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Energy-level statistics of electrons in a two-dimensional quasicrystal
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Spectra of a tight-binding model on square approximants of the quasiperiodic octagonal tiling
are calculated for both perfect and phason-randomized tilings. Level statistics for the randomized
tilings are given by random matrix theory, while for the perfect tilings a new type of level statistics
is found. Their level-spacing distributions are lognormal with power-law tails for large spacings. The
spectral measure is seen to be multifractal.

Since the discovery of quasicrystalline alloys, many
geometrical models have been built that are consistent
with observed diffraction patterns. Tilings may have per-
fect quasiperiodic long range order with local symmetries
that are not allowed for ordinary periodic structures, and
which give rise to the 8-fold, 10-fold, or 12-fold symme-
tries of the diffraction patterns. Alternatively, one m@y
consider randomized versions of perfect tilings, where ge-
ometric disorder is introduced through "phason flips"
(local tile permutation operations). The perfect tiling
has exact symmetries such as its self-similarity prop-
erty under inflation or deflation operations that random
tilings do not have. The constraint imposed by the 6xed
shape of the tiles of the random tiling are suKcient, how-
ever, to give rise to sharp peaks in its diffraction pattern,
similar to the Bragg peaks of the perfect, tiling. Many
existing phenomenological models to explain quasicrystal
electronic properties are based on the construction of a
pseudo-Brillouin-zone taking into account the brightest
spots of the diffraction pattern, and at this level they
would thus not distinguish between the perfect and ran-
dom tiling models. The effect of phason disorder on elec-
tronic properties can, however, be very profound, as will
be shown below.

In this paper we make a numerical study of statistical
properties of the eigenvalue spectrum of a tight-binding
Hamiltonian describing the hopping of electrons on ver-
tices of a two-dimensional tiling. The tilings consid-
ered are square periodic approximants of the quasiperi-
odic octagonal tiling, containing up to 8119 sites. The
hopping parameter is taken to be constant so that the
resulting spectra are a pure consequence of the geom-
etry, or site connectivity, of the tilings. The Hamilto-
nian is diagonalized numerically and the energy levels
are used to compute the distribution P("l(s) of spac-
ings of nth-nearest-neighbor energy levels 8 = E;+ —E,.
To place the current study in perspective, we begin
by mentioning some previous work on electronic levels
of tight-binding models, namely, studies of disordered
periodic lattices on both sides of the xnetal-insulator
transition. These show that in the metallic regime, the
first-neighbor level-spacing distributions P(s) have the
forms of the Wigner distributions, obtained for Gaussian

random matrices. In other words the energy levels of a
crystalline hopping Hamiltonian with random distributed
on-site energies have the statistics of levels of matrices
belonging to the Gaussian orthogonal ensemble (GOE),
P(s) s~ exp( —cps ), where cp is a known constant and
P = 1. In the case of an added magnetic flux traversing
the lattice, the Hamiltonian belongs in the unitary class
and levels obey Gaussian unitary ensemble (GUE) statis-
tics, with P = 2. Finally, in the insulating regime (strong
disorder) P(s) has the Poisson form for large spacings,
P(s) exp( —s). A second quantity of interest calcu-
lated for these crystalline models is the spectral rigidity
Z2 (E), which measures the fluctuation of the number of
levels in an energy window of width E. In the metal-
lic regime, Z (E) grows logarithmically with E at small
E just as for the random matrix ensembles. This be-
havior arises Rom correlations between levels due to the
wave functions being extended on the scale of the sample
size. These result in level fluctuations which are smaller
compared to that of uncorrelated levels [as occurs in the
insulating regime, where Z (E) depends linearly on E].

In our present work, we find that the randomized
quasiperiodic tiling has level statistics of the GOE or
GUE type, depending on the applied flux. The statistics
of energy levels are thus similar to those of disordered
tight-binding models on crystals in the diffusive regime,
even though in our case the disorder is purely geometric.
In addition the energy dependence of Z (E) suggests dif-
fusive propagation in the tiling, with a diffusion exponent
that is in good accordance with results of a study of dy-
namics by Passaro et al.

For the perfect approximants, we find a new type of
level statistics. The perfect octagonal approximant has
been studied previously by Benza and Sire who pre-
sented results on level statistics. They did not propose
a 6t to any functional form, noting principally that level
repulsion occurs in the perfect quasicrystal, since P(s)
drops to zero at small values of 8. This is certainly true
of the distribution that we propose in this paper. The
physical signi6cance of this level repulsion is that it indi-
cates that wave functions are suKciently extended, in real
space, and that electrons in different states can "see" each
other, leading to correlations and repulsion between ener-
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gies. For the perfect case, the calculations show that the
density of states (DOS) has huge fluctuations at all en-

ergy scales, indicating multi&actal properties of the spec-
tral measure We have calculated the effective f (n) func-
tion of the local singularity exponents a. It has the max-
imum value f „=D~ 1 (the fractal dimension), in-
dicating that the spectrum is gapless, in accordance with
the finding of Ref. 6. The calculated first-neighbor distri-
bution P(s) and the second- and third-neighbor spacing
distributions P( )(s) and P( )(s) are well described by
log-normal laws with power-law tails at large spacings.
To complicate matters, however, the low moments of the
spacing distributions apparently do not have the size de-
pendence that would be indicated by the calculated f(n),
while the high moments have a size dependence that is

characteristic of a power-law behavior 8 ~ in the large s
tail of P(s). It should be noted that the systems stud-
ied are comparatively small, and studying the next size
of approximant will help in determining better the size
dependence of these distributions.

We now describe more precisely our calculations. The
perfect periodic approximant is generated using the
method described by Duneau et al.7 The perfect tilings
can then be disordered by carrying out random phason
Hips. The Hamiltonian for either kind of tiling is defined
by the following site-projected form

(Hg); = ) v)~ = EQ;,
&ij)

where the sum is taken over sites j linked to site i. The
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FIG. 1. (a) Level-spacing
distribution for the randomized
approximants, in the GOB case
(P = 0 circles) and GUE (P =
1/2 stars). Solid lines show the
corresponding Wigner distribu-
tions. (b) Z (E) (solid circles,
GOE; open circles, GUE) and
the corresponding RMT curves.
The inset is a log-log plot of the
power-law region.
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number of links emanating &om a given site i varies be-
tween 3 and 8 in the perfect case, corresponding to the six
local environments of the octagonal tiling. In the ran-
domized case new local configurations appear, although
the mean coordination is z = 4 in both tilings. To reiter-
ate, in this model the quasiperiodicity and the disorder
are present purely in the connectivity and are of purely
geometric nature. This may be compared with models
in which one takes an explicit parameter in the Hamilto-
nian to generate the quasiperiodicity or disorder, such as
a site-dependent potential. This distinction is not pos-
sible in one dimension, where the quasiperiodic nature
of connections between sites must be coded by introduc-
ing for example two kinds of bonds, as in the Fibonacci
chain. Periodic continuation of the L x L square tilings
allows one to impose boundary conditions of the form
@(x + L, y) = e' @Q(x, y), @(x,y + L) = @(x,y). This
is equivalent to adding a magnetic Hux P along the y
or z axis. One can eventually induce a GOE to GUE
transition by varying P.

We discuss first the results for the geometrically dis-
ordered case since their analysis and interpretation are
relatively straightforward. The results obtained for P(s)
[taking a normalized spacing s = (E;+i —E,)/(W/N). ,
where W is the band width and N the number of levels]
are shown in Fig. 1(a).

Figure 1(b) shows the spectral stiffness defined in
terms of the number N(E) of levels contained within an
interval of energy E, by

where the averages are taken over the entire energy band.
It can be seen that the randomized tilings follow the
RMT laws at low energy, crossing over to a power-law
behavior that could imply a difFusive dynamics at inter-

mediate time scales. For comparison, in disordered crys-
tals, we note that for that case the RMT law for spectral
stifFness can be derived, both in perturbation theory,
and by means of a semiclassical model by assuming a
difFusive motion for the particle. Both calculations obtain
that the spectral stifFness follows the RMT logarithmic
law Zi2i(E) oc &2, ln(E) + cst for low energies, crossing
over toapower law. We obtain 2 (E) oc E for the ran-
dom tiling. Using the semiclassical argument of Ref. 11,
the value of the exponent v [the root mean square dis-
tance covered by the particle in time t, d, , (t) oc t"] is
0.85 which implies a superdifFusive dynamics. Passaro
et aL have studied wave-packet evolution for a class of
Hamiltonians including that of Eq. (1). They find anoma-
lous difFusion in both perfect and randomized tilings with
v = 0.815 for the latter.

We note that we have not been able to disorder (in the
geometric sense) the tilings sufficiently to see a crossover
to strong localization. Such a crossover can be seen in
tilings that have a strong energetic disorder (see note in
Ref. 4) wherein H;~ = t,z + e;b,z, where the t;z are those
of a perfect tiling while the e; are random on-site energies
chosen randomly in an interval of width comparable to
the bandwidth of the perfect tiling. In the strongly lo-
calized regime, P(s) tends to the exponentially decaying
Poisson form.

In contrast to the random case where the fluctuations
of the DOS are small (coinpared to Poissonian, for exam-
ple) the perfect approximant, like the one-dimensional
Fibonacci systems, has a self-similar DOS with huge
fluctuations at all energy scales. This behavior can be ex-
pressed in terms of generalized fractal dimensions D(q).
To find these we consider a partition of the bandwidth
R' into M distinct boxes S; of probability p,. and size I,.
where p; = ~~ and n, is the number of levels in the box
of size l;. The dimensions D(q) satisfy the conditionis
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FIG. 2. f(o) distribution of
singularity exponents o, along
with a fit to a parabolic shape.
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M q) +i

i=1

with max, . (t;) ~ 0 and r(q) = (q —l)D(q). One may
make a partition of boxes with equal size / = W/M. In
that case, the measure pi is assumed to scale as pi l '

when l tends to zero and the number of o.; between o. and
n+dn is assumed to vary as Nt(n) l ~( )dci. The func-
tion w(q) vs q and the efFective f (n) vs n are then related
by a Legendre transform. Conversely, one can fjLx the
weights of the boxes to be identical, allowing their widths
to fluctuate, and calculate q(v). This is tantamount to
calculating moments of spacings with respect to the un-
derlying distributions P( i(s). The nth-neighbor level-
spacing moments I, = s, = (E;+ —E;)/W, i = 1, N,
are obtained by taking the partition of Axed probabil-
ity p = n/N.

We have computed the f(n) function using the two
methods described above (Fig. 2). As already mentioned,
the &actal dimension D~ 1 indicating the spectrum is
gapless. Another numerical argument in favor of a spec-
trum with no (finite measure) gap is our finding that
the biggest spacing s „scales as N ~2 (s „-+ 0
for increasing N is a necessary condition to apply the
second of the two methods described above). The infor-
mation dimension defined by DI = f (DI) is DI = 0.98.
A fit to a parabolic form of f (a) close to its maximuin
gives its curvature I/y, , p = 0.03. Now a parabolic shape
for f (n) can be shown to lead to lognormal spacing dis-
tributions for each of the nth-nearest-neighbor spacings
s" (for n (& N). The parameters of these distributions
are related to DI and p. The distributions depend, as
well, upon the system size. We have found, however,
that when the distribution P(s) of rescaled variables
s = N(E;+i —E;/W) is plotted, a single curve is ob-
tained for the three sizes studied: N =239, 1393, and
8119 sites. The same remark applies to the two other
distributions calculated, P( )'~ ). A comment on the cal-
culation of P(s): It is well known that before computing
any statistical spectral properties, the spectrum has to be
unfolded. Within a semiclassical scheme this is equiva-
lent to considering the Huctuating part of the integrated
density of states, where one keeps only the quantum in-
terference corrections around the Thomas-Fermi zeroth 5
order term. However, to have an efEcient unfolding, the
fl.uctuating part has to be a small perturbation around
the zeroth 5 order term which is not itself strongly Huc-
tuating. In weakly disordered crystalline systems this is

so, but in contrast the density of states of our quasiperi-
odic system has huge Buctuations at all energy scales.
One may consider that in this case at least one of the hy-
potheses breaks down, and that the unfolding procedure
is not well defined for our spectrum. We have therefore
computed P(s) without any unfolding.

The distribution of the logarithm of 8 is well fitted by
a Gaussian [Fig. 3(a), inset], so that P(s) is a log-normal
function of the form

1 ( [ln(s) —1n(so)]'P s exp
i/~as (4)

We thank G. Montambaux and T.A.L. Ziman for use-
ful discussions and G. Montambaux for the use of nu-
merical routines for the analysis of energy levels. The
numerical work was possible thanks to computing time
at IDRIS, Orsay (France). P. Launois and M. Fettweis
kindly checked the similarity of diEraction patterns cor-
responding to perfect and randomized tilings.

with ln(so) = —B/2 for variables normalized to unity so
that j sP(s)ds = 1. Level repulsion clearly occurs, as
P(s) tends to zero with diminishing s at small s. The log-
normal form is obeyed for spacings around the most prob-
able value. At small 8 the repulsion seems linear rather
than exponential as given by the log-normal, while at
large spacings, s ) 3W/N, the error function J P(s)ds
behaves as s implying P(s) s [this agrees with
the observed variation in the largest spacing as a func-
tion of the system size and with P(s) s (i+ "i]. A
final observation on the dependence of P(s) on the flux
traversing the tiling: We have done a separate calculation
for each value of the flux P. In the perfect approximants
we find P(s) to be independent of the flux, unlike the
case of the random tilings and weakly localized metallic
systems.

In conclusion, we have numerical evidence for fun-
damental differences underlying spectra of perfect and
random quasicrystal approximants, the latter resembling
disordered crystalline systems insofar as their level statis-
tics are concerned. The perfect approximants have log-
normal distributions for the level spacings crossing over
to a power law in the tails. Results for diferent sample
sizes can be made to coincide by plotting distributions of
suitably scaled variables. This result seems inconsistent
with the size dependence expected of a straightforward
multi&actal energy spectrum and calculations on bigger
systems should help resolve the issue.
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