rate over each os-
cillation period is approximately equal to the impinging
rate, Ro, although the oscillation of the growth rate still
exists as shown in Fig. 4(a). We point out that the delay
of the first monolayer growth has been observed in many
experiments. ' ' ' Although several possible explana-
tions were given, our present result provides a physical
approach for this phenomenon.

C. DiÃraction from transient layer-by-layer
growth: Conservative MBK growth

For a conservative MBE growth, the growth rate is ex-
actly equal to the impinging rate of deposition,
d/dt(Z(r, t})=R, which is in contrast to that for the
nonconservative surface tension model, where
8/Bt (Z(r, t) )WR, due to the evaporation and reconden-

[$]2f1/2
+2 cos(2~Rt lc)e

Xe
—~ (2~—][y](]'~'"

(24)

To show the damped oscillatory behavior, in Fig. 5(b) we
plot the Bragg intensity of Eq. (24) as a function of the
growth time t at exactly the out-of-phase condition,
P=kic=m. . As shown in Fig. 5(b), the intensity oscilla-

—2wo/f '/2
tion decays exponentially ase, which is in con-
trast to the surface-tension model, where the oscillatory
intensity decays with time as a power law, (I+t/r, )

shown in Fig. 4(b). For a comparison, in Fig. 5(c) we also
plot the Bragg intensity at P=kic =0.5', which corre-
sponds to a diffraction condition that has been frequently
used in x-ray-diffraction and RHEED techniques. It is
shown in Fig. 5(b) that the minimal intensity of the oscil-
lation reaches zero because of the complete destructive
interference at out-of-phase conditions. This does not
occur at /=0. 5~ due to the partial destructive interfer-
ence, as shown in Fig. 5(c). These results are compared
with Fig. 5(a), which shows the corresponding plot at the
in-phase condition, k~c =2m. In this case, the Bragg in-
tensity neither oscillates nor decays due to constructive
interference from different levels of atoms.

D. Diffuse line shape

The calculation of the diffuse intensity is much more
complicated. We shall give only a qualitative description

I

sation processes. For a conservative MBE process, the
film thickness increases linearly with time as

(h(t)) =(Z(r, t))lc=Rtlc .

In addition, the interface width can be approximately
represented by w =Q Aot '~, according to Eq. (8), where
Ao is a constant. Inserting both w and (h(t)) into Eq.
(19), we obtain the Bragg intensity for an initial MBE
growth process:

—w, [y]'t' ' —~,(2~—~[y]~]'~' '
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as demonstrated in Fig. 6 for t &0. Such a 5 diffuse line
shape agrees with the diffraction theory developed in Sec.
IV A. A further analysis indicates that the diffuse line
shape is consistent with a 20 Lorentzian type of func-
tion, as described by Eq. (14) in Sec. III. The convolution
of o+I.z with the instrument response (a Gaussian func-
tion) leads to a line shape of a Gaussian superimposed on
a convoluted Lorentzian: G+G'L2. It was found that
all line shapes shown in Fig. 6 can be fitted well by the
G+ G*L2 function, where the Gaussian intensity, the
Lorentzian intensity, and the Lorentzian width are ad-
justable parameters. Such a decomposition of the line
shape into G+G*L2 allows us to extract from the fits the
value of the Gaussian intensity which is proportional to
the Bragg peak intensity. In Fig. 7, the extracted Bragg
peak intensity (solid circles) is plotted as a function of the
deposition time, which exhibits damped oscillatory
behavior.

As shown in Fig. 7, at t=15 s, the thickness of the
growing film is about two bilayers and the Bragg intensity
reaches a maximum. Recall that, for a two-level surface,
the Lorentzian diffuse profile should completely vanish
when the Bragg intensity reaches a maximum, as shown

in Eq. (14). (For the present case, 8=0 and ( h(r) ) =2 bi-
layers). The fact that the diffuse profile still exists at
t = 15 s, as shown in Fig. 6, is a clear indication that cer-
tain roughness has built up in the growing film and the
corresponding morphology has more than two levels.
However, the transient layer-by-layer growth can still ex-
ist. At t =21 s, where (h(t)) =2.5 bilayers (see Fig. 7),
the Bragg peak almost disappears (see Fig. 6), which is
due to the complete destructive interference of the
diffraction from the surface with nearly half-bilayer cov-
erage. As the growth continues, the behaviors similar to
that occurring at t = 15 and 21 s were observed again, as
shown in Fig. 6 at t =24 and 30 s, where (h(t)) =2.8
and 3.5 bilayers, respectively. The repetition is further
shown at t =42 and 48 s. Such repetitions clearly demon-
strate the transient layer-by-layer growth at the initial
stage.

As the growth proceeds further, the central 6 com-
ponent is significantly reduced, as shown in Fig. 6 at
t & 80 s. Such a reduction can be also seen in the damped
oscillation of the Bragg intensity shown in Fig. 7. The 5
component vanishes completely (not shown) at t =3 min,
where the growing film evolves into the region of the dy-

1.1x10- t=0 1.2x10
2 sec

0.0-

1.8x10 t=15 sec
9.0x10 t =48 sec

7.0x10
~ W

c/3

ik JLF~ +1 T~ ~LLEW~- —~ —~ ~Lb -I-Y1f W Pf s ~'I'I FW

t =21 sec
1.0%10

J.l,a
P '" mTrr~~

1.3x10
t =24 sec

1.1x10
90 sec

IT'

6.0x10

~'lgglg .ms~ J aIITW-~ rr r~~

= 30 sec
1.0x10

t =96 sec

0.0
-0.6 -0.4 -0.2

I I

0.0 0.2

k(A)
0.4 0.6

o.e
-0.6 -0.4 -0.2

I

0.0 0.2

k(A)
L~a~pmrtlh&~~~~ l&D~&l~r ~~

0.4 0.6

FIG. 6. The time-dependent HRLEED line shapes of the (00) beam intensity measured from an in situ MBE growth front,
Si/Si(111). The intensity profiles were scanned along the [1 12] direction, and the data were taken at the electron-beam energy E=47
eV, corresponding to an out-of-phase condition, P= kic =7.0vr.
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roughness exponent a = 1 and the growth exponent P= —,'.
To describe the transient oscillatory behavior shown in
Fig. 7, we should then use the intensity expression given
by Eq. (24), which was developed based on the Wolf-
Villain model. At the present time, we have no experi-
mental data available to test Eq. (23) for the surface-
tension model. However, one of the potential candidates
is the growth of GaAs film, where evaporation-
condensation processes were observed to occur and the
late-stage scaling dynamics appears to be more consistent
with the Edwards-Wilkinson model.

I

20
I

40
I

60
I

80 100
VI. SUMMARY

Growth Time (Sec)

FIG. 7. The time-dependent Bragg peak intensities are plot-
ted as filled circles, which are extracted from the measured line
shapes shown in Fig. 6. The observed damped intensity oscilla-

t 1/2
tion is consistent with the form, Io[1+cos(rot)]e ', which
is plotted as the solid curve. The dashed curve represents the

plot of the corresponding damping factor, e

namic roughening and scaling. We try to fit the experi-
mental data (solid circles) in Fig. 7 using a form

I [c1+c so(cot)]e ', according to the MBE model
shown in Eq. (24) for the out-of-phase condition, where
Io, co, and A, are adjustable parameters. The solid curve
in Fig. 7 represents the fit, while the dashed curve is the

plot of the corresponding damping factor, e ' . It is
shown that the fit is reasonably good, except at the very
initial region, t (5 s, where the intensity form, Eq. (24),
which is derived from a Gaussian height distribution,
may not be valid, as we pointed out in Sec. IV A.

Note that we do not intend to fit the present data using
the power-law type of intensity form, Eq. (23), derived
from the surface-tension model. This is because our
study has shown that at the late stage of growth, the dy-
namic scaling behavior for Si/Si(111) is described by the
Wolf-Villain model (the conservative MBE model). We
have found that during the growth of Si/Si(111), the

I
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APPENDIX A: SOLUTION OF STOCHASTIC
LINEAR LANGEVIN EQUATIONS

A general form for stochastic linear Langevin equa-
tions can be expressed as

a Z(r, t) =vV Z(r, t) ~V Z(r, t)—+R +g(r, t), (Al)

where the case for ~=0 is the Edwards-Wilkinson model,
and v=0 corresponds to the Wolf-Villain model. Assum-
ing an initial condition Z(r, t =0)=0, we can obtain an
analytical solution for Eq. (Al) as

We have shown an analytical formulation for the
diffraction from an initial transient layer-by-layer growth
front. The approach utilizes recently developed dynamic
scaling models which describe the growth-induced
roughening evolution of the growth fronts. The derived
Bragg peak intensity shows a damped oscillation with the
oscillatory amplitude decaying with the increase of the
interface width. The results can be applied to both the
out-of-phase and non-out-of-phase diffraction conditions.
The derived diffraction formula is consistent with the ex-
perimental data from a transient layer-by-layer process
observed in low temperature MBE growth of Si/Si(111).

Z(r, t) = (Z(t) ) + dq„dq e' t' dr O(q, ~)e
1

2~ ~ o
(A2)

where (Z(t) ) =Rt represents the average film thickness
and O(q, t) is the Fourier transform of the Gaussian ran-
dom noise q(q, t),

O(q, t)= f dx dy g(r, t)e= 1

2'

To prove that Eq. (A2) is the solution for the stochastic
linear Langevin equation, one can directly insert it into
Eq. (Al) for examination.

Using Eqs. (A2) and (A3), we are able to calculate the
interface width

(e(q, t)) =0,
(O(q, t)O(q', t') ) =2D5(q+q')5(t t') . —(A3)

8(q, t)'s are also independent Gaussian random vari-
ables, which, according to Eq. (2), have the following
relations:

w =([Z(r, t) (Z(t))] )—
1/b 1

—2(vq +~q )~

~D qdq
0 vq'+~q4

and the height-height correlation function

(A4)
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( [Z(r, t) —Z(O, t)]')
1/b —2(vq +~q )t

~D qdq 1 —Joqr 2 40 vq +Kq

(A5)

p[z —(Z(t) ) ]= exp
[z—&z(t) &]'

&2m-u 2w'
(A6)

For the Edwards-Wilkinson model where h =0, Eqs. (A4)
and (A5) recover Eqs. (4) and (6), respectively. In con-
trast, for the Wolf-Villain model where v=O, Eqs. (A4)
and (A5) become Eqs. (8) and (9), respectively.

It can be seen from Eq. (A2) that Z(r, t) —(Z(t) ) is the
sum of a linear combination of the noise terms, O(q, t),
for different values of q and t. Since 8(q, t)'s are indepen-
dent Gaussian random variables, one can conclude that
the stochastic variable Z(r, t) —(Z(t)) must obey a
Gaussian distribution with the Gaussian width (standard
deviation) given by Eq. (A4), i.e.,

where C„ is a constant, C„=f0 x dx e =n 'I (2/n).
We then reintegrate (8/()s )g (n, s) as

s
g (n, s) = f ds g (n, s)

a Bs

ln(s/a) for n =2
=C dssn s' —a' for n =4 .

Inserting a=b," and s=g"+b,", we conclude from Eq.
(A7') that

'ln(1+tlr, ) for the Edwards-Wilkinson model
w Ql+t/r, —1 for the Wolf-Villain model,

(AS)

where, for the Edwards-%'ilkinson model, v, =b, /2v,
and for the Wolf-Villain model r, =b, /2h. . Considering
only the asymptotic behavior at the late stage, t &)~„we
have

We can further obtain an analytical expression for the
interface width w. The expression for w shown in Eqs.
(4) and (8) can be rewritten as

ln(t) for the Edwards-Wilkinson model
w t' for the Wolf-Villain model . (A9)

1 /b 1
—(gq)"

W
0 n —1

)n
1 —e '~ ' -(b, q)"

dq e
0 n —1

(A7)

n n
e 'q —e

w dq
0 n —1

=g(n, s) . (A7')

In order to calculate g(n, s), we first differentiate g(n, s)
with respect to s,

where n =2 corresponds to the Edwards-Wilkinson mod-
el in which the lateral correlation length g=&2vt, and
n =4 corresponds to the Wolf-Villain model with the la-
teral correlation length g=(2at)'/ . The last step in Eq.
(A7) is an approximation in which the effect of the short-
wavelength cutoff 1/b, in the integral is replaced by a

—(b q)"
Gaussian cutoff e

Let a =b," and s =P+ b,". Equation (A7) becomes

APPENDIX 8:CALCULATION OF ( e '~" ' ' }

( e igh(0) ) ~—1
+ 00

e
—(m —(h ) ) /2(w/c) eimttt2

(81)

where ( h }c ={Z ) is the average height and X is the
normalization constant,

N=
+ 00

e
—(m —(h)) /2(w/c) 2

(82)

In order to calculate the summation in Eq. (Bl), we
employ an identity

F(x)= g 5(x —m) = g e'2" ', (83)

For a crystalline surface, the surface height must be
equal to integer numbers of the layer spacing c, i.e.,
h(r)=Z(r)/c=0, +1,+2, . . . . Given a Gaussian height
distribution shown in Eq. (5) for a crystalline surface,
(e'~"' ') can be calculated as

g(n, s)= f q dq e '~ =C„s
Bs 0

where F(x) is a one-dimensional lattice function. Using
Eq. (82), we can calculate Eq. (81) as

( iph(0) ) —~—1f d
—(x —(h )) /2(w/c) e ixp

m = —00

+00 +00r fn= 00

d& e
—(x —(h ) ) /2(w/c) ix(P+2n7I)

——(/+2 ) ( /)

Similarly, the normalization constant is given by
+ 00

2 2(~/C)+2 y e
—)/2(2nn) (w/c) ei2nn(h)
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Thus a rigorous expression for ( e'~" ( ) ) is given by
+ OO

e
—(/2(P+2nvr) (w/c) ei(P+2nn)(h }2 2

( eigh(0) ) + OO
2 2

e
—)/2(2nn) (w/c) ei2nn(h }

For any in-phase condition $=2mrr, we have (e'~ ' )) =1 from Eq. (84). For diffraction away from the in-phase
condition, we can simplify Eq. (84). It is shown that if(tolc) &0.8, e " " " ' ' ' -0 for any n&0, and

+ OO
2 2—1/2(2nn) (w/c) i2nnih }

Therefore, we can simplify Eq. (84) to give

igh(0) )
+

2 Z .—1/2(P+2nm) (1D/C) i(P+2n~)(h )

iP(h ) ( —1/2[/] (W/C) + ki2~(h ) —1/2(2m. —~[P]~ ) (ID/C)
J

where we only keep the first two terms in the summation.

(85)
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