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First-principles calculations for Pd(110)-1X1 and Pt(110)-1X1 slabs imply that the surface stress
along the close-packed, [110] direction is larger than in the [001] direction, transverse to the surface
channels. This agrees with the simple idea that relaxation of the outermost layer separation, at a
fcc(110) surface, allows nearest-neighbor bonds with a component transverse to the channels to relax to-
ward their desired length, while the bonds along the channel walls cannot relax their strain without a
surface reconstruction. In contrast, an analysis of the surface phonons of Ni(110), based on an empirical
fit to the dynamical matrix, comes to the opposite conclusion, i.e., that the stress in the [110]direction is
only half that in the [001]direction.

I. INTRODUCTION

In this paper, I report first-principles calculations of
surface stress for Pd and Pt, and particularly its anisotro-
py for Pd(110) and Pt(110) surfaces. The main result is
that, in agreement with a simple physical picture, the
stress is larger in the [110] direction along the surface
channels than in the [001] direction, which is transverse
to them. This is in qualitative disagreement with the con-
clusions drawn by fitting an empirical dynamical matrix
to the surface phonon spectrum of Ni(110), by Lehwald
et al. '

A basic aim of surface science is to discover properties
of ideal, perfect surfaces that predict their own structural
stability, as well as their behavior when covered with ad-
sorbates. For example, in considering whether atomic
species "A" will grow epitaxially on substrate "B," and
in what orientation, one compares the lattice parameter
of the various faces of crystalline "A" to the lattice pa-
rameter of "B." To predict whether solute atoms "C"
will segregate to the surface of crystalline solvent "D"
one looks to the relative surface energies of "C'* and
cc pj $93

Studying surface stress has similar objectives. Stress
relief has been invoked in explaining the adsorbate
geometries of overlayers on semiconductors and met-
als, and in understanding the (beautiful) "herring-
bone" reconstruction of Au(111). In guessing what
might distinguish surfaces on which adatom diffusion
proceeds by substitutional exchange, rather than by ordi-
nary hopping, surface stress has been proposed as the
answer.

If surface stress is to help rationalize surface behavior,
it is important to investigate its systematics. Questions of
interest include the following: On what surfaces is the
stress large, or small, and why? How are "large" and
"small" defined; i.e., what is a meaningful dimensionless
quantity that expresses the effect of the stress at a partic-
ular surface? On anisotropic surfaces, what surface stress
anisotropy should be expected? This last question is the
main focus of the present work.

The specific issue is the surprising result of the analysis
of Lehwald et al. of the surface phonon spectrum of
Ni(110), ' namely, that the stress along the channels of
this surface is only half the stress transverse to them.
This contradicts the simple notion, elaborated below, that
on an unreconstructed surface the intraplanar bonds,
which cannot get shorter, should be more stressed than
the in, terplanar bonds, which can and do, via surface re-
laxation. The result of Lehwald et al. is of particular in-
terest because the analysis of phonon spectra is the only
means, until now, by which values of absolute surface
stress have been extracted from any experiment.

There is some hope that this situation will improve. In
a pioneering work, Martinez, Augustyniak, and
Golovchenko showed that one can measure differential
stress, i.e., change in stress associated with the addition
of an adsorbate layer, by measuring the deflection of a
laser beam from a thin (100 pm) Si crystal, which bends
when a layer of Ga is deposited on one side. ' Muller and
Kern have recently pointed out, " theoretically, that if a
roughly 10 pm clean film were supported at its edges and
allowed to deform under the inhuence of gravity, a value
of the absolute surface stress could be extracted from an
observation of the shape it assumes. Until such a mea-
surement is performed, however, surface phonon studies
are the only experimental source of information on abso-
lute surface stress. Assessing the reliability of the surface
phonon analyses is therefore an important undertaking.

To make an educated guess concerning the anisotropy
of the stress on an anisotropic surface, one must appreci-
ate why surface stress is nonzero at all. The answer, as
explained by Needs, is that because of electron spillout
into the vacuum, the competition between kinetic-
energy-related repulsion and electrostatic attraction is al-
tered at a surface, relative to the interior of a crystal. ' If
the kinetic pressure is reduced at the surface, for exam-
ple, then the surface atoms would "prefer" to lie closer to
each other than the bulk lattice parameter allows. If the
potential that determines the surface atoms' positions rel-
ative to the rest of the crystal is weakly corrugated, then
a surface reconstruction can be expected, relieving the

0163-1829/95/51(24)/17867(9)/$06. 00 17 867 1995 The American Physical Society



17 868 PETER J. FEIBELMAN 51

surface stress. On the other hand, if the surface atoms lie
in a strongly corrugated potential, then reconstruction
does not occur, and the intrasurface bonds remain under
tensile stress.

Altered competition between kinetic and electrostatic
contributions to the energy should affect both
intrasurface-plane bonds and bonds between surface and
subsurface atoms. However, geometry suggests that
stress should be reduced for the latter, for two reasons:
The first is that the intrasurface-plane bonds are those
that lie closest to the vacuum. Their environment is
therefore maximally unlike that of the bulk crystal, plac-
ing them under more stress than any other bonds. The
second reason is that surface relaxation, i.e., changes in
interplanar spacings, allows interplanar bond lengths to
optimize without any surface reconstruction. Thus the
close to 10% contractions observed for the outermost in-
terlayer spacings of fcc(110) crystals allow the bonds be-
tween the first and second layers to contract, by more
than 2%, presumably relieving some of their tensile
stress 'T. he same is no true for intrasurface plane-
bonds. They are not affected by layer relaxations except
indirectly, by the changes in electronic structure that re-
laxation induces.

With this in mind, consider the geometry of a fcc(110)
surface. In the outer layer, there are rows of nearest-
neighbor atoms long the [110] direction, separated by
relatively wide channels. The nearest neighbors of the
atoms in a row are other atoms in the same row, and
atoms in the second and third crystal layers. The only
nearest neighbor -bonds of the surface layer atoms that
have a component transverse to the [110] rows are those
that connect them to atoms in the second crystal layer.
This means that if nearest-neighbor interactions dom-
inate the energetics of a fcc(110) surface, one should ex-
pect a larger stress component in the [110]direction than
in the [001], exactly opposite to the conclusion that
Lehwald et al. draw from the empirical analysis of
Ni( 110)'s surface phonons.

A study in the literature supports this simple geometri-
cal argument. Chen, Krakauer, and Singh want to know
if the observed reconstruction of clean W(001) can be at-
tributed to an unusually large surface strain. ' Their
study is relevant to the present discussion, because there
are no intrasurface-. plane nearest neighbors on a bcc(001)
surface. Each surface atom has only four nearest neigh-
bors, and they all lie in the subsurface layer. Thus if the
qualitative argument given in the last paragraphs is
meaningful at all, no bcc(001) surface should be subject to
much surface stress. Such stress is relieved via surface re-
laxation.

Chen, Krakauer, and Singh compute the W(001) sur-
face energy and the energy of a bulk W(001) layer, both
as functions of the (001)-plane lattice parameter a. '

They find the minimum of the surface energy curve at a
value of a that is only 1% smaller than the minimum for
the bulk layer curve, thus concluding that the surface lay-
er interatomic spacing on W(001) is only l%%uo larger than
it would be, optimally. The stress at this surface can
therefore be assumed to be relatively small, and Chen,
Krakauer, and Singh infer that surface strain is not the

source of the W(001) reconstruction. Be that inference as
it may, the fact that the stress on W(001) is small agrees
with the simple geometric argument given above. It
should be small, because of the absence of nearest-
neighbor bonds in the surface plane.

In what follows, I report first-principles local-density-
functional (LDF) calculations' for Pd(110) and Pt(110)
surfaces. Pd and Pt are chemically similar to Ni, but are
computationally less demanding. ' The stress anisotropies
of their (110) surfaces should be similar to that of Ni,
apart from magnetoelastic effects, which in any event do
not alter the geometric fact that, barring a reconstruction,
the bonds in the [001] direction can change in length
while those in the [110]direction cannot.

In agreement with the geometrical argument, for both
metals I find that the tensile stress is larger in the [110]
than in the [001] direction. Thus it appears that the
empirical central force model used by Lehwald et al. ' is
too crude to extract reliable values of absolute surface
stress from the Ni(110) surface phonon dispersion mea-
surements. In fact, Balden, et al. have already ques-
tioned the reliability of the central force fit for Ni(110)
(Ref. 17); they report that the parameters of Ref. 1,
designed to fit the surface phonons whose motion is along
the surface normal, provide a less than satisfactory
description of the shear horizontal vibrational modes.

The remainder of this paper is organized as follows: In
Sec. II, I provide details of the surface stress calcula-
tions. To provide an idea of their overall reliability, in
Sec. III, I present results for the Pt(111) surface; agree-
ment with the published stress calculations of Needs and
Mansfield' is satisfactory, if not excellent. In Sec. IV, I
discuss the stress on Pd(111), which should be and is
smaller than that on Pt(111). Section V is devoted to re-
sults for Pd(110) and Pt(110). Finally, in Sec. VI, I dis-
cuss the various results and outline directions for future
work on the stress anisotropy of crystalline surfaces.

II. FIRST-PRINCIPLES CALCULATIONS
OF SURFACE STRESS ANISOTROPY

Formally, the surface stress tensor, S;., is the strain
derivative of the energy E of a surface. That is,
S,- =—dE/dc;, where i and j are Cartesian indices refer-
ring to the plane of the surface, and c; is the strain ten-
sor. Thinking of a bounded crystal as an X-layer slab, the
surface stress is nonzero because O(N) bulk layers op-
pose the tendency to contract (or to expand) of 0 (1) sur-
face layers. A positive value of S;; corresponds to tensile
or contractive stress, since in that case the energy of the
surface increases as the surface lattice parameter dilates.
A negative S;; thus implies a compressive stress.

The results I report here emerge from first-principles
linear combination of atomic orbitals (LCAO) electronic
structure calculations for Pd and Pt slabs of 9—13 layers.
More layers are needed to define the "bulk" region of a
(110) slab than a (111) because, in the (110) case, the
second layer of the crystal is exposed to the vacuum, and
the layer spacings are relatively small. I evaluate the
necessary energy derivatives analytically, via the
Hellmann-Feynman-Pulay-like' method of Refs. 20 and
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21. To fix bulk lattice parameters, I use QUEST, the
parallel LCAO electronic structure code of Sears and
Schultz. It is a very efficient reformulation of a serial
program I originally wrote. However, it does not yet in-
corporate the analytic stress calculational method of
Refs. 20 and 21. Therefore, I used the original, slow seri-
al code to compute surface stresses. I represent the
effects of electron exchange and correlation via the ex-
change correlation potential of Ceperley and Alder, and
electron-ion-core interactions via Hamann s generalized
norm-conserving pseudopotentials.

A. Choice of basis sets

A basic issue in any first-principles LCAO calculation
is the choice of an adequate orbital basis set. I judge
basis-set quality by comparing LCAO and linear aug-
mented plane-wave (LAPW) results for thin slabs. Be-
cause LAPW calculations are systematically improvable,
they provide a meaningful standard of accuracy. Unfor-
tunately, they are slow, and therefore relatively impracti-
cal for thicker films.

For Pt, I start from a basis set that includes two s func-
tions, as well as a p- and a d-like radial function centered
on each Pt nucleus (see Table I for details). The first of
the s functions and the d function are obtained by fitting
linear combinations of Gaussians to the corresponding
pseudo-wave-functions of the isolated Pt atom from the
nucleus out to a radius of 3.5 bohrs. The second s func-
tion is the longest-ranged Gaussian of the first. As a
low-cost alternative to using a second d function in the Pt
basis, I reduce the coefficient of the longest-ranged
Gaussian of the fit d function by 0.002, approximately op-
timizing the total energy of a five-layer Pt(111) film.

Choosing Pt-centered basis functions of relatively short
range reduces linear-dependence-related numerical prob-
lems, but makes it necessary to add Boating orbitals to
the Pt basis sets to allow for electron spillout into the
vacuum and Smoluchowski smoothing, and to obtain

TABLE I. c 's and a's (in bohr ) for the four radial func-
tions, R, (r) = r 'g c exp( —ar ), centered at Pt nuclei.

anywhere near converged work-function values. For
Pt(111), I put p-like fioating orbitals atop each surface-
layer Pt nucleus, at a height of 3 bohrs, and an s function
in each surface hollow, 4 bohrs above the outermost Pt
layer. To assess this basis choice, I fix the Pt lattice pa-
rameter at 7.36 bohrs, the LAPW optimum value for
bulk Pt, then compare LAPW and LCAO energy levels
for an ideal five-layer Pt(111) film. Considering ten
difFerent points in the surface Brillouin zone (SBZ), the
maximum discrepancy is only 0.11 eV, an improvement
over the already quite good basis of Ref. 25.

For Pd, I use a similar basis set (cf. Table II), now
checking its adequacy by comparing LCAO and LAPW
electron energy levels for ideal five-layer Pd(110) slabs.
In this case I fix the lattice parameter at the LAPW op-
timum value for bulk Pd, 7.262 bohrs. Because the (110)
face of an fcc crystal is relatively open, more variational
freedom is required in its near-vacuum region than in the
(111)case. Thus, in addition to p-like floating orbitals 3.2
bohrs atop the outer layer Pd nuclei, on this surface I
place s-like Gaussians 5.9 bohrs above the nuclei of the
second layer and at four different sites along and above
the long bridges between first-layer Pd nuclei. For five-
layer Pd(110), a check of 12 k vectors across the SBZ re-
veals a maximum discrepancy between LAP W and
LCAO energy levels of less than 0.09 eV, again showing
that a close-to-minimal LCAO basis set can faithfully
represent basis-state converged LAPW results. In calcu-
lations for thicker slabs, in which I allow the surface lay-
ers to relax, I also allow the centers of the Qoating orbit-
als to move in a way that maintains the symmetry of the
surface while lowering the total energy.

For the calculations described below that involve bulk
Pt and Pd, I use the nucleus-centered orbitals of Tables I
and II, respectively, with no Aoating functions. For the
Pd(111) and Pt(110) surfaces, I add fioating orbitals to the
nucleus-centered orbital set analogously to the cases of
Pt(111) and Pd(110). I directly verify that this procedure
yields an excellent description of Pd(111) with virtually
no "tweaking. " Using the same orbitals to describe the
Pd atoms as for Pd(110), placing fioating p orbitals atop

TABLE II. c 's and a's
4,
'in bohr ) for the four radial func-

tions, R&(r) = r 'g c exp( —ar ), centered at Pd nuclei.

0.11
0.14
1.08
1.52
1.69

l =0
0.638 753 12

—0.114014 61
—2.947 982 5

7.143 236 6
—4.672 959 3

0.0974
0.6439
1.288

ca

0.508 167
—0.722 407

0.296 326

0.11
0.14

0.17
0.34

0.227 13400
0.681 61100
1.653 540 0
4.590 109 8

0.638 753 12
—0.114014 61

1.00
—1.00

0.076 328 811
0.657 544 85
1.984 931 5

—1.293 1114

0.0974

0.16
0.32

0.2124
0.6146
1.4522
3.2802
6.5610

I =2

1.000 000

0.422 945
—0.383 563

0.052 461
0.465 647
1.889 024
3.427 922

—2.711 885
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the outer PJ's at a height of 1.5 bohrs and s orbitals in
the hollows at a height of 4 bohrs, I find that the worst
discrepancy between LAPW and LCAQ energy levels, for
a five-layer film, is only 60 meV, throughout the SBZ.
The LCAQ work function, 5.64 eV, is also in good agree-
ment with the LAPW result, 5.67 eV. The experimental
value is 5.95 eV. Unfortunately disagreements of 0.3 eV
between LDF and measured work functions are common.

Because the d bands of Pd and Pt are rather fIIat, the
k-vector sample need not be especially fine. I use 35
equally spaced points in the irreducible —' of the SBZ for
(110) slabs, and 19 equally spaced k vectors in the irre-
ducible —,', of the zone in the (111) cases. As described
below, I find the eAect of using a 40-k-vector honeycomb
sample ' for the (111) case to be quite small on the scale
of the other systematic errors in the calculations. I also
find that the difference between a 24- and a 35-k-vector
sample for the Pt(110) case is small relative on the scale
of the calculated stress anisotropy.

An answer is provided in Ref. 21. dE /d c," can be
decomposed into "bulk" and "surface" parts, by setting
up "bins" corresponding to the various slab layers, and
assigning fractions of each contribution to dE/d E; to ap-
propriate bins. Making this assignment in a consistent
manner, and assuming that the contributions to dE/dc. ,

"
are suKciently "local," then the bins corresponding to
the layers near the middle of a thick enough film will con-
tain almost equal contributions. The average of these
central bin contributions is a good approximation to any
"bulk" contribution to dE/dE;~. Knowing the "bulk, "
per layer contribution to dE/dc;, and the total dE/dc;.
for the slab, it is straightforward to determine the surface
stress via the equation,

gsurf (g total ~g bulit
) /2

&J ~J 'J

wherei and j =x ory and Vis the number of slab layers.
The factor —,

' corresponds to the fact that the slab has two
surfaces.

III. SURFACE GKQMKTRY, ENERGY,
AND STRESS, FOR Pt(111)

C. Lattice parameters

I fix the lattice parameters of Pd and Pt, via LCAQ-
LDA total-energy calculations for the bulk fcc crystals.
For these calculations, I represent the crystals as repeat-
ed supercells comprised of six (111) layers of whichever
metal. I use an SBZ sample of 19 k vectors in the (111)
plane for each of two special points along the (111)direc-
tion. Fitting cubic polynomials to the energies calculated
at five lattice parameters for each metal, I find that the
minimum energy for Pt corresponds to a unit cube side of
7.36 bohrs, while for Pd the optimal lattice parameter is
7.27 bohrs. These values are 0.6% and 1.1% smaller than
the experimental results for Pt and Pd, as is typical of
LDA calculations. They also agree very well with
LAPW results, namely, 7.36 bohrs for Pt and 7.26 bohrs
for Pd.

D. Analytic evaluation of surface stress components

In order to calculate components of the surface stress
tensor, one needs to evaluate the surface contribution to
the derivative of a sufriciently thick slab's total energyE'' with respect to a strain v. ; . Because I choose values
for the Pd and Pt lattice parameters by minimizing ihe
LDF energy of the corresponding bulk crystals, the con-
tribution to dE"' /dE, , from the slab interior (the "bulk
contribution") should approach zero with increasing
number of layers. But because the slabs I use are limited
to a few layers' thickness, and because of difIIerent nurner-
ical approximations in bulk and slab calculations, e.g. ,
the difI'erent k-vector sampling, there always is a residual
bulk contribution to dE"'"/d E, -.

Although I can choose parameters of the calculation
such that this contribution is small, I still wish to sub-
tract the residual bulk stress from the total to obtain ac-
curate surface stress components. This raises the ques-
tion of how to compute the residual bulk stress tensor.

This section is devoted to Pt(111) surface calculations,
and comparison to Needs and Mansfield's' (NM's) corre-
sponding results. Because NM studied only an ideal
four-layer film, and used a relatively poorly converged
plane-wave basis, perfect agreement should not be antici-
pated, nor is it achieved. The best converged of the
present results for Pt(111) and the stress obtained in Ref.
18 agree to about 11%.

The present LCAQ stress calculations are based on the
bin-decomposition method developed in Ref. 21 and out-
lined in the previous section. The first step is to relax the
Pt(111) surface to equilibrium. I represent the (111) sur-
face via a nine-layer Pt(111) slab, fixing the in-plane
nearest-neighbor distance at 5.21 bohrs, in accord with
the bulk optimizatio~ described above. Then the forces
on all the film atoms are less than 35 meV/bohr if the
outer layer separation is 1% expanded, while all the sub-
surface layers remain in their ideal positions. This expan-
sion, incidentally, agrees with the most recent results of
low-energy electron dift'raction (LEED) analysis, while
the computed work function, +=6.16 eV, is very close to
the value 6.10 eV measured by Derry and Zhong.

The total valence electron energy of the optimized
nine-layer film, per unit cell, is 476.1039 Ry. Qptimiza-
tion of the bulk Pt lattice parameter yields a per (111)
layer valence energy of 52.9151 Ry. Together, these re-
sults imply that the Pt(111) surface energy is 0.137
eV/A . NM also quote 0.137 eV/A as the surface energy
they obtain for an ideal four-layer film. The three-place
agreement of these values is certainly accidental.

I compute the stress on the Pt(111) surface using Eq.
(1), using the layerwise contributions to the stress given
in Table III. Notice that in agreement with the fact that
the bulk Pt total energy is minimized at the chosen
nearest-neighbor separation, the stress contributions in
the central film layers, which must approach zero as the
film becomes thicker, are already close to zero.

Substituting from Table III into Eq. (1), I find that the
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TABLE III. For the nine-layer Pt(111) slab, with a 19-k-
vector SBZ sample and four radial functions centered at each Pt
nucleus, layer heights relative to the slab center, residual forces
after relaxing the layer spacings, and bin decomposition of the
stress.

Residual I', Contribution to S„
Pt(111) layer z (bohr) (eV/bohr) (eV/atom)

1,9 (surface)
2,8 (subsurface)
37
4,6
5 {central)

17.04
12.75
8.50
4.25
0.00

0.03
0.02
0.01
0.02
0.00

2.566
0.044
0.044

—0.060
—0.026

Pt(111) surface stress is 0.426 eV/A, roughly 20%%uo larger
than what NM report. ' Some of this discrepancy is
surely the result of the relatively low level of conver-
gence, both with respect to basis size and film thickness
in the plane-wave calculations of Ref. 18. To see how
much of it can be attributed to the present calculations,
however, I have conducted several convergence tests.

To assess convergence with respect to the k sample, I
hold the geometry of the nine-layer slab fixed and recom-
pute both forces and the stress, replacing the original
sample of 19 equally spaced k points in the irreducible
SBZ with 40 k points on a honeycomb mesh. ' The result
is that the Pt's now experience force components along
the surface normal smaller than 0.031 eV/bohr. The
largest force is on the layer adjacent to the central film

layer. At the same time the average stress in the three
central film layers is —0.028 eV/A . Thus with the finer
k-point sample, the bulk lattice parameter should be
slightly larger. Nevertheless, I find that the surface stress
is 0.424 eV/A, only about 0.5% smaller than with the
19-k-point sample.

To check convergence with respect to slab thickness, I
repeat the 40-k-vector calculations for an 11 layer Pt(111)-
slab, again holding the bulk lattice parameter and the
surface geometry fixed. Now the stress turns out to equal
0.422 eV/A . These tests indicate that the smaller k sam-

ple and film thickness do not have a serious effect on the
calculated stress, at most l%%uo. This conclusion is reason-
able: The bands of Pt are rather flat and also, because of
Pt's high electron density, screening of the surface-
related potential is rapid as one moves into the interior of
the crystal.

The most serious convergence issue in the stress calcu-
lation concerns the use of a very small set of basis func-
tions. To test basis convergence, I add a second d func-
tion to the set of orbitals centered at each Pt nucleus.
The radial function for this added orbital corresponds to
a single Gaussian of attenuation constant a =0. 15
bohr . Reoptimizing the bulk lattice parameter in the
new basis implies only a very small new contraction, by
about 0.1%. Leaving the lattice parameter unchanged
and reoptimizing the nine-layer film geometry also leads
to only a small change in the surface relaxation: the
outer layer separation contracts by —0.52% while the
spacing between the subsurface and third crystal layers
expands by 0.26%. With the extra d function, and the
reoptimized surface geometry I now compute a surface

stress of 0.390 eV/A, i.e, a value that is reduced by 8.5%
relative to the single d-function basis. The extra d orbital
allows the system an improved description of both s-d
mixing and the radius of the valence d function, as the
lattice contracts, and the result is improved agreement
with Needs and Mansfield's value of 0.350 eV/A

From these convergence tests (see Table IV for a sum-

mary compilation) I conclude that using the basis that in-

corporates only ten orbitals about each Pt nucleus, to-
gether with the 19-k-vector sample and a nine-layer
Pt(111) slab, provides stress tensor components to about
10% accuracy. The results presented below show that
the anisotropy of the stress on Pt(110) and Pd(110) is con-
siderably larger than 10%%uo. Thus to obtain a reasonable
idea of the stress anisotropies, while containing computa-
tional expense, I use the small basis tests.

IU. STRESS OF Pd(111)

Surfaces of the Sd metals are less stable than those of
the 4d's. The (110) faces of Ir, Pt, and Au adopt 2X1,
missing-row configurations, while Rh, Rd, and Ag(110)
do not; their (100) surface layers reconstruct into hexago-
nal arrangements while Rh, Pd, and Ag(100) remain
1X1. Finally, Au(111) is reconstructed at room tem-
perature and Pt(111) above 1329 K, while Ag and
Pd(111) remain 1X1. These Sd surface reconstructions
are attributed to high stress. ' ' It is therefore of some
interest to compare the stress of the Pd(111) surface to
that of Pt(111). Bin-decomposition results for a nine-
layer Pd(111) film are given in Table V. Averaging the
contributions in the central three bins to obtain a residual
bulk stress, I find that Pd(111)'s surface stress is 0.230
eV/A . Thus Pt(111)'s tensile stress is close to double
that of Pd(111). At the same time, its cohesive energy is
only 50% lager and its (111) shear modulus is bigger by
only 34%%uo. The question of how to normalize surface
stress, in distinguishing more from less stable surfaces, is
one that has not been settled. Nevertheless, these re-
sults certainly do not contradict the idea that Pt(111)-
1 X 1 is less stable than Pd(111)-1X 1 by virtue of being
under higher surface tensile stress.

U. STRESS ANISOTROPY ON Pd(110) AND Pt(110)

This section is devoted to the structure of the (110)
faces of Pd and Pt, their surface stress, and its anisotropy.
As discussed in Sec. I, geometry suggests that the stress
should be higher along the [110]than the [001] direction
on these surfaces. The LDA results agree with this idea.
For Pd(110), the [110] stress is 50% higher than the
[001];for Pt(110) the ratio is much bigger, almost a factor
of 3. On a per surface atom basis, the stress along the
close-packed direction on the (110) surface is roughly
20%%uo higher than the surface stress on the (111) face of
the same metal.

To determine the geometry of the Pt and Pd (110)-1X 1

surfaces, I use the same bulk lattice parameters as for the
(111)calculations. But because (110) planes in a bulk fcc
metal are separated by only a/2 ~, where a is the lattice
parameter, it is necessary to represent the Pd and Pt (110)
surfaces by slabs with more layers. [The (111)planes are



PETER J. FEIBELMAN 51

TABLE IV. Summary of convergence tests of stress results. All results refer to relaxed surfaces except the rows marked "Ideal
Pt(110)"and "Ideal Pt(110)." In those cases all layer spacings are fixed at the values corresponding to the bulk, fcc crystals.

System

Pt(111)
Pt(111)
Pt(111)
Pt(111)
Pt(110)
Pt(110)
Ideal Pt(110)
Pd(111)
Pd(110)
Ideal Pd(110)

No. of
k's

19
40
40
19
24
35
35
19
35
35

No. of d
orbitals

No. of
layers

9
9

11
9

13
13
13
9

13
13

110 (ev/A')

0.426
0.424
0.422
0.413
0.285
0.317
0.453
0.230
0.171
0.236

S, (eV/A )

0.118
0.113
0.309

0.116
0.224

S,» (eV/atom)

2.79
2.79
2.77
2.72
3.06
3.40
4.86
1.48
1.79
2.46

SOD) (eV/atom)

1.27
1.21
3.32

1.22
2.34

separated by a/3'~ .] I use 13-layer slabs, fixing the cen-
tral 7 layers at their ideal bulk separations. Tables VI
and VII show that in this case the stress contributions
from the central three film layers are close to equal.

To converge results for the (110) surfaces one not only
needs to use more layers than for the (111)cases, but also
a larger set of k vectors in the surface Brillouin zone sam-
ple. The reason is the lower symmetry of the (110) sur-
face. In the (111) case, one only needs to sample one-
electron wave functions in the irreducible —,', of the SBZ,
whose area is 2/3 ~ (vr/s), where s is the nearest-
neighbor spacing. For the (110) surface, whose point
group operations include only a twofold rotation and two
mirror planes, one needs k's in the irreducible —,

' of the
SBZ. Its area equals 2 ' (~/s), about 1.84 times as
large as the (111) face's irreducible zone. This permits
the rough inference that if 19 k vectors was a large
enough sample for a (111)surface, 35 are required for the
(110)'s. The final results quoted in Tables VI and VII
were calculated using 35-k-vector samples. For refer-
ence, in Table IV, I compare stresses and surface energies
computed for Pt(110) using 24- and 35-k-vector samples.
The result agree to about 10%.

The outermost layer separations of fcc(110) surfaces
generally are considerably contracted, while successively
deeper layer relaxations alternate and get smaller. ' For
Pt(110)-1X1, I calculate optimal outer layer relaxations
of —11.6%, +5.4%%uo, and —1.6%%uo for the first three inter-
layer spacings. For Pd(110)-1X1 the corresponding re-
laxations are somewhat smaller, viz. , —9.0%, +3.3%,
and —0.5%.

For Pd one can compare to experiment —Pd(110)-1 X 1

is a stable surface, while Pt(110)-1X 1 is not. The LEED
analysis of Barnes et al. , yields percent relaxations of—6+2% and 1+2% for the first two interlayer spacings.
A second paper by the same group refines these values to—5.7+2% and 0.5+2%. Skottke et al. obtain relaxa-
tions of —5. 1+1.5%%uo and 2. 9+2%%uo. Finally the most
recent LEED study, by Warren and Thiel, yields a some-
what smaller contraction of the first interlayer spacing,
4.4+1.5%, and 1.5+1.5% for the second. Thus theory
and experiment agree qualitatively —both imply a large
contraction of the first interlayer spacing and a smaller

TABLE V. For the nine-layer Pd(111) slab, with a 19-k-
vector SBZ sample and four radial functions centered at each
nucleus, layer heights relative to the slab center, residual forces
after relaxing the layer spacings, and bin decomposition of the
stress.

Residual F, Contribution to S„
Pd(111) layer z (bohr) (eV/bohr) (eV/atom)

1,9 (surface)
2,8 (subsurface)
37
4,6
5

16.80
12.59
8.40
4.20
0.00

0.00
0.01
0.02
0.02
0.00

1.303
0.069

—0.011
—0.034
—0.045

expansion of the second. The LCAO calculation appears
to overestimate the contraction of the first spacing, how-
ever, while theory and experiment agree on the second-
layer expansion, within the experimental error bars.
Whether this quantitative disagreement is the result of
systematic error in the LDF-LCAO calculation, or is a
product of the LEED analysis, remains to be determined.

For reference, the calculated work functions for the
13-layer 1 X 1 Pd(110) and Pt(110) slabs are, respectively,
5.16 and 5.54 eV, while the measured work function for
Pd(110)-1 X 1 is 5.25 eV. The LCAO surface energies are
0.147 eV/A for Pd(110) and 0.172 eV/A for Pt(110).
As expected for these more open surfaces, their surface
energies are larger than the corresponding values for
Pd(111) and Pt(111), respectively, 0.124 and 0.137 eV/A .
Since the cohesive energy of Pt is 50%%uo higher than that
of Pd, it is not surprising that the Pt surface energies are
higher than for the corresponding Pd faces. The reason
that they are only between 10% and 20% higher is not
clear to me.

Results of the bin-decomposed surface stress calcula-
tions for Pt(110) and Pd(110) are given in Tables VI and
VII. In both cases the stress contributions from the cen-
tral three slab layers are roughly constant, suggesting
that 13-layer slabs are thick enough to provide meaning-
ful values of surface stress. Thus, I compute the average
of the stress contributions from the central three layers
for each metal, and use it as a "bulk" value to be substi-
tuted into Eq. (1). This procedure leads to tensile surface
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TABLE VI. For the 13-layer Pt(110) slab, with a 35-k-vector SBZ sample and four radial functions
centered at each Pt nucleus, layer heights relative to the slab center, residual forces after relaxing the
layer spacings, and bin decomposition of the stress. The "x direction" refers to [001] and the "y direc-
tion" to [110].

Pt(110) layer

1,13 (surface)
2, 12 (subsurface)
3,11
4, 10
5,9
6,8
7 (central)

z (bohr)

15.41
13.11
10.37
7.81
5.21
2.60
0.0

Residual F,
(eV/bohr)

0.02
0.01
0.04
0.03
0.01
0.07
0.00

Contribution to S „
(eV/atom)

1.523
—0.929
+0.208
—0.458
—0.228
—0.224
—0.208

Contribution to Syy
(eV/atom)

2.459
0.023
0.052

—0.279
—0.241
—0.232
—0.261

stresses of 0.317 and 0.113 eV/A for the [110]and [001]
directions on Pt(110), and 0.171 and 0.116 eV/A for the
[110]and [001] directions on Pd(110). In both cases the
stress along the close-packed [110]direction is consider-
ably larger, as expected.

In Table IV, to give an idea of the source of the greater
stress in the [110] direction, I compare stress com-
ponents for ideal (i.e., unrelaxed) and relaxed Pt(110) and
Pd(110) 13-layer films. Notice that for both metals the
surface relaxation results in a decrease of both the [001]
and the [110]stress components, but that the [001] com-
ponent of the stress decreases about twice as much. I at-
tribute the decrease in the [110]stress with surface relax-
ation to the fact that the first-layer atoms relax toward
the rest of the crystal. Thus the intrasurface-plane bonds
relax into a region where the electron gas of the rest of
the crystal is less tenuous, and the [110]stress is reduced
accordingly.

The larger relaxation effect on the [001] stress com-
ponent is the result of the fact that surface relaxation
means optimizing the bond lengths between the first-,
second-, and third-layer atoms. If it were not for the
resistance of the first-to-third layer bonds being
compressed too much, the first-to-second layer bond
lengths could be strain free. As it is, their strain is much
reduced relative to that of the intrasurface-plane bonds.

Because the theoretical surface relaxation is greater in
the Pt(110) case, greater relief of tension in the [001]
direction should occur on this surface than on Pd(110).

Assuming that the nearest-neighbor bonds on the (110)
surfaces are not much different from those on the corre-
sponding (111) faces, one might also expect the [110]
direction stresses to be comparable in magnitude in the
two crystal planes. Table IV shows that both these quali-
tative expectations are also realized.

Finally, since Ni(110), from the geometric point of
view, is just another fcc (110) crystal surface, it is reason-
able to expect that the stress anisotropy would have the
same sign on that face as I have found for Pt(110) and
Pd(110).

VI. DISCUSSION AND FUTURE DIRECTIONS

The present results suggest that it is worth attempting
a more rigorous interpretation of the phonon dispersion
data for Ni(110). As noted in the Introduction, the mea-
surement of shear horizontal phonons on this surface has
already cast doubt on the stress values derived from the
study of phonons polarized perpendicular to the (110)
plane. ' What would be most desirable would be a direct,
first-principles evaluation of the Ni(110) dynamical ma-
trix and thus a first-principles calculation of the corre-
sponding phonon spectrum. Such a calculation is now or
should soon be possible.

A second area that demands attention is development
of a better understanding of the predictive value of the
stress tensor. Granted that the [110]component of the
surface stress tensor on Pd(110) and Pt(110) is larger than

TABLE VII. For the 13-layer Pd(110) slab, with a 35-k-vector SBZ sample and four radial functions
centered at each nucleus, layer heights relative to the slab center, residual forces after relaxing the layer
spacings, and bin decomposition of the stress. The "x direction" refers to [001] and the "y direction" to
[110].

Pd(110) layer

1,13 (surface)
2, 12 (subsurface)
3,11
4, 10
5,9
6,8
7

z (bohr)

15.27
12.93
10.27
7.71
5.14
2.57
0.00

Residual F,
(eV/bohr)

0.01
0.01
0.02
0.02
0.01
0.01
0.00

Contribution to S „
(eV/atom)

+ 1.406
—0.401
+0.031
—0.104
—0.013
—0.061
—0.058

Contribution to Syy
(eV/atom)

+ 1.565
+0.015
—0.058
—0.075
—0.019
—0.071
—0.074
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the [001] component, what does this result tell us about
the nature or likelihood of the reconstructions of these
surfaces'? The missing-row structure of Pt(110)-2 X 1

would appear to relieve stress in the [001] direction, i.e,
the crystal direction for which the stress is lower. Why is
this so7

Finally, it is interesting to compare the present results
for transition metal (110) surfaces to Needs's calculation
of the stress anisotropy on Al(110). He finds that it is

0
quite weak, quoting the values 0.124 and 0.115 eV/A for

the (110)and (001) directions. The [110]component of
the strain is the larger, once again, but now only by 8%.
This is a consequence of the weakness of the crystal po-
tential in Al; i.e., as Needs points out, much of the stress
at Al surfaces is a jellium effect.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy under Contract No. 13E-AC04-94AL85000.

~S. Lehwald, F. Wolf, H. Ibach, B. M. Hall, and D. L. Mills,
Surf. Sci. 192, 131 (1987).

F. C. Frank and J. H. van der Merwe, Proc. R. Soc. London
Ser. A 198, 216 (1949).

See, e.g., J. C. Hamilton, Phys. Rev. Lett. 42, 989 (1979).
4R. D. Meade and D. Vanderbilt, Phys. Rev. Lett. 63, 1404

(1989).
5J. Muller, M. Wuttig, and H. Ibach, Phys. Rev. Lett. 56, 1583

(1986).
P. J. Feibelman, Phys. Rev. Lett. 63, 2488 (1989).

7S. Narasimhan and D. Vanderbilt, Phys. Rev. Lett. 69, 1564
(1992);69, 2455 (1992).

J. V. Barth, H. Brune, G. Ertl, and R. J. Behm, Phys. Rev. 8
42, 9307 (1990); D. D. Chambliss and R. J. Wilson (unpub-
lished).

G. L. Kellogg, A. F. Wright, and M. S. Daw, J. Vac. Sci.
Technol. A 9, 1757 (1991).
R. E. Martinez, W. M. Augustyniak, and J. A. Golovchenko,
Phys. Rev. Lett. 64, 1035 (1990).
P. Muller and R. Kern, Surf. Sci. 301, 386 (1994).
R. J. Needs, Phys. Rev. Lett. 58, 53 (1987).
At a fcc (110) surface, the outer layer atoms have a nearest
neighbor directly below them, in the third layer. The bond
between these first- and third-layer neighbors cannot shrink
farther than electron-electron repulsion will allow. This
prevents the first-to-second layer bonds from relieving all
their tensile stress.
J. Chen, H. Krakauer, and D. J. Singh, Phys. Rev. 8 43, 2398
(1991).

'5For a review, see The Theory of the Inhomogeneous Electron
Gas, edited by S. Lundqvist and N. H. March (Plenum, New
York, 1983).
The rapid spatial variation of the 3d radial function places
strong demands on numerical quadrature meshes. The 4d
and 5d pseudo-wave-functions of Pd and Pt vary less rapidly
as a consequence of orthogonalization to d-like core orbitals.
M. Balden, S. Lehwald, H. Ibach, A. Ormeci, and D. L. Mills,
Phys. Rev. 8 46, 4172 (1992).
R. J. Needs and M. Mansfield, J. Phys. Condens. Matter 1,
7555 (1989)~

P. Pulay, in Modern Theoretical Chemistry, edited by H. F.
Schaefer (Plenum, New York, 1977), Vol. 4, pp. 153—185;
Mol. Phys. 17, 197 (1969).

2 P. J. Feibelman, Phys. Rev. 8 44, 3916 (1991).
~P. J. Feibelman, Phys. Rev. 8 50, 1908 (1994).
M. P. Sears, P. A. Schultz, and P. J. Feibelman (unpublished).
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980), as parametrized by J. Perdew and A. Zunger, Phys.
Rev. 8 23, 5048 (1981).

4D. R. Hamann, Phys. Rev. 8 40, 2980 (1989}.
For an introduction to the LAPW method, see O. K. Ander-
sen, Phys. Rev. 8 12, 3060 (1975); D. R. Hamann, Phys. Rev.
Lett. 42, 662 (1979); L. F. Mattheiss and D. R. Hamann,
Phys. Rev. 8 33, 823 (1986).

Also, the Hamann LAPW code, which I use to generate stan-
dard results, does not compute forces analytically, which
makes it inconvenient when geometry optimization is re-
quired.
This method has been found to work well for several transi-
tion metals, by P. A. Schultz (unpublished) ~

For the radial parts of both the hollow-site s and the atop-site
p orbitals I employ a single Gaussian, of attenuation constant
0.19 bohr
Specifically, I place s-like Gaussians with attenuation con-
stants 0.3 and 0.5 bohr both at the midpoint of the long
bridge and also directly above second-layer Pd's, at a height
of 3.37 bohrs above the first layer. I also place s Gaussians
with attenuation constant 0.19 bohr, 2.1 bohrs along the
long bridge on either side of each outer layer nucleus and also
above the midpoint of the long bridge, 0.37 bohrs above the
outermost layer of Pd's.

3oK. Wandelt and B. Gumhalter, Surf. Sci. 140, 355 (1984),
quote photoelectric work functions of 5.95, 5.65, and 5.25 eV
for the Pd(111), (100), and (110) surfaces, with error bars of
+0. 1 eV.

S. L. Cunningham, Phys. Rev. B 10, 4988 (1974}.
A. Barbieri, M. A. Van Hove, and G. A. Somorjai, in Proceed-
ings of the 4th International Conference on the Structure of
Surfaces, edited by X. D. Xie, S. Y. Tong, and M. A. Van
Hove (World Scientific, Singapore, 1994), p. 201; see also N.
Materer et al. , Surf. Sci. 325, 207 (1995).
G. N. Derry and Z. J. Zhong, Phys. Rev. 8 39, 1940 (1989).
A calculation in which I include a second radial d orbital on
each Pt nucleus, corresponding to a single Gaussian with an
attenuation constant of 0.15 bohr, yields a Pt(111) surface

0
energy equal to 0.133 eV/A ( =0.475 eV/bohr ) and a work
function of 6.10 eV.

35To make the concept of "close to zero" quantitative, one may
ask by how much the lattice parameter would have to dilate
to reduce the residual stress to zero, given the bulk modulus
of Pt, which is roughly 2.8 Mbar. The answer is that an iso-
tropic stress of 0.03 eV/atom would give rise to a compressive
strain of 0.04 fo, or a contraction of the lattice constant equal
to only 0.003 bohr.

6For a bibliography, consult H. Ohtani, C. T. Kao, M. A. Van
Hove, and G. A. Somorjai, Prog. Surf. Sci. 23, 155 (1986).

7U. Harten, A. M. Lahee, J. P. Toennies, and Ch. Woll, Phys.
Rev. Lett. 54, 2619 (1985).



51 ANISOTROPY OF THE STRESS ON fcc{110)SURFACES 17 875

A. R. Sandy, S. G. J. Mochrie, D. M. Zehner, G. Grubel, K.
G. Huang, and D. Gibbs, Phys. Rev. Lett. 68, 2192 (1992).
R. Cammarata, Surf. Sci. 279, 341 (1992); M. Mansfield and
R. J. Needs, J. Phys. Condens. Matter 2, 2361 (1990); N.
Takeuchi, C. T. Chan, and K. M. Ho, Phys. Rev. B 43, 14363
(1991); K. M. Ho and K. P. Bohnen, Phys. Rev. Lett. 59,
1833 {1987).

~G. Simmons and H. Wang, Single Crystal Elastic Constants
(MIT Press, Cambridge, 1971).

4~See D. Tomanek and K. H. Bennemann, Surf. Sci. 163, 503
(1985) for a useful list of references.

42C. J. Barnes, M. Q. Ding, M. Lindroos, R. D. Diehl, and D.
A. King, Surf. Sci. 162, 59 (1985).

R. D. Diehl, M. Lindroos, A. Kearsley, C. J. Barnes, and D.
A. King, J. Phys. C 186, 4069 (1985).

~M. Skottke, R. J. Behm, G. Ertl, V. Penka, and W. Moritz, J.
Chem. Phys. 87, 6191 {1987).

~50. L. Warren and P. A. Thiel, Phys. Rev. B 47, 10 848 (1993).
4sA. A. Quong, Phys. Rev. B 49, 3226 (1994).
47For a recent, educational interchange on this general subject,

see R. J. Needs, Phys. Rev. Lett. 71, 460 (1993);M. Y. Chou,
S. Wei, and D. Vanderbilt, ibid. 71, 461 (1993);D. Wolf, ibid.
71, 462 (1993);70, 627 (1993).
R. J. Needs, Phys. Rev. Lett. 58, (1987);R. J. Needs and M. J.
Godfrey, Phys. Scr. T19, 391 (1987).


