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Possible bistability of the persistent current of two interacting electrons
in a quantum ring
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We calculate the energy band structure and the persistent current of two interacting electrons in
a quantum ring in the presence of a magnetic Qux for a strongly correlated situation: a rotating
Wigner molecule with internal vibrations. We discuss a possible bistability and hysteresis in the
persistent current in dependence on the magnetic fiux.

Three very interesting experiments measuring per-
sistent currents in normal-metal ' and semiconductor
rings threaded by a magnetic flux 4 have been per-
formed recently. These studies indicate that in the diffu-
sive regime ' the magnitudes of the persistent currents
are much larger than those predicted for simple mod-
els of noninteracting electrons, while in the ballistic
regime this simple theory seems to agree with experi-
ment. This led to two important issues: (i) the role of
the choice of the statistical ensemble to calculate average
values and (ii) the role of the electron-electron inter-
action (EEI) in the presence of impurities. ii 2o 22 24 The
disorder-averaged persistent current has been found to
be vanishingly small when the grand-canonical ensem-
ble is invoked, while it is of finite magnitude within the
framework of the canonical ensemble. ' At the mo-
ment, the role of the EEI in disordered systems is still
unclear and is an open subject for research. Much work
has been done to explore persistent currents in the dif-
fusive regime, ' but comparatively little is known
about the ballistic regime. ' The ballistic regime of
nanostructures is important because it allows the study-
ing of quantum systems, which are classically chaotic.
Further, in recent papers ' it was shown that in the
ballistic regime a rigorous quantum-mechanical theory of
persistent currents can be developed, with the result that
the coupling between the diferent channels contributing
to the persistent current causes the occurrence of higher
harmonics of the flux quantum 4e ——h/e in the persistent
current. On the basis of this theory it was shown
for the case of few interacting electrons that this electron
system, quantum confined in a narrow-width ring, forms
a rotating Wigner crystal with relative angular motions
of the electrons in the form of the harmonic oscillations
and radial motions depending on the shape of the con-
fining potential.

The aim of the present paper is to investigate the elec-
tronic ground state of a two-electron quantum ring (QR)
(ideal or clean ring) of finite width in the presence of a
magnetic flux 4 threading the opening of the ring, i.e. ,
for an Aharonov-Bohm (AB) geometry.

We consider two electrons (i = 1,2) with the effec-
tive conduction-band-edge mass m in the plane z = 0,
confined in a QR by the potential V&(x, ) in the x-y

plane. This potential is taken as zero in the region
R —W/2 ( r; ( R+ W/2 and infinite otherwise. Assum-
ing an AB geometry with magnetic field B = (0, 0, B)
and vector potential A(x) = 2B x x and introducing
polar coordinates in the x-y plane x~~; = (r;, p, ), the rel-
ative angular coordinate p = yq —y2, and the angular
coordinate 8 = (rpi + p2)/2 describing the motion of the
two-electron system as a whole, the Hamiltonian reads
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where eo is the permittivity in vacuum and c, is the
static dielectric constant of the host semiconductor. For
a narrow-width ring, i.e., if R' (& R, the radial motion
is much faster than the angular motions. Hence the ra-
dial motion is adiabatically decoupled from the angular
motions with the result
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for the orbital part of the ttvo electron isa-ve function.
The radial part =K K (r2, ri) is a symmetrized (Ki ——

K2, P = 0 and Ki g K2, P = 2) or an antisymmetrized
(Ki g K2, P = 1) product of the corresponding single-
particle wave functions yK, (r, ), which have eigenenergies
EK =h m K, /(2m, W ), w. ith quantum number K, =
1, 2, . . . and P describes the symmetry according to par-
ticle permutation. Because the single-particle wave func-
tions are orthonormalized, the set (:-g K (r2, ri) j forms
a closure set of orthonormalized functions. The single-
valuedness boundary conditions @I K, K, (pi, p2 + 2a) =
~&,K1,K2(V'i + ~»V'2) = ~&,K1,K2(Pi + 2'Tr~l'2 + 2'7r) =
@i K, K, (yi, y2) mean, in terms of the new variables
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p and 8, 2/2~ ~, ~, (p + 22r, 8 + 7r) = gy 14, ~, (p, 8 +
2m) = g~x., R, (p, 8). Removing the magnetic flux
from the Hamiltonian by a gauge transformation, these
conditions change to the heisted boundary conditions
gI ~, ~, (p + 2vr, 8 + 2r) = exp[i2vr@/@p]@~~, Ic, (p, 0)
and @p~, ~, (P, 0+ 22r) = exP[i4vr4/@p]2/2J, ~„~,(P, 8).

Now we substitute Eq. (2) into the Schrodinger equa-
tion HC = E4 with the transformed Hamiltonian of
Eq. (1), multiply both parts by =g ~ (r„r2),and inte-
grate over r1,r2. As long as the above-stated criterion
of the adiabatic approximation is satisfied, the excited
states of the radial motion [the nearest ones to the ground
state are those with P = 1 and 2, K1 ——1, K2 ——2, and
the energy Gh, 2r /(2m, W )] lie high above the ground
state, which has the energy 522r2/(m, W2). As a conse-
quence, we can restrict the consideration to the ground
state of the radial motion (P' = P = O, Ki = Ki
1,K& ——K2 ——1). Hence the variables p and 0 become
separated:

m r2 Bp2 4 002
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where () denotes the average with the radial wave func-
tions

~r1 r1 dr2 r2 ~1 1 rl) r2 1 1 rl) r2 ~

Thus the relative angular motion is separated from the
angular motion of the two-electron system as a whole.
Therefore the angular wave function can be represented
lIl the form
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Here p describes the possible symmetry types of O". (p)
and T stands for (P = 0, Ki ——1, K2 ——1,p, j). In
Eq. (6), we have used

and
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where the wave function of the relative angular motion
is a solution of the equation

In view of the 2' periodicity of the mean Coulomb po-
tential as a function of p, the wave function of the rela-
tive angular motion has the form 4"(p) = exp(i») u". (p),
where u". (p+ 22r) = u"(p) and —

2 & p & 2. If the typi-
cal Coulomb interaction energy between the two electrons
Ec „i= e /(8m''ps, R) is much larger than the oscillation
energy E'."= t' 'P —Ec~„~,the relative angular motion
can be considered in the tight-binding approximation

C'", (~) = ) exp('»~)&'(& —&~)
Q= —oo

where P~. (p —pg) is the wave function of a single well
with minimum at pq = (2Q + l)x, Q = 0, +1,+2, . . . .
This wave function is the eigenfunction of

2 d2 m g2r2
d, +

4
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where 0 = e /(162re'ps, m, R ). In Eq. (8), we have
expanded the mean Coulomb potential in a power series
of (p —p~), taking into account the harmoiuc approxi-
mation, valid if 50 « e /(87rspe, R). Because tunneling
between the wells is neglected, the energy becomes inde-
pendent of p: F*. '" = E" . In the following, the wave

functions Pz(p —pg) are harmonic-oscillator eigenfunc-
tions with eigenenergies E."= hA(j+ 2), j = 0, 1, 2, . . . .
Now it becomes obvious that the adiabatic approxima-
tion used above is valid if hB « h 2r /(m, W~). It is
noticeable that the adiabatic approximation, as well as
the harmonic approximation, is valid for typical semicon-
ductor rings used in experiments.

The solution of the Schrodinger equation for the free
rotation of the two-electron system as a whole

r' d'
+v

i Q„(O)=0,

characterized by a rotational momentum

» = »(@)
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The curves»(E) define the channels2s 27 for the angu-
lar motion of the two-electron system as a whole. On
the other hand, using the wave function of Eq. (5) in the
Schrodinger equation (3) with a axed rotational momen-
tum, we obtain the eigenenergies of two electrons in a
narrow-width ring as a function of v~..

E~ ~ ——281+ + E. +
o~.B ' 4m. R2

According to the Pauli principle, the total two-electron
wave function (including spin) must be antisymmetric
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under particle permutation and hence, the orbital part
fulfills @(r2,rr, —p, 8) = rl@(ri, r2, p, 8). For total spin
S = 0 it follows rl = 1, the para state (or singlet state),
where the spin function iS, Ms) is an antisymmetric
eigenfunction of the total spin projection operator with
eigenvalue S = hMs, Mg ——0. For S = 1 it follows that
rI = —1, the ortho stage (or triplet state), accompanied
by three symmetric spin functions, which are eigenfunc-
tions of the total spin projection operator with quantum
numbers M~ ———1,0, and +1. This imposes selection
rules for the possible values of the rotational momentum
v~..24 for S = 0 (the para state),

4
v~ = 2m+ 2

i
if j = 2k

@0

28.515

28.513

& 28.511

28.509
-0.50 -0.25 0

@/C'0
0.25 0.50

4
or v~ ——2m+1+2 if j =2k+1

Cp

and for S = 1 (the ortho state),

C
v~ ——2m+1+2 if j =2k

Cp

4
or v~ ——2m+2 if j = 2k+1,
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which gives the persistent (azimuthal single band) cur--

rent, defined by I&(
'" —— BEr /04, in —the form

I~~
' (C, 2) =-

@Ome+ @0
(14)

On the other hand, the lowest energy band in the region
& 2 of the ortho state is

where m = 0, kl, +2. . . , and k = 0, 1, 2, . . . . The energy
bands of two interacting electrons in a narrow-width QR
are plotted in Fig. 1. It is seen that for 4/4o ——0 and 0.5
the energy bands of a certain symmetry become degener-
ate. In the case of a mesoscopic ring with impurities this
degeneracy becomes lifted and gaps between the energy
bands open. s Further, for a QR the bands of para and
ortho states become degenerate at 4/C'o ——0.25. This
degeneracy still remains for non-magnetic impurities and
is lifted by the scattering of the electrons on magnetic
impurities or due to the spin-orbit coupling.

Hence, from the energy bands determined by Eq. (11),
the lowest energy band of the para state in the region

c——( —& —is2 4p —2

FIG. 1. Energy bands E&, (rC', 2) given by Eq. (10) of
the lowest para (S = 0, thin solid lines) and ortho (S = 1,
heavy solid lines) states for a two-electron quantum ring with
B = 480 nm and TV = 20 nm. The bands are denoted by
(m, S, j). For the calculation the parameters of GaAs are
used: e, = 12.87 and m = 0.06624mo, with mo the bare
electron mass.
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m, W2 Serape, B 2

m, ,R2 Cp

~ R2 C'o

for ——& —( 01 4'
4o

for 0& @

(15)

and the persistent current reads

Iortho(C, 2)
roe& C'o @o

A
form, R~ 4'o C'o

——& —(01 4
2 4'p

0 ( 4 & 1
4p —2'

(16)

As follows from Eq. (12), at 4 = 0, the para state should
have a wave function of the angular motion of the two-
electron system as a whole, which is symmetric with re-
spect to a rotation 8 + 8 + vr, Q r (8 + n) = Q „(0);
the lowest energy of such states belongs to v~ ——0. At
the same time, the ortho state should have a wave func-
tion of the angular motion of the two-electron system as
a whole, which is antisymmetric with respect to this ro-
tation 0 + 8 + x, Q„r(8 + x) = —Q „(0),and hence
the lowest energy of such states belongs to v~ ——+1 and
is higher than that of the lowest energy of para states.
Therefore, the ground state at C = 0 is a para state.

The minimaL energy in —
2 ( 4 &

2 belongs to dif-
ferent states:

s
(

4 + 1)2 for
e me R2 C'p 2

min(E~ „~(4,2)) = + + + & "» (@ ) for
me R'2 8~ape, B 2 2

I'LL e

1 4 1
2 Cp — 4
——( —&—1 4 1

4 —4o —4

In correspondence to this minimal energy, the persistent current suÃers discontinuities at @4'o 4



POSSIBLE BISTABILITY OF THE PERSISTENT CURRENT. . . 17 817

2n' q C

I~(C, 2)

40m R 4 Co

+ —,') for

for
—-') for2

1 C 1
2 Cp — 4

0.2

0.1

-0.1

-0.2
-0.50 -0.25

4/4p
0.25 0.50

0.2

0.1-

The persistent currents of a two-electron QR are plot-
ted in Fig. 2(a) for the case where the system is in
the lowest para state (thin solid line) and in the low-

est ortho state (heavy solid line) and in Fig. 2(b) for
the case where the minimal energy of Eq. (16) is real-
ized. Whereas the first case [Fig. 2(a)] demands total
spin conservation of the two-electron system, the second
picture [Fig. 2(b)], however, can be realized only under
a fast relaxation between the states S = 0 and S = 1
due to spin-flip processes that change the symmetry of
the state. If such a relaxation is slow, which is a very re-
alistic case, then the para state (or the ortho state) can
still exist beyond the above limits of 4, where they are
the lowest states, becoming metastable states, and hence
the persistent currents carried by these states can be ob-
served. If, nevertheless, the symmetry breaking spin-flip
occurs, we just obtain a hysteresis of the persistent cur-
rent, schematically represented in Fig. 2(c).

The question that now arises is, %'hat process is re-
sponsible for a spin Hip from S = 0 (or 1) to S = 1 (or
0) with a change of the symmetry of the two-electron
state in a QR? The probability per unit time that a
quantum system changes its state from li) with the en-
ergy t; to

l f) with the energy Zf is given in first order
by ~'~f = 'g l(f III-~l')I'~(~I —~') ~h~~~ II-t is a
perturbation. Let us consider as a perturbation at erst
magnetic impurities. In this case we have to add to the
Hamiltonian the interaction

Ãs

II; p
——) ) V(r, , p)

s=l i=1

with the impurity potential

V, (r;, p;) = —J,b(x; —x, )S, S', P, (20)
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where J, is the exchange integral, S, = zo; is the spin
operator of the ith electron, cr, = (o, , o„;,o„.) stands for
the Pauli spin vector operator with o,. the Pauli matri-
ces, and S', ~ = &a', is the spin operator of the magnetic
impurity. It is well known that such an interaction results
in the Eondo efI ect of the resistivity of metals. Consider-
ing for simplicity only one impurity (N~ ——1), a definite
state of the two-electron system plus one impurity is de-
scribed by the product 4(xq, xq)ll:m„2:m„I3I;p) of
the orbital part [err(xi, xz) = (xi, xzl4')] and the spin
part. The ket l1:m,i, 2:m, z, I:M; p) acting in the spin
state space means: electron 1 in the spin state lm, i) with
a spin quantum number m, 1 ——+2, electron 2 in the
spin state lm, z) with spin quantum number m, z

——6 z,
i.e., Mp ——m, 1 + m, 2, and the magnetic impurity in
the spin state lM; p). According to the symmetry of
the two-electron system, we have (i) for the para state
(S=o, My=0)

1
@para(xl ) x2) [l 1 g &

2 z j I Mimp)
2

FIG. 2. Persistent currents I~ (C', 2) of a two-electron quan-
tum ring (parameters are the same as in Fig. 1) (a) carried
by the lowest para (thiu solid lines) and ortho (heavy solid
lines) states calculated from Eqs. (13) and (15), (b) carried
by the minimal-energy band, aud (c) possible bistability and
hysteresis.

—
l
1:—-', 2: -'; I:M, p)] (21)

with a symmetric orbital part 4'p, (xz, xi)
4'p, (xi, xq) and (ii) for the ortho state (S = 1, Ms =
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@ortho(»11 »2) X

1 ~ 11.2, 2: 2jI:Mimp))
1:—2 2:—2

' I:Mimp) &

~[I1 2 2' 2[I'Mimp) + l1' 2 2' 2jI'Mimp)]
(22)

with an antisymmetric orbital part, 4'»tho(x» »1) = —@ortho(xi, »2) ~

Then it follows for the ortho state under the action of H; p that

Himp@ortho (»11»2)
I

' 2 &
2' 2 j I' 2)

2(h)
(211:—2 2:2) (mlI:2) —I1:2 2:2) II:—2))~(»1 —x )@-th-(» »2)(2J

+(rl':i ':—i) dt ]r: —,') —I': i r: 2) @ ]I:——', ))d(x~ —«.)@.th (xi, x )).
The erst term in each set of parentheses leads to a spin-flip process. These two terms can be rearranged as

2

H, p@,th (»1, »2)ll: 2, 2: —,I:—2)l,p -fl'p
I I ((ll:——,2: —) + Il: —,2:—-)) (3 II:—)E2)

X[b(»1 —X )4 th (X »2) + 8(»2 X )@o tho(»1 )]
+(I1:--,', 2: —.') —l1:-'. 2:--.')) II: —,')
x[b(xi —x )@ th (x x2) 8(»2 x )4o tho(»1 x )]f. (24)

The first term in the curly brackets is a result of a spin flip, but does not change the symmetry of the orbital wave
function of the two-electron system. Multiplying Eq. (24) from the left with the conjugate wave function (21) of the
para state, we find the matrix element

(f =PIH; Ii=0)
1 d'x, f d'x~](1: -,', 2:—-,'] + (1:—-', 2: —,']] 8 (I:-']0', (x„«2)dd, p]l:-', 2:-', , I:—-,')CI„,h, (x, , xg)
2

A.
2

J. d'«i f d*«2@j («1, 2«) (]51«x )@ th (x., «2) d(«2 x )tI th («1,» )]
2 2'

d Xe;...(X., x)e.„h.(x., x).
2

' (25)

H. = ) 2 [a, x VV(x )] p;,4m02c2i=1
(26)

where mo is the bare electron mass, p, is the momen-
tum operator of the ith electron, and V(x, ) is the total
potential (crystal potential and confining potential). It
is well known that in GaAs the spin-orbit coupling re-

As long as (f = PIH; pli = 0) g 0 is valid, we come to
the conclusion that the spin flip process of a Kondo-like
e8'ect can result in a possible bistability of the persis-
tent current. It is important to note that a homoge-
neous distribution of magnetic impurities would not re-
sult in a spin flip with symmetry change because of the
orthogonality of the wave functions %ortho(xi »2) and
ilrp, (xi, x2).

A second possible mechanism is the spin-orbit cou-
pling, described by the Hamiltonian

I

suits in a lifting of the degeneracy of the valence bands.
Further, the spin-orbit coupling results in the inelastic
light scattering on GaAs in the possibility to create spin-
polarized states. Hence (f = PIH, Ii = 0) g 0 results
and the spin-orbit coupling is the mechanism responsi-
ble for a possible bistability in the persistent current of
a two-electron ring.

In conclusion, for a two-electron ring synthesized from
a GaAs-Gai Al As heterostructure, we expect a bista-
bility and a hysteresis in the persistent current as plotted
in Fig. 2(c). This effect should be observable in semi-
conductor rings because for quantum dots it is possible
to tune the number of electrons up to the limit of single-
electron charging.
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