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We discuss the properties of interacting electrons on a finite chain with open boundary con-
ditions. We extend the Haldane-Luttinger-liquid description to these systems and study how the
presence of the boundaries modi6es various correlation functions. In view of possible experimental
applications to quantum wires, we analyze how tunneling measurements can reveal the underlying
Luttinger-liquid properties. The two-terminal conductance is calculated. We also point out possible
applications to quasi-one-dimensional materials and study the eKects of magnetic impurities.

I. INTRODUCTION

Physical properties of one-dimensional (1D) metals are
well understood theoretically. Unlike higher dimensional
metal, where interaction slightly modifies the &ee Fermi
gas behavior (Landau-Fermi liquid picture), in 1D met-
als the electron-electron interaction plays a fundamen-
tal role and strongly afFects their physical properties as
compared to the ideal Fermi gas. The most interesting
feature is the absence of well defined single-particle ex-
citations. The only stable low-energy excitations turn
out to be collective charge and spin density fI.uctuations
(zero sound modes). Charge and spin sounds are dy-
namically independent, which, together with the absence
of the continuum of electron-hole excitations, gives rise
to the so-called spin-charge separation. The interaction
also modifies the asymptotic behavior of all the correla-
tion functions: at large distances (times) they are shown
to decay as a power law with interaction dependent expo-
nents (Luttinger-liquid behavior, for a review see Ref. 1).

Before the recent achievements of the submicrometer-
size technology in the fabrication of 1D quantum wires,
1D electron gases have been studied either on their own
rights (as interesting mathematical objects) or in view
of applications to quasi-one-dimensional materials. For
these purposes, it was sufricient to investigate infinite sys-
tems (or to impose periodic boundary conditions, which
are relatively easy to treat). Semiconductor devices
with 1D confining potentials (quantum wires) represent
a promising realization of 1D electron systems, which
provide an alternative way to study experimentally the
Luttinger-liquid properties. For instance, the collective
nature of the low-energy excitations has been success-
fully probed by inelastic light scattering experiments.
Other experiments particularly suited for quantum wires
are those measuring transport properties, and an inter-
esting question is whether these measurements are able to
reveal the Luttinger-liquid character of 1D systems. Re-

garding the measurements of bulk properties in a clean
system (e.g. , optical conductivity), the answer would be
no. In fact, although many properties are anomalous, the
(bulk) transport properties of a clean 1D metal are ex-
pected to be qualitatively similar to those of an ordinary
3D metal. Regarding the surface measurements or, more
generally, the response to any local probe, it is claimed
that the answer is positive. This result has been reached
by extending the analysis of idealized 1D chains to phys-
ical quantum wires, which are Gnite systems with open
boundaries or contacts of 1D electron gases with normal
3D metals.

The anomalous response of an interacting 1D Fermi
gas to a local probe was Grst recognized by Kane and.
Fisher. Subsequently, many difFerent experimental situ-
ations have been proposed and analyzed in the kamework
of the Luttinger-liquid theory of 1D metals. Several ef-
fects due to open boundary conditions have been studied
by means of conformal field theory. All these studies sug-
gest that the interaction affects (in a nontrivial way) the
behavior of the Fermi gas close to the boundaries. Conse-
quently, transport measurements probing the edge prop-
erties should, in principle, reveal the Luttinger-liquid be-
havior.

In this paper, we study the properties of a 1D chain of
interacting electrons with open boundary conditions &om
a more traditional point of view, not assuming conformal
invariance. Some of the results will be new, some not;
our intention is to provide a simple but powerful tool to
tackle difFerent problems that arise, while studying 6nite
1D systems.

The layout of the paper is as follows. In Sec. II,
we develop the bosonization technique appropriate for
open boundary conditions, generalizing Haldane's ap-
proach (which was originally deviced for periodic sys-
tems). The bosonization for noninteracting electrons is
discussed first. Then, we study the interacting case. In
Sec. III, several correlation functions are calculated and
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the Friedel oscillation caused by the boundary is dis-
cussed. We also give an alternative derivation, based
on Ward's identity method, of correlation functions and
outline some applications of the open boundary analy-
sis to slightly doped quasi-one-d. imensional electron sys-
tems. Section IV is devoted to the analysis of transport
phenomena in quantum wires. The two-terminal conduc-
tance is calculated and some other tunneling processes at
the edge of the wire are discussed. In Sec. V we study
a magnetic impurity coupled to a 1D electron gas in the
presence of a potential scattering. There are four ap-
pendixes. In Appendix A, some formulas used in compu-
tation of correlation functions are given. The remaining
appendixes are devoted to extensions of our approach: an
x-ray edge type problem related to the scattering poten-
tial sign changing operator is investigated in Appendix
B, eH'ects of long-range electron-electron interaction are
examined in Appendix C, and gaped phases of finite sys-
tems are studied in Appendix D.

II. OPEN BOUNDARY BOSONIZATION

This section is intended to give a general method of
bosonizing an interacting Fermi system in the case of
open boundaries (i.e., of a finite system of the length I ).

The bosonization method has a long history. The
equivalence between the excitation spectra of interacting
fermions and kee bosons in 1D was established by Mat-
tis and Lieb7 in their solution of the Luttinger model.
The bosons were identified as particle-hole excitations
over the Fermi sea, and their dynamics turned out to
be that one predicted by random-phase approximation.
However, the full power of the bosonization method be-
came clear later, when the representation for the electron
creation (annihilation) operator in terms of &ee bosons
was discovered. This provided a powerful tool to cal-
culate fermionic correlation functions in terms of &ee bo-
son correlation functions. (Actually, this representation
is very close in spirit to the famous Jordan and Wigner
representation. ) The finite size effects (assuming periodic
boundary conditions) were studied by Haldane. i2

We start with the Hamiltonian:

& (o) =@.(L) =o. (3)

A. Noninteracting electrons

@ (*) = ) sin(kx) c,i, ,

with k = wn/I, n being a positive integer. The single
electron spectrum is s(k) and the Fermi surface consists
of the single point k = kp (see Fig. 1). Concentrating
on the vicinity of this point, we define slow varying right
and left moving fields:

g XPK~p 8, Icp + jp

(*) = ' E„&2L

@.a(~) =—

such that (p = m.n/I)

These fields, however, are not independent, as in the case
of periodic boundary conditions, but satisfy

V.l. (~) = —W.a(—~) .

Therefore, one can actually work with the right moving
field only, the left moving one is then defined by the above
relation. The boundary condition

y. (o) = o

is automatically satisfied, whereas the condition

We consider the noninteracting case first. This situa-
tion has already been discussed in the literature (see, e.g. ,
Ref. 13), but we still find it useful to give all of the details
that we are going to use while studying the interacting
case.

The Fourier mode expansion of the vP operator, appro-
priate for the boundary coiiditions (3), takes the form

a = Ho+a
where the first term represents the kinetic energy,

/I ~(k)

and the second one describes the electron-electron inter-
action,

1~;.t = —) d~dv@.'(*)0,' (u)U- (~ —u)4'. (u)4. (~)
aa'

@%off~

I II

CHILI

+
iikli ~11~1+~~

e(k) is the dispersion law of the 1D band, and @,(T) is
the spin 8 electron annihilation operator subject to the
open boundary conditions:

FIG. 1. Single-particle spectrum: for the case of open
boundaries the Fermi surface consists of the single point k~.
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implies that the operator @,R(x) should obey

So we can regard the field @,R(x) as defined for all x, but
obeying the periodicity condition with the period 2L:

the finite bandwidth of the original electron band (n is
understood to be much larger than the lattice spacing;
actually, 1ja is the region around k~ where the electron
band spectrum can be linearized).

The density of right moving electrons is given by

V.R(x+ 2L) = @.R(x) (8)
AN, (9 P, (x)

psR x =
~ +21 2'

In terms of the right moving Geld, the kinetic energy
(1) takes the form

L
Hv = vv ) f dvi' v(v)(.—v'8 )@.v(v),

e —L

We notice that

P.L(—*) = P.R(x) .

The bosonized form of the kinetic energy is

where we have linearized the electron spectrum and the
energy is accounted for &om the Fermi energy of a refer-
ence system with N, p number of spin s electrons.

The right moving Fermi field (5) obeys periodic
boundary condition (8), so it can straightforwardly be
bosonized. We will conveniently employ the following
version of the bosonization formula:

—is, im ~ &1v, ip, (x)

L
IIO ——vrvp ) dx: p, R(x)p, R(x):= v~ ) qbt b,

s sq)0

(b,N, )

Before we turn to the interaction effects, we deGne the
bosonic variables corresponding to charge and spin exci-
tations:

where LN, is the number of extra electrons with spin s,

LN, =N, —N, p,

the variable H„canonically conjugate to LN„

and

LNp( )
——LNg + LNg .

[0„4N,] =i,
is defined modulo 2vr. The operators g, are real (Majo-
rana) fermions,

which stand to assure the correct anticommutation rules
for electron operators with different spin s. The phase
field P, (x) is given by the expression

P, (x) = ) e'~ ~) b + H.c.
gL

and satisfies periodic boundary condition:

4.(x+2L) = &.(x) (10)

ip, (~) . 1

+2am

Here, b~ are canonical Bose operators; q = an/I, n is an
integer, and we have introduced a high-energy cutoff o..
It is straightforward to check that the operators vP, R(x),
defined by Eq. (9), obey standard fermionic commutation
relations (in the limit n ~ 0).

Alternatively one could write the Fermi operator (9)
in a normal ordered form, noticing

B. Interaction efFects

In order to make use of the above bosonization proce-
dure also for the case of interacting electrons, we try the
sam, e trick; namely, we express the part of the Hamilto-
nian, which is responsible for the interaction, Eq. (2), in
terms of the right moving Fermi field g,R only. The cost
is that the resulting expression is highly nonlocal in space
as illustrated in Fig. 2. Nevertheless, as we show below,
at least in the case of short-range electron-electron inter-
action U(x —y), the problem can be quite simply treated
in terms of bosonic fields.

Here, we focus on the case of B o., where B is
the characteristic radius of the region where the function
U(x —y) is essentially nonzero. Then the q dependence
of corresponding Fourier transforms can conveniently be
neglected. (This implies that all the distances considered
should be much larger then R.)

The interaction part of the Hamiltonian contains sev-
eral terms classiGed in what follows.

The terms, diagonal in the electron densities, can be
written in conventional way:

f
L

~~(~)
Pp(o)R(X)pp(o)R(X) + Pp(o)I (X)pp(o)L(X)j2 0

we shall use both normal ordered and not normal ordered
forms of Fermi operators.

The presence of the momentum space cutoff n refIects
dxPp( )R(x)Pp( )R(x) . (11)

—L
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x=o

p„(x)p„(x)

in the same way as in the bulk case, Eq. (15), there is an
important difference in sign in Eq. (14).] This rotation
is achieved by the canonical transformation,

I

I

x
I

I

I

I

I

I

qq m UHUq = ) ) v qb~, b, + (Aqq )'),
g)0

(16)

where

pR(x) p„(-x) Vv = V 0

cosh(2{p„)

FIG. 2. The system with open boundaries can be described
either in terms of right and left moving Fermi fields (the up-
per part of the figure) or in terms of the right moving field
only (the lower part); in the latter case, the density-density
interaction becomes nonlocal.

This renormalizes the sound velocity:

0 ~S (~)
V

( )
= Vy'+ 2'

The term mixing right and left densities is of the form

L

gp(o) dzPp(o)R(z)Pp(cr)L(z)

L

gp(o) ZPp(o)R(x)Pp(o)R( Z) & ( )
2

i.e. , it is nonlocal in space (see Fig. 2). Still, this term is
quadratic in the electron densities and, therefore, takes a
simple form in terms of bosonic operators (the remaining
terms, which do not assume a form quadratic in densities
are discussed in the last part of this section).

Consequently, the Hamiltonian becomes

The previously defined v„N can be alternatively written
as

VvvN—

being

K„=exp(2bp„) .

The unitary operator U is defined by

U= exp — ) q (bq bt —b b ))'-, q&0
(18)

U@,R(z, t)Ut = ' e * 'e4& ~ ""
+2am

(z —v t)x exp ~ e„,eral%
2J

v

The next step is to find how the Fermi operators trans-
form by applying U. Employing the method of Mattis
and I.ieb, after lengthy but straightforward calculations,
we arrive at the main result of this section, i.e. , the ex-
pression for the electron annihilation operator in terms of
Bee bosons for the case of the interacting Fermi system
with open boundaries:

+ ""
(~qq. )'),

P„(x—v„t)— " P„(—x —v„t)2" " 2"
(»)

where s, is +1 unless s =$ and v = 0, when its value is
—1. We have defined

where

gv+ gv
VvN' —VQ + 2'

This can be diagonalized in a standard way by the Bo-
golubov rotation,

c = cosh(bp ), s„=sinh(rp„).

It is important to notice that, if one would write the
expression (19) in the normal ordered form, this results
in x-dependent preexponential factors:

Utp, R(x, t) Ut

where

b„~—& cosh(bp )b q
—sinh(bp )bt

tanh(2bp ) =-
2&Vv

(i4) = Ag e ' 'e4& ~-"" '[P(2z)]~-""~
+21.

(z —v t)x: exp i c„,vrLNv
2L

v

[Notice that whereas the rotation angles rp„are defined
+ "P„(x—v„t)— "P (—x —v t)2" "

2
(2O)
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where the constant Ay is given by

7tn
Ag ——

L

and the function P(z) is defined in the Appendix A. Al-
though the preexponential factor in (20) is x dependent,
it does not depend on t. This explicitates the asym-
metry between space and time coordinates in the present
problem (for the translation invariant system, the factors
resulting from normal ordering are just constantsx2).

C. Luttinger-liquid picture

term in (13) acquires off-diagonal corrections (in q space).
In Appendix C, we show that these ofI'-diagonal terms do
not contribute to the asymptotic behavior of the corre-
lation functions for (x~ )& R and v~~t( )) R and can,
therefore, be neglected. The exponents are thus deter-
mined by the q —+ 0 limit of the Fourier transform of the
interaction constants g„.

As it is well known, for the case of electrons with spin,
the above considered terms —quadratic in the electron
densities —do not account all the possible interaction pro-
cesses efFective at low energy. The remaining process
is the so-called spin backscattering process which is de-
scribed by the following term in the Hamiltonian:

We now pause to discuss how the open boundary con-
ditions modify the standard Luttinger-liquid picture. Ac-
cording to the Haldane analysis, a gapless 1D system
with periodic boundary conditions is described by a low
energy Hamiltonian of the general form,

II = ) vsqbtb + (AN)2+
q)0

(21)

where K is the parameter which governs the asymptotic
power low decay of all the correlation functions. Two pa-
rameters, e.g. , vg and vJ, are therefore sufFicient to deter-
mine all the low-energy properties of the system (concept
of the Luttinger-liquid universality). For electrons with
spin, due to the spin-charge separation, low-energy be-
havior of the system is also described by the Hamiltonian
of the form (21) in each charge and spin sector.

As we learned f'rom the above analysis, in an interact-
ing Fermi gas with open boundary conditions (i) spin-
charge separation still occurs; (ii) each (spin or charge)
sector is described by the Hamiltonian (16), similar to
(21). The important difference with Haldane's analysis is
that the Fermi system with open boundaries is bosonized
with the help of the right moving Bose fields only, and,
therefore, there is only one (in each spin and charge sec-
tor) conserved "topological number, " AN. The total cur-
rent; J is not any more conserved; its dynamics we discuss
in Appendix B. The Luttinger-liquid concept still holds
since the two parameters (vs axxd vxv = vs/K) are suffi-
cient to describe the low-energy behavior of the system.
In the spirit of Ref. 12, v~ and K should be treated
as phenomenotogiea/parameters, though they are related
to the interaction constants g and g, which are in turn
deterxnined by the interaction potential U(x —y) in the
starting Hamiltonian (2).

Notice that we started the above analysis with local
(in real space) interactions: g~(x) = g~b(x), etc. (The
interaction becoxnes nonlocal only after formulating the
problem in terms of right moving fields. ) If we would
have readily started with long-range interactions of ra-
dius R &) n (but nevertheless R (( L), the interaction

LN being related to the total number of particles, and J
to the total current. The different velocities in (21) obey
the relations:

Vg
VJ = Kvg, VN K'

(22)

where s denotes —s. Using Eq. (19) we find that, un-
der the transformation (16), the spin backscattering term
takes the form

~ ~

L
d~e

—'v'2~ 4 (~) ~v'2~ 4 (—~) —»~ f(»)
(2~n)

(23)

Equation (23) cannot be diagonalized, in general. Never-
theless, one can analyze the eKects of the spin backscat-
tering by applying the renormalization group (RG)
method, as it has been done for the infinite system.

For K & 1 the operator (23) is irrelevant, and it fiows
to zero under RG process, meanwhile renormalizing K
to a smaller value K* & 1. For spin isotropic interaction,
the fixed point value is

K* = l. (24)

In this case, therefore, the approach we have developed
above correctly describes the low-energy properties of the
system.

On the contrary, if K ( 1, the spin backscattering in-
teraction is relevant, i.e. , it flows to strong coupling under
RG process. This is interpreted as the opening of a gap
in the spin excit;ation spectrum. It is known that, under
scaling procedure, K decreases and eventually crosses
the value K = 1/2 at which the model has been exactly
solved by Luther and Emery. Therefore, the solution
at this point is believed to give a qualitatively correct
description of the gapped phase for any K ( 1. The in-
fluence of open boundary conditions on the gapped phase
is analyzed in Appendix D.

Finally, we notice that although we have modeled the
finite electron system by imposing vanishing boundary
conditions (3), one could equivalently switch on a binding
wall potential. For instance, a potential V(x) such that
V(x + oo) ~ 0 but V(x ~ —oo) ~ Vo is equivalent (if
Vo is larger then the Fermi energy) to a left boundary.
In this case, one should use as a basis the eigenfunctions
of this potential px, (x), while defining the electron field
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operator:

).VI (z)c.A:. (25)

III. CORRELATION FUNCTIONS

Given the bosonized form of the electron operators,
Eqs. (19)—(20), one can compute various correlation func-
tions. Here, we discuss some examples of physical inter-
est.

A. The Friedel oscillation

Since the system under study is obviously not trans-
lation invariant, the mean electron density is not homo-
geneous, so that the Friedel oscillation is build in the
ground state. Namely, we obtain

Since at large positive z the eigenfunctions pA, (z) are
standing loaves, the expression (25) asymptotically coin-
cides with (4) and our above considerations are applicable
also to the binding wall potential case.

flows to zero under scaling).
Assume now that many scatterers are present in the

system. This is what happens in the case of doped quasi-
one-dimensional electron systems. Does the above ar-
gument imply that, upon doping, the electron gas will
break up, according to the concrete realization of the
impurity potential, into a set of almost independent seg-
ments (to which open boundary description is applica-
ble) connected by weak links'? To answer this question,
we notice that these segments are finite, so that there is
a minimal excitation energy (dimensional quantization),

Consequently, the above scaling procedure should
be stopped at energies u um;„. The relevant question,
therefore, is whether u;„is so small that the impurity
potential grows large enough to produce efFectively in-
finite barriers before w reaches w;„.Obviously, this is
just a condition on the scatterers concentration. The en-
ergy u;„should be compared with the cross over scale,
(do, between the weak coupling regime of the impurity
potential and the strong coupling one (the latter being
equivalent to a regiine of tunneling through a weak link).
The latter scale can be estimated by imposing the so-
lution of Eq. (27) to be of the order of the bandwidth.
That gives

~~(*) = —"*"*).8'.(— )& .( )) + ( —*)

e2iA:F z

(26)

Hence, setting w;„v~/zp, where zp is the mean dis-
tance between scatterers, we find the following condition
on doping:

Consider distances x (& L. The Friedel oscillation then
takes the form 1 PL) ) 2/(1 —KP)

zp )) —
(

—
/

ky (Vp j (28)

bp(z) =—
7IC1 go2 + 4zz

sin(2k~z) .

This expression describes how the perturbation of the
electron density, caused by the boundaries in a semi-
infinite system, decays at large distances.

It is interesting to examine to which extend the open
boundary consideration applies to doped systems. Kane
and Fisher noticed that a local impurity potential

is equivalent, at low energy, to an infinite barrier, i.e., to a
boundary (for infinite system). 4 Indeed, they found that
the backscattering part of the impurity potential fIows to
infinity under scaling according to

dV 1= ——(1 —Kp) V, (27)

where the energy w is scaled to zero starting &om the
bandwidth u = D. Repulsive (K~ ( 1), spin isotropic
(K = K* = 1) interactionis assumed. Theproofiscom-
pleted by studying the opposite limit of strong potential,
which results in a weak link between two independent
semi-infinite systems the electron tunneling through a
weak link is described by an irrelevant operator (which

Notice also that a short-range character of the impurity
scattering was implied: ap 1/k~, where ap is the ra-
dius of an individual scattering potential. Otherwise, we
should impose an additional condition:

2:0 p& ao.

Thus, if the conditions (28) —low doping and (29)—short-range scattering —are satisfied, we arrive at
physical picture for doped quasi-one-dimensional materi-
als: the impurity potential renormalizes to large values
thereby breaking up the electron system as shown in the
Fig. 3; the electron tunneling across weak links and &om
chain to chain can then be treated by perturbation the-
ory. This picture essentially difFers f'rom those previously
discussed in the the literature, which deal with pertur-
bation expansions in the disorder potential. '

Let us briefIy outline some consequences.
(i) The Friedel oscillation (26) will be frozen in, de-

pending upon the concrete realization of doping. Of
course, this oscillation will be smeared out by impurity
averaging. Still, an efFect should remain in the density-
density correlation function, which acquires an extra dop-
ing dependent 2k~ component steming &om the impurity
averaged Friedel oscillation. This should, in principle, be
experimentally measurable (e.g. , by neutron scattering).
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O(x, y, t) = —x( ) — ) v„~t

tp +-, ) c2„f(x(-)— „t)
V

—s„f (x( ) + v„t)+ e„s„f (x(+) + v„t)
c„—s f(x(+) —v„t)

f12

FIG. 3. Slightly doped quasi-one-dimensional conductor
breaks up into independent segments of the electron gas (de-
scribed by the open boundary analysis), these segments are
coupled back by weak tunneling processes of two types: Cp p
(tunneling between dift'erent chains) and ti2 (tunneling be-
tween neighboring segments in the same chain).

It is straightforward to calculate the finite temperature
version of Eq. (31), that is, however, not of an immediate
interest.

Let us now discuss some limiting cases of the expression
(31).

(i) It is interesting to understand how the "bulk" be-
havior of Green's function is recovered. Clearly, one
should impose the condition that the relative distance
between points x and y is much less than all the dis-
tances to the boundaries:

(ii) The calculation of conductivity is, under these cir-
cumstances, an interesting but puzzling task dealing with
a type of random resistance network.

(iii) At low temperatures the electron tunneling be-
tween chains becomes relevant, so that the 3D character
of the problem takes over and a broken symmetry ground
state forms (typically charge-density wave); ' ' the ef-
fect of small doping (which increases a phase disorder but
stabilizes the Friedel oscillation) on the formation of this
state is unclear. These issues deserve, in our opinion,
further investigations.

B. Green's function

x( ) (( min(x, y, L —x, L —yj .

However, even if the above condition if fulfilled, the
boundaries still inBuence the Green function behavior
provided that the time interval t between the creation
and the annihilation of the extra electron is large enough
to allow the excitations to reach one of the boundaries
and to be reBected &om it. Hence the additional condi-
tion

(vent, v t) (( min(x, y, I —x, I —y) .

Provided the conditions (32) and (33) are satisfied,
Green's function (31) takes the following asymptotic
form:

The electron Green function is given by (t ) 0):

G- (* t) =-'(@.(* t)4.'( o))
2xo. ---- x(—

~ —v„t+in
- c„/2

) abe' ( * ")G„,(ax, by; t), (30)
x(—

& + v„t—io. (34)

where we have substituted Eq. (6) and defined

G.".(*, ;t) = -'(@ .(*,t)&'. ( o))

Making use of Eq. (19), we find

G~, (x, y;t) =—
V

lP(2x)P(2y)j""' P(x' '

-c /2 2 /2
v„t) P(x( ) + v t)

x P(x(+& — „t)P((+)

+v„t)

where x( ~ = x + y, and the phase factor is given by

which is the electron Green function of the translation
invariant system (t ) 0). From the bulk behavior of
Green's function (34) one can deduce, for instance, that

~1~ -', P„(K„+K„-')
(4.(*.t)@.'( 0)) -

l
—, l (35)

(1)Q„K /2

G.. (oot)-b...
l

—
l

(ii) On the other hand, if our @ operator is close to
the boundary, the condition (32) can not be satisfied any
more and one should use the general formula (31). Con-
sider the case x = y = 0. Of course, strictly at the
boundary, x = 0, the electron operator vanishes, Eq. (3).
So, by writing x = 0, we mean that x is of the order of
n. In this case, we find



17 834 M. FABRIZIO AND ALEXANDER O. GOGOLIN

(z, y) « (vent, v t), (37)

The latter formula holds actually for any x and y, satis-
fying

F being the two-particle vertex function de6ned by

~„;„(tt') = -'P'(p, (t);(t') .' (o))),
with

(41)

( 1 ) (i/s) p„(K~+3/K„)
G(o, y;0) -

~

—
~

~y)
(38)

Notice the difFerence between (36) and (38).

and means that the power law exponent of the
Green function at the boundary differs &om the bulk
one. This result is implicit in the Kane and Fisher
treatment ' and also agrees with conformal Geld the-
ory considerations.

(iii) DifFerent exponents come into play in the static
limit: G(z, y; t = 0). For t = 0 and z = y the expression
(31) coincides, of course, with (26). In the limit z = 0,
y )) n (but y « L), however, one finds

Pq = g |" Cp+q
p

The crucial step in solving the lD problem is to Gnd
a relation between the vertex function E and the Green
function G, which enables one to express the former in
terms of the latter thereby resulting in a closed equa-
tion for G. Since the nonlocal interaction in (39) does
not conserve momentum, the diagrammatic approach of
Ref. 19 is, in our case, less convenient then the equations
of motion method of Ref. 20.

Standard commutation relations

qL
[pq, p q] = bqq, q, q & 0

C. Vizard's identity

Because of the novelty of the bosonization approach
to open boundary systems, the question arises whether
any important physical processes have been missed in
the above consideration. Put another way, is it possible
to derive the Green function (31), and other carrelation
functions, by means of an alternative method not rely-
ing on specific tricks of the bosonization approach [like
Eq. (9) to Eq. (19)]'7 A.n alternative method of deriving
the correlation functions of 1D interacting Fermi systems,
based on the classification of diagrams (Ward's identity),
has been devised by Dzyaloshinskii and Larkin. Everts
and Schulz realized that Ward's identity can equivalently
be derived using equations of motion for electron density
operators.

The starting point, as in Sec. II, is to formulate the
problem entirely in terms of right moving Gelds. The full
Hamiltonian then reads:

dX V~ ~ X —XO~

(the 1/2 difFerence with Ref. 7 is due to q taking the
values nn/L) le'ad to the following equation of motion
for the density operator:

(i~i —vsq) p =
2 qp, +

2 qp —..g g
(42)

qE', (t, t'—) + —qE ', (t, t')

+zb(t —t')G„"+,„,(t) —ib(t)G„"„,,(t' —t) . (43)

The Ward identity (43) can easily be solved with re-
spect to the vertex function I" (in tu space). Substituting
this solution into Eq. (40) and transforming back to the
(z, t) space, we find, after algebraic manipulations, the
following closed equation for the Green function (t ) 0):

Deriving Eq. (41) in t and substituting Eq. (42), we
arrive at the version of tA'ard's identity applicable to the
present problem:

(i(9i —v~q) I"„„,(t, t')

+
2

~+(*)p~(*)+ ~~(*2)s'~(—*)j .g

(For the sake of clarity, we consider the simplest case of
spinless fermions. )

The Dyson equation for the single-particle Green func-
tion,

with

(Bi+ v~B ) lnG~(z, y, t) = K(z, y, t),

(v~ —v)se (v~ + v)scKzyt = +z+ y —vt z+ y+ vt

v~sc (v~ —v)c (v~+ v)s
x x —y —vt x —y+ vt

(44)

(45)

G.".(t) = —(T("(t) „'(o)))

where the operator c„is defined by Eq. (5) with kF +p ~
p, takes the form

(i(9, —v~p) G„„,(t) = bp„b(t)— ) gF~ „,(t, t)

The limit L ~ oo (semi-infinite system) is taken. Here
and below, we omit (imaginary) short-time cutofF terms
(which can easily be restored). Analogously to the case
of fermions with spin (see Sec. II), we have defined

c = cosh((p), s = sinh((p); tanh(2)p) =-
27lvy +g

and the renormalized sound velocity v is given by

+gI'„',„,(t, t) (40) g 2 /'g)
Vy +
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Among many solutions of Eq. (44), the one which coin-
cides with the &ee fermions Green function for the nonin-
teracting case and is correctly symmetrized with respect
to x and y, can be written in the form:

G (x, y, t) =—
2

C
2

i (x+ y —vt)(x+ y+ vt)
7l 0! 4xy

METAL
I I aa

x —y —vt x —y+ vC
(46)

The Green function (46) coincides with the appropri-
ate asymptotic form of spinless version of Eq. (31), thus
demonstrating the equivalence of "purely" bosonization
methods of Sec. II and the approach based on Ward's
identity for Fermi systems with open boundaries. [We
remind you that the total Green function G(x, y, t) is de-
termined by G+(x, y, t) via the relation (30).]

The Ward's identity method can straightforwardly be
extended to the case of finite I, 6nite temperatures, as
well as to the case of fermions with spin. We are not pre-
senting these calculations here since they anyway lead to
the results identical to those of the bosonization tech-
nique.

BARRIER

FIG. 4. Contact between a quantum wire and a 3D metal,
with an applied potential difference V.

6ned by

I(t) =

= —2ie) dx dr T(x, r)
W M

x @wt, (x)@M,(r ) —H.c. (48)

IV. TUNNELING AT THE BOUNDARIES

In this section, we study several tunneling processes at
the boundary of the wire, which might be relevant for
experimental applications.

In linear response the average current at time t is given
by

(t(t)) = ' f« tt(t —t )((t'(t) q'(t )l)t'(t )'. '

A. Two-terminal conductance

H = HM+Hw +T —VQ, (47)

where HM~w~ is the Hamiltonian of the isolated metal

(wire), T describes the tunneling between them:

T = p dx dr T(x, r) @wt, (x)QM, (r) + H.c.
W M8

where T(x, r) the tunneling matrix element between the
wire and the metal, which we take limited to the vicinity
of the barrier. The last term in (47) is responsible for
the potential diR'erence between the wire and the metal,
Q being their charge difFerence,

Q = e(Nw —NM)

where NM~w~ is the total number of electrons in the
metal (wire).

The potential drop induces a current I, which is de-

Consider a semi-infinite wire coupled to a normal (3D)
metal through an insulating barrier, as shown in Fig. 4.
A potential difference V is applied between the metal and
the wire and we assume that the potential drop occurs
just across the barrier, whereas both the metal and the
wire have homogeneous chemical potentials. The Hamil-
tonian describing the system can be written in the form

(I(t)) = t f« tt(t —t') f «"'e(t'

—t )([I(t) I(t )]) &(t ) (49)

where the thermal average ()() is now taken at T = 0.
Due to the relation (48), the current-current correla-

tion function reduces to a product of the local single-
particle Green functions for the metal and the wire. As
we have shown previously, the local wire Green function
behaves as

( 1 ) Q„K„'/2
5' .(0 t)@' .(o 0)) - I —, I

while the metal Green function is

(@M.(0 t)@M.(0 0))

The latter result is true independently of the presence of
electron-electron interaction in the 3D metal, as follows
Rom the quasiparticle pole residue Z being 6nite in the
Fermi liquid theory.

Since [I, Q] = 4ie T, and Q is conserved in the absence
of tunneling, the above correlation function vanishes if
the thermal average is taken over the eigenstates of the
Hamiltonian (47) with T = 0. Therefore, one needs the
next order correction in the tunneling, which leads to the
following expression:
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Plugging these results into (49), we find for low fre-
quency conductance,

METAL I
WIRE

METAL 2

where Go is a &equency independent constant that is de-
termined by details of the barrier and D is a high-energy
cuto8' related to the metal and wire bandwidths. At zero
&equency, the temperature dependence of the conduc-
tance is given by the same formula with the temperature
replacing the &equency.

This result enables us to discuss the more realistic ge-
ometry of Fig. 5. In this case, the voltage drop V occurs
at the two insulating barriers, i.e. , V = Vi + V2 (the
indices refer to each barrier), while the currents flowing
across each barrier are the same I = Iq ——I2. The latter
condition holds since no accumulation of charge can oc-
cur in the wire. Therefore, the two-terminal conductance

FIG. 5. Geometry for a two-terminal conductance mea-
surement.

other experimental setups in which di6'erent boundary
processes are involved. In the case we just studied, the
corresponding boundary operator was the single Fermi
field operator. For example, at the contact between the
quantum wire and a standard 3D superconductor, the
tunneling of electron pairs should be considered. In Ta-
ble I, worked out by applying Eq. (19), we give a list of
possible boundary operators Ob with their scaling dimen-
sions xb defined by

Thus, in the physically relevant situation of spin
isotropic repulsive interaction (K~ ( 1 and K = 1),
the two-terminal conductance vanishes at low frequency
(low temperature) with a power law. The conductance of
a I uttinger liquid with an impurity has been predicted
to vanish by Kane and Fisher. Here, we have shown that
such an efFect should occur even in the case of a perfectly
clean wire. This reflects the irrelevance of the tunneling
T between the wire and the normal metal, as a conse-
quence of the electron-electron interaction in the wire.
Thus, a two-terminal experiment as the one we discussed
above can provide a simple way of probing the Luttinger-
liquid behavior in quantum wires. Notice, however, that
those wires should be sufBciently long since the dimen-
sional quantization introduces a low-energy cutofF v~ jl
below which the conductance becomes temperature inde-
pendent and moreover gives rise to a finite charging en-
ergy (causing Coulomb blockade type phenomena), which
we have neglected.

B. Boundary operators

Similarly to what we have shown for a normal metal—
quantum wire —normal metal contact, one can imagine

V. MAGNETIC IMPURITY

In this section, we consider the efFects of a magnetic
impurity in an interacting wire. The coupling to the con-
duction electrons is provided by an antiferromagnetic ex-
change J and a local potential V. On general grounds
one expects V )) J, but even in the unphysical case
V = 0, a local potential will be generated by the ex-
change coupling. The V = 0 problem has been previ-
ously studied by Lee and Toner and by Furusaki and
Nagaosa. In Ref. 24 it was found that for repulsive
electron-electron interaction the low temperature fixed
point corresponds to the screened impurity spin, simi-
larly to what happens in the conventional single-channel
Kondo problem for noninteracting electrons.

Here, we study the opposite limit V )) J. In this case,
it is more appropriate to first diagonalize the Hamilto-
nian with only the local potential. For repulsive interac-
tion that corresponds to cutting, the wire at the impurity
site and treating the residual tunneling through the bar-
rier as a (irrelevant) perturbation. Taking into account
also the spin exchange, one can, in general, write the
following impurity Hamiltonian:

Boundary

operator Qq(t)

Qg, (t)

op~, (t)QR, (t)

TABLE I. Boundary operators and their scaling dimensions.

Bosonized

form

exp i ' +i~
$2Kp V'2Kcr

Bgp(t) + 8$ (t)

exp +z

exp i ~ p t +i ~ t

exp i ~ p t

Exponent

—'(K '+ K ')
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H;~p ——JS) ) @, 0 p@,p.
i=1,2 nP

+I'S) (Qt~&7 g@2p+ H.c.)
cxP

+t ) (@, @~ + H.c.), (50)

where l(2) corresponds to the right (left) side of the im-

purity, S is the impurity spin-1/2 operator, and o are
the spin-1/2 matrices (see Fig. 6). The first term rep-
resents the exchange interaction of the electrons of each
lead with the impurity spin. The second one corresponds
to tunneling processes with spin flip, and the third one
to the tunneling without spin flip.

For I = t = 0, the model is equivalent to the two chan-
nel Kondo model, which is known to exhibit anomalous
behavior. Finite I' and t will introduce anisotropy be-
tween the two channels. For noninteracting electrons,
this anisotropy is known to be a relevant perturba-
tion which brings the system back to the single-channel
behavior at low temperature. A repulsive interaction
(Kp ( 1, assuming K = 1 to assure spin isotropy)
changes the bare dimension of I" getting it irrelevant,
without afFecting J (which remains marginal). The re-
sulting renormalization group equations for weak inter-
action are

dJ
dlnL

(J2 + r2)

dr = l~ — 1 llr 1 rJ.
din I ( Kp) m v~

V(x)

lead 1 lead 2

FIG. 6. Impurity spin S in a quantum wire in the presence
of a strong potential scattering.

Although a small I will firstly decrease under scaling due
to K~ ( 1, the contemporary increase of J will ultimately
drive I' to larger values. Therefore, the relevance of I'
should be more appropriately studied for large values of
J. The best way to proceed is then to first assume I' = 0,
let J flow to the strong coupling fixed point, and analyze
around it the relevance of a small I'.

We bosonize the Fermi fields according to the proce-
dure outlined in Sec. II. We introduce charge and. spin
bosonic variables for each lead Pi and P2„(~= p, o'),
and their symmetric and antisymmetric combinations
P,„and P „.In terms of these fields, the Hamiltonian
(50) reads

Himp = S+e'~" cos(P ) + H.c. + '—S 8 P,2' 0! 2KI, , (y., )S+e'~ cos —
~
+ H.c.

2~n

r, , (y.,+ ' S' sin(P ) sin

(@., l
cos ~~ cos (5

2t+

In the spirit of the Emery-Kivelson solution to the two-
channel Kondo model, we can get rid of the phase fac-
tors involving P, by performing the canonical transfor-
mation,

U 2Sz /acr

The transformed Hamiltonian is simply

+imp = S J~ cos(P ) + r~ cos
Kp)

+—S'8 P,

l
+ S' sin(P ) sin

I', , Pp

+ cos(P ) cos
7I'A

g K& )

where A = J —2vrv~. If A = I', = t = 0 the Hamilto-
nian (52) can be easily studied since S commutes with
the Hamiltonian and can be given a definite value +1/2.
For a fixed S, the Hamiltonian is equivalent to the one
describing impurity scattering in a Luttinger liquid (for
each field P and P p). It is known that a local cos(PP)
term is relevant if P ( ~2, marginal if P = ~2, and ir-
relevant otherwise. Therefore, the J~ operator is always
relevant, whereas r~ is relevant only if 1/2 ( Kp ( 1.

If both J~ and I'~ are relevant, the low temperature
fixed. point behavior is that of the single-channel Kondo
mod. el, as we previously discussed. Just this case has
been analyzed in detail by Furusaki and Nagaosa. Thus,
we have shown that the presence of a strong potential
scattering does not modify their conclusions, provided
that Kp ) 1/2.

The feature that arises &om our analysis is that for
Kp ( 1/2 the two-channel Kondo behavior is stable, with
respect to a channel asymmetry. The behavior of the
model around the two-channel fixed point can be per-
formed in a way similar to that of Ref. 26. Without
repeating the calculation, we just remind that the low
temperature impurity susceptibility y ln(l/T) and the
specific heat |v T ln(1/T). This situation could be re-
alized in quantum wires with long-range Coulomb inter-
action, which may result in a very small Kz, see Ref. 27.
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is repulsive (parametrized by the exponent K & 1), we
know from Ref. 4 that the impurity at low energy efI'ec-

tively acts as an infinite barrier, thus cutting the chain
into two disconnected leads of length L. Consider now
the following x-ray edge type of problem: at time 7 ( 0,
the impurity is in the state ~$). Suddenly at 7 = 0 the
spin is reversed, thus changing sign of the scattering po-
tential, and finally at time 7 = t the spin is reversed back.
This process is described by the correlation function:

APPENDIX A
~(t) =(&I ~ (t)~+(0) ll). (B2)

The computation of average values of exponentials con-
taining phase fields requires the knowledge of the sum:

S(z) = ) e'~' ~ = ln~
~
+lnP(z)+if(z),- qL (~n)

Can we calculate the long time behavior of (B2)? We re-
cently encountered a similar problem analyzing the four-
channel Kondo model, and we think it may be relevant
also for other impurity models. The way to evaluate (B2)
is similar to the standard bosonization approach to the
x-ray edge singularity. Notice that the unitary operator

where

2L sinh (z&) + sin (z&)

.7rU= exp i —J,
2

where J = %~—NI, is the total current, has the following
property:

f(z) = tan
sin ( &')

e « —cos ( ~ )

Let us consider the limit of these functions for z close to
one of the boundaries. For ~z~ && I (but ~z~ )) o.), we
h.ave

P(z) = —;

f(z) = tan '
(
—

) m —sgn(z).

The same expression holds at the other boundary (z ~
2L) with the replaceinent z m z —2I.

U [Ho + V cos(P~ + $1,)] Ut = Ho —V cos(P~ + PL, ),

i.e. , it changes the sign of the potential term without
modifying the bulk part of the Hamiltonian H0. Thus, U
is equivalent to the spin Rip operator. This implies that
the correlation function (B2) can also be written as

x(t) = (&I U(t)U'(o) l&)

and in this representation its evaluation is straightfor-
ward. Since the low-energy fixed point corresponds to
cutting the ring at the origin, we use the open boundary
bosonization to rewrite the current operator,

L
J = N~ —Ng = dzpR(z) —pl. (z)

0

APPENDIX B

As an interesting application of the open boundary
bosonization, we consider the following problem: let us
imagine that in a spinless I uttinger liquid on a ring of
length I, we insert an impurity at the origin. This im-
purity has two possible states, which can be thought of
as two spin states ~g($)). We model the impurity as a
local backscattering potential, and we assume that the
sign of this potential depends on the impurity spin. This
amounts to add to the electron Hamiltonian a term of
the form,

Vo', cos(P~ + Pi, ),

where the Pauli matrix acts on the impurity states, and
$~~1,1

is the phase field corresponding to the right (left)
moving electrons. Since there is no term in the Hamilto-
nian which Qips the impurity spin, o can be given a fixed
value, which does not evolve with time. If the interaction

dzc R(z) —
C a(—*)

By performing the Bogolubov rotation to get rid of the
bulk interaction, we get

[&(L) —&(0)]

and, therefore,

U = exp [P(L) —P(0)]
2 K

Since the fields P are now &ee Bose fields with logarithmic
correlation, we immediately see that the dynamics of the
total current is characterized by the following correlation
function (t « L/vy ):

(J(t)J(0)) =, lnt .
2

This result agrees with the analysis of Ref. 29. Hence,
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the correlation function (B2) takes the form

(1) ~sc

y(t) oc
/

—
/

(B3)

Here, g(p) is the Fourier integral transform of g(x) and
b' a positive infinitesimal. The formula (C4) with g(p)
instead of g(p) defines g(qi, q2).

Shifting the integration contour in (C4) up in the com-
plex p plane, we can write

g(t) has the power law behavior typical of the x-ray edge
singularity, but the exponent is determined by the inter-
action only and is not bounded Rom above.

APPENDIX C

This Appendix is intended to show that a long-range
electron-electron interaction (i.e. , interaction of finite ra-
dius B) does not modify the conclusions of Sec. II;
namely, that the exponents of correlation functions are
determined by zero-momentum Fourier components of in-
teraction constants. In the case of long-. range interaction,
the bosonic Hamiltonian (13) is no more diagonal in q
space. We proceed in two steps: erst, we demonstrate
how the diagonal part of the interaction can be sepa-
rated &om the oK-diagonal one and, second, we observe
that the latter is irrelevant (does not contribute to the
exponents) .

The interaction term (11) is now of the form

L L
d'gg(& —g) pp( )R(&)pp( )R(p)

0 0

I(ql q2) —g(q2)i)(q2 + ql)

+g(q2)b(q2 —qi) + bI(ql, q2) .

'+ A'
(C6)

The interaction (C6) may model a screened Coulomb in-
teraction in quantum wires (the cutoffs A, and A are
then related to the inverse screening length and inverse
lattice spacing, respectively). Evaluating the branch cut
integral (Fig. 7), we find

The first two terms in (C5) stem from the residual of the
pole p = q2 + ib. They are responsible for the diagonal
part of the interaction. The off-diagonal part, bI(qi, q2),
is due to singularities of the functions g(p) and g(p) in
the complex plane (see Fig. 7). Since the only regular
complex function is a constant, the only case when bI = 0
corresponds to local (in real space) interactions.

In order to illustrate the properties of the oK-diagonal
part of the interaction, we consider now a speci6c exam-
ple:

+pp( )I (*)pp( )I (g) (C1)

and the g term (12) changes analogously. (The index
v = p, cr is suppressed, but the results are valid for both
charge and spin sectors. )

Simplifying the problem (but not affecting qualitative
results), we work in the limit of semi-infinite system (L —+

oo). Then, in q space, the Hamiltonian takes the form

bg(ql q2) = ).
7l qi+q2 . (, As J

—tan-
(

—
[

, t'q, l
(A )

It is important to notice that bI tends to a constant in
the limit of small q:

0 = Ho+a (C2) Obviously we can, in general, write

with the continuum version of the &ee part, ~I(ql q2) = go» «r (qi q2) « Ii'&. (C7)

H0 —— dqV ~qbt 6

and the interaction term,

(C3)

1 OO

H;„,= —— dqi dq2+qiq2[I(ql, q2)(b b,
0 0

+H.c.) + I(qi, —q2)(bt, b, + H.c.)],
where

I(ql q2) —g(ql q2) + g(qi, —q2)

and g(ql, q2) is defined by
VV

1 s q+i 5

1 dp g(p)
g(qi, q2) = Re—

2~ (p+ q, +ih)(p —q, —ih)

(C4) FIG. 7. Integration contour in Eq. (C4).
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Here, g0 is the interaction strength and B is related to
the inverse distance to the first singularity of g(p) from
the real axis (i.e. , to the radius of the interaction).

We can thus rearrange the total Hamiltonian (C2)
writing it in the form

P (z)m —P (—x).
This symmetry implies that the spectrum should be sym-
metric around zero energy.

Being quadratic in the fermion fields, the Hamiltonian
(Dl) can be brought into diagonal form

Here, II is the continuum version of the Hamiltonian
(13), it contains Ho and the diagonal in q part of (C3).
H can immediately be diagonalized [the exponents are
determined by g(q = 0) and g(q = 0)]. The remaining
part, in small-q limit, takes the form

OO OO

qi q2gqiq2 ( q, —,', ) ( „—,', )
0 0

The irrelevance of bH is already clear &om its scaling
dimension (with is equal to 2). One can also demon-
strate this more straightforwardly: since bH is quadratic
in Bose fields, H can be diagonalized. Doing so, we And
that the leading corrections (due to hH) to the correla-
tion function (P(z)P(y)) [which behaves as ln(x —y) in
the absence of hH] drop as (B/z)2, (R/y) at large dis-
tances thus do not modifying the asymptotic behavior of
fermionic correlators.

H = ) eCtC, ,

where the new Fermi operators C, are related to the old
ones by the canonical transformation,

Ct= dry, xCt x

The wave functions x, (z) satisfy the following nonlocal
Schrodinger equation:

eX, (z) = —iv 0 X,(x) —i&sgn(z)X, (—x) .

Defining the functions X,
+

(x) = X,(z) and X, (z)(+) (—)

x, (—x) (for x & 0), we can conveniently rewrite (D3) as
the system of differential equations:

APPENDIX. D
x'+'( ) = —' -~*x'+'(*) —'&x' '(*)
x,' '( ) =+' -~-x.' '( ) +i&x,'+'(z) .

Here, we study how the Luther-Emery solution is mod-
ified by open boundary conditions. If we define new
Fermi operators

Those functions obey the following boundary conditions:

—ie
27t 0!

where 0 is conjugate to b,K, then exactly at K = 1/2
the spin backscattering term (23) assumes a quadratic
form in these operators. The Hamiltonian describing the
spin excitations becomes

dz4 t (z) ( i 8 ) @ (x)—

(D6)

2
( p)2+ +2 (D7)

and the allowed values of p derive from imposing the
boundary conditions (DG,D6), which lead to

sin(pI ) (iA —e —v p) (ib, —e + v p) = 0 .

where the latter derives from (10).
Each particular solution of (D4) has the form

exp (+ipz). The dispersion relation turns out to be

dzsgn(z)@t(z)C ( z), —(Dl)

where

gbs

27l 0,'
(D2)

The sgn(x) factor in (Dl) stems from the phase factor
f(2x) in the n ~ 0 limit, which is necessary to preserve
the particle-hole symmetry of the model,

The solutions are p = 7m/L with n a positive integer,
which correspond to energies ~e~ & A, and p = +iA/v
with energy e = 0. Therefore, similarly to what happens
in the case of an infinite system, the spin backscattering
term opens a gap L in the continuum spectrum. The
unusual feature is the existence of the zero energy states,
which are bound states localized at the boundaries. So,
in the I ~ oo limit (semi —infinite system), the wave
function of the bound state localized at x = 0 takes the
form

or equivalently
e

—~l ~l/~
V~
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