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One of the possible transformations of an unstable surface is faceting, where the surface rearranges
into a hill-and-valley structure in order to decrease its free energy. It was shown by Marchenko (Zh.
Eksp. Teor. Fiz. Sl, 1141 (1981) [Sov. Phys. JETP 54, 605 (1981)]) that the surface faceting
of a homogeneous crystal results in a periodic corrugation of the surface. A heterophase system is
considered in the present paper. A macroscopic theory of surface free energy is developed for the case
of the heterophase lattice-matched system grown on a periodically corrugated substrate where both
the substrate and the deposited material are unstable against faceting. There appears an important
contribution of the interface energy into the total surface free energy of the heterophase system.
It is shown that if the deposited material wets the corrugated substrate, then the homogeneous
coverage of the periodically corrugated substrate occurs. If the deposited material does not wet
the substrate, then isolated clusters are formed in grooves of the periodically corrugated substrate
after the deposition of the Grst monolayer. The nonwetting situation occurs in a practical case of
GaAs/AIAs systems. We compare surface free energies of two heterophase systems. One is a system
with homogeneous coverage of a periodically corrugated substrate, and the other is a system with
clusters on a periodically corrugated substrate. The competition of surface free energies of the two
systems is governed by the interplay of two contributions, namely, of the interface energy E;nt, and
the energy E d~, + E &,ti, where E dz„ is the energy of edges and E,&,tic is the elastic energy.
The interface energy is determined by the interface area. The energy E,d~, + E,&,tic is determined
by the shape of the surface and is minimum for a surface with periodic surface corrugation. There
exists then a gain in the interface energy due to the smaller interface area for a two-phase system
with clusters with respect to the system with homogeneous coverage. On the other hand, there
exists a loss in the energy E dz, + E &,ti for an aperiodic system with clusters compared to the
periodic system with homogeneous coverage. The gain in the interface energy is larger than the
loss in the energy E &z„+E,&,t, . This promotes formation of isolated GaAs clusters in grooves
of the corrugated AlAs substrate. This result explains the direct fabrication of nanometer-scale
quantum-well-wire superlattices on corrugated substrates.

I. INTRODUCTION

Equilibrium faceting is a phenomenon in which a pla-
nar crystal surface rearranges into a periodic hill-and-
valley structure with an increased surface area. The
faceting is caused by the decrease of the total surface
&ee energy. It is known &om experiments that a large
number of very diH'erent surfaces undergo equilibrium
faceting. The most studied surfaces are vicinals to
Si(ill). s (The detailed review is given by Williams
et al.s) The faceting was also observed on vicinals to
GaAs(100), ' Pt(100), on low-index singular surfaces

Ir(110), TaC(110), on non-(100)-oriented GaAs, iz is
etc.

Another class of faceted surfaces is associated with the
formation of coherent strained islands at initial stages
of the heterophase growth on lattice-mismatched sub-
strates. Coherent strained islands were observed in
a Ge/Si(001) system, ' in a Ini Ga As/GaAs(001)
system, ' and in a InAs/GaAs(001) system. " The
growth of coherent strained islands was theoretically ex-
plained by the instability of planar surfaces in stressed
systems. The top surface of a coherent strained is-
land is faceted due to the gain in the strain energy, which
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exceeds the loss in the surface &ee energy. The gain in
the strain energy makes coherent strained islands more
favorable with respect to both uniformly strained films
and dislocated islands and may lead to an ordered array
of coherent islands. 4

The efFect of externally applied stress on the faceting,
which initially occurs without any external stress, is stud-
ied in Ref. 25 for a heterophase system where an epitaxial
film is coherently grown on a lattice-mismatched planar
substrate. It was shown that applying an external stress,
which is below a certain critical value, results in con-
trolled tuning of the period of a faceted structure. If
the external stress exceeds the critical value, the faceting
vanishes.

Recent interest in surface faceting and other related
phenomena is stimulated by the possibilities of the di-
rect fabrication of ordered arrays of quantum wires and
quantum dots with interesting physical properties and
device applications.

In the present paper we consider the heterophase sys-
tem, where an epitaxial film is being grown coherently on
a faceted, or corrugated, substrate. We study the trans-
formation of the faceted surface structure as the result of
the heteroepitaxial growth. The treatment is focused on
the quasiequilibrium growth, where the crystal surface
tends to come to the configuration, which corresponds to
the minimum of the &ee energy. Concerning the question
whether the growth is close to an equilibrium growth or
not, we may compare two characteristic time intervals.
The first is the time Lt,q, which is needed to bring the
surface to the equilibrium configuration by means of the
migration of surface atoms. The second is the time Ltd z
required for the deposition of 1 ML. At low growth rates
where

&teg && &taep )

the migration kinetics are sufIiciently fast in order to
bring the surface to equilibrium. The shape of the surface
is then determined by the minimum of the &ee energy.

The Helmholtz &ee energy of a faceted surface was
studied by Marchenko. It was shown that the surface
&ee energy consists of three terms:

+ = Efacets + Eedges + Eelastic )

Ef t being the &ee energy of facet planes, E,dg, being
the short-range energy of facet edges, and E ~,t,-, being
the elastic energy associated with the edges. Equation
(1) is valid for a macroscopic faceting, which should be
distinguished from a microscopic surface reconstruction.
(The latter is not considered here. ) The facet is well
defined if its characteristic width L~ is much larger than
the lattice constant a. We focus in the present paper
on the macroscopic faceting where L~ )) a. For vicinal
surfaces, a more severe restriction reads that the width
of the facet must be much larger than the terrace width.

The first term on the right-hand side of Eq. (1), Er „t„
is proportional to the surface area, whereas the second
and the third terms are associated with edges and are
less than Er „t, due to the small parameter a/I y (( 1.
The energy Ef~ g was studied in detail by Herring,

Wul8', and Rottman and Wortis. The equilibrium
crystal shape is determined by the WuM construction,
which implies the minimum of the free energy of all facets
under the constraint of the constant volume of the crys-
tal. We use here the formulation of the problem, more
relevant to the experimental situation where only the top
surface of a crystal is studied. It requires additional con-
straints of fixed bottom and side surfaces and of a fixed
"average" normal to the upper surface. If the top surface
breaks up into facets, the &ee energy of all facets, defined
per unit area of the reference Hat surface with the normal
n, is equal to '

1 s(rn)
Eg~ce~s

——— „„dS.m. n (2)

E ~'(~)+~ (~)
L (4)

Elastic energy in the system with the corrugated sur-
face occurs due to the intrinsic surface stress (or the sur-
face tension of the solid). The elastic strain energy of the
system defined per unit area of the reference Hat surface
is then equal to3

Here s(rn) is the free energy per unit area of the surface
with the orientation of the normal m, and S is the total
area of the reference fiat surface. The free energy (2)
should be minimized under the constraint

1
S mdS = n.

When the upper surface of a crystal breaks up into
facets, there appear either sharp crystal edges or nar-
row rounded parts of the surface at the intersections
of neighboring facets. Both types of intersections may
be described as linear defects. These linear defects give
a short-range contribution into the surface &ee energy,
which is proportional to the length of defects, and a long-
range contribution due to elastic strain energy. We focus
on the case of sharp edges. Macroscopic treatment is
possible also for rounded intersections between facets.

Let us specify energies E,gg, and E ~,t,-, for the par-
ticular case of faceted structures that we study in the
present paper. We consider the situation where the min-
imum of the free energy of facets (2) under the constraint
(3) is attained for a one-dimensional symmetric array of
facets shown in Fig. 1, y being the tilt angle of facets.
Small energy terms E gg, + E,~,t,, do not afFect the tilt
angle y. However, it was shown by Marchenko that the
minimum of the free energy (1) where both E,~s„and
E,~,q,, are taken into account, corresponds to the peri-
odic array of facets. The energies E,~z„and E ~,t,-, de-
pend on the period I, and the interplay of these energies
determines the optimum period of surface corrugation.

There are two types of crystal edges for a faceted sur-
face displayed in Fig. 1, namely, convex and concave
edges. Let us denote energies of these edges per unit
length of an edge g+(p) and q (rp), respectively. Then
the energy of edges per unit area of the reference Hat
surface is equal to
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tilt angle p of facets was calculated in Ref. 27 by means of
the continuum theory of elasticity in the approximation
of elastically isotropic medium. It is given in terms of
the intrinsic surface stress w, Young's modulus Y, and
Poisson's ratio v as follows:

Lp

1 1E,~,t;, —— o;~(r)u;~(r)dV + — r~(r)u;~(r)dS.2S

(5)

Here u;~. (r) is the strain tensor, and o;~(r) is the stress
tensor, and w;~ (r) is the intrinsic surface stress tensor.
The intrinsic surface stress tensor 7;z depends on the
orientation of the facet. It has nonzero components

in the facet plane, and the other components van-
ish. The tensor w;~ is constant along the given facet
and has discontinuities at crystal edges separating neigh-
boring facets. The discontinuity of the tensor w;~ is the
source of the strain field in the crystal with corrugated
surface. The elastic energy of Eq. (5) may be reduced
to the form where these sources appear explicitly:
E,~,q,, ———(2S) ju, (r) V'pw;p(r) dS, u;(r) being the
displacement vector and P being the two-dimensional in-
dex in the local facet plane. The sources of the strain field
for the particular faceted structure displayed in Fig. 1
may be described as effective elastic forces P applied to
crystal edges

P; (x, g(x) ) = +2r sin &ph;, h(z —x„), (6)

where ((x) is the profile of the faceted surface, x is the
location of the nth edge, and w is the component of the
intrinsic surface stress tensor w;z defined in Fig. 1.

It should be noted that the strain field also occurs in
the case of a planar surface. Elastic relaxation near the
planar surface results in static displacements of atoms
&om their bulk positions. These displacements decay ex-
ponentially at a depth of a few lattice constants. The
same is also valid for static displacements of atoms caused
by microscopic surface reconstruction (see, e.g. , Ref. 32).
The contributions into the surface free energy caused by
both relaxation and reconstruction of planar surface are
included into the macroscopic quantity s(rn), which en-
ters Eq. (2).

Contrary to this, effective elastic forces P; from Eq. (6)
create a long-range strain field. Static displacements of
atoms &om their bulk positions decay inside the crystal
at a macroscopic depth, which is equal by an order of
magnitude to the period I of the faceted structure.

The elastic strain energy E,~,t,, in the case of small

FIG. 1. Effective elastic forces at crystal edges. The tensor
of the intrinsic surface stress v,~ is de6ned in local systems of
coordinates (2:i,y, zi) and (x2, y, zz). For a symmetric saw-
tooth pro6le, T ] 1:7 g g r; P = 0, P = +2&sing.
Here ((z) is the profile of surface corrugation, Lo is the pe-
riod of corrugation, and H is the height of corrugation.

(L) = — "' "'""l i' ' 'i
7rYL (2vra)

a being a microscopic cutoff length, introduced via
Lorentzian broadening of the force density of Eq. (6).
This microscopic cutoff length is of the same order of
magnitude as the lattice constant. For simplicity, we as-
sume that the cutoff parameter is exactly the lattice con-
stant a. The logarithmic dependence of the elastic energy
on L is a general feature of any linear defect. It remains
in the case of rounded edges, too. For large tilt angles y,
the energy E ~,&,

. may be calculated numerically.
Summing contributions of Eqs. (2), (4), and (7), we

may write down the total surface &ee energy as follows:

(~) C (v) C (v),„«&E = cosy+ I. L,
ln

E2~al (8)

Here Ci(rp) = il+(p) + rI (y), C2(p) = 8(1
v )g(p; v)r (y) p /(7rY), and the factor g(y; v) is a nu-
merical factor dependent on the angle p, g(0; v) = 1. The
energy (8) attains minimum value at

Io ——2ma exp + 1Ci(v)
C2 y

(9)

The functions Ci(&p) and C2(Ip), which enter Eqs. (8)
and (9), may be found in an explicit form in the limit of
small tilt angles p. If the reference flat surface (y = 0)
is a low-index singular crystal surface, then facets are
vicinals, and the edge between neighboring facets is the
place where a sequence of mounting steps is changed by
a sequence of descending steps. The energy of the edge is
then proportional to the characteristic energy of the in-
teraction between neighboring steps. The latter depends
on the distance between steps (i.e., on the terrace width

LT) as (a/LT ) p2. o This implies that energies of
edges are equal to rl+(p) = (+y, il (p) = ( Ip2, and
rl(y) = il+(p) + il (p) = ((+ +( ) p2, where (+, $ do
not depend on rp. Therefore, both constants Ci(&p) and
C2(p) entering Eqs. (8) and (9) are proportional to y
at small p, and the optimum period Lo from Eq. (9) is

y independent as y —+ 0.
The periodically corrugated surface with the period Lo

is the configuration with the lowest surface energy. It de-
scribes the shape of the surface at temperature T = 0.
Deviations &om periodic corrugation, which occur at fi-
nite temperatures, and the role of entropy contributions
to the &ee energy are considered in Sec. II. It is shown
that the role of entropy effects in the case of a faceted
surface is considerably less than in the case of a stepped
vicinal surface. The &ee energy of the surface is then
approximately equal to the energy of the surface. There-
fore, we do not take into account entropy effects in the
remainder of the paper and focus on the calculation of
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the surface energy.
In Sec. III, we study distinct heterophase structures

on periodically corrugated substrates and compare their
energies. We focus on the situation where both the sub-
strate surface and the surface of the deposited material
are unstable against faceting. To obtain energies in an
analytic form, we consider faceted surfaces with small tilt
angles y of facets. We show that the selection between
possible heterophase structures is governed by the fact of
whether the deposited material xoets or does not met the
substrate. In the wetting case, the homogeneous cover-
age of the periodically corrugated substrate is shown to
occur, and the deposited material reproduces the shape
of the faceted substrate. In the nonwetting case, clusters
of the deposited material appear on a periodically cor-
rugated substrate. The periodic surface corrugation is
restored after the deposition of the first several monolay-
ers. Then the hills of the top surface of the heterophase
system appear over the valleys of the substrate and vice
versa. Thus, a continuous layer of the deposited material
with periodically modulated thickness is formed.

In Sec. IV, we apply our general approach to the par-
ticular heterophase system GaAs/AlAs(311) where both
the growth of GaAs on AlAs and vice versa result in
formation of isolated clusters after the deposition of the
first monolayer and lead to the formation of a layer with
periodically modulated thickness after the deposition of
6 ML. ' ' Although the values of surface energies
and intrinsic surface stresses of facets are not known for
the system in question, we consider these quantities as
macroscopic parameters. We show that the experimen-
tal data of Refs. 12, 13, and 33 may be explained if one
assumes that the difference of surface energies of tilted
(331) facets of GaAs and AlAs is very small. For this
case, we compare surface energies of two heterophase sys-
tems. One is the system with homogeneous coverage of
the periodically corrugated substrate, and the other is a
system with clusters on the periodically corrugated sub-
strate. The competition of surface energies of the two
heterophase systems is governed by the interplay of two
contributions, namely, of the interface energy E;„t,„and
the energy E pg„+E ~,t,, The interface energy is deter-
mined by the interface area. The energy E dg„+ E ~,t,,
is determined by the shape of the surface and is mini-
mum for the surface with periodic surface corrugation.

FIG. 2. Low-energy steps on faceted surface; I& being the
facet width.

There exists then a gain in the interface energy due to
the smaller interface area for a two-phase system with
clusters compared to the system with homogeneous cov-
erage. On the other hand, there exists a loss in the en-
ergy E,pg, +E,~,t,, for an aperiodic system with clusters
compared to the periodic system with homogeneous cov-
erage. The gain in the interface energy is larger than the
loss in the energy E ~g~, +E ~,t,, This promotes forma-
tion of isolated clusters during the deposition of the first
monolayer of GaAs on the AlAs(311) periodically cor-
rugated surface. This result explains the direct fabrica-
tion of nanometer-scale quantum-well-wire superlattices
on corrugated substrates.

Section V contains conclusions to the paper.

II. ENTROPY EFFECTS
IN EQUILIBRIUM FACETING

At finite temperatures T, the surface deviates from
ideal corrugation. The analysis of these deviations is
simpler for facets that are low-index ones and not vicinal
ones. [An example is TaC where the (110) surface breaks
up into (100) and (010) facets. ~] Then, if the tempera-
ture T is far below the roughening transition temperature
of facets TR, only low-energy configurations of the shape
of the surface occur. These configurations contain short
steps running across facets from a convex edge to a con-
cave edge (Fig. 2). The energy of this step is As I~,
where Ag is the step energy per unit length and L~ is
the facet width. Each step shifts (by one lattice con-
stant) positions of convex arid concave edges bounding
the given facet. This yields the e8'ective meandering of
edges.

Thus, there exists a certain analogy between a faceted
surface with meandering edges and a vicinal surface with
meandering steps. A step on a facet corresponds to a kink
on a step on a vicinal surface. One should note, however,
important difFerences between these two systems.

(1) The energy of a step on a facet is approximately
Np times larger than the energy of a single kink. (N+
being the number of lattice constants across the facet. )
To estimate the average spacing between steps on a facet,
one may use the corresponding expression from Ref. 34
for the spacing between kinks on a step and substitute
there, instead of the energy of a single kink, the large
energy A&L~ of a step running across the facet. Then the
average spacing between steps on facets, equal to l~ =
o, exp(AsLp/T), is much larger than the average spacing
between kinks on a given step on a vicinal surface. Steps
on facets introduce thus only large-scale roughness, which
implies the distribution of facet widths.

(2) Long-range elastic stresses result in efFective ener-
getic repulsion between neighboring convex and concave
edges, in addition to entropic repulsion. The energetic re-
pulsion between neighboring edges of a faceted surface is
the monopole-monopole elastic repulsion [U(x) —ln x],
which is much stronger than the dipole-dipole elastic re-
pulsion [U(x) 1/x ], Ref. 30 between steps on a vici-
nal surface. Entropic repulsion is basically the same in
both cases. The total repulsion for a faceted surface is
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therefore stronger, and it reduces the probability of small
facet widths. The observed distribution of facet widths
is half as narrow as the distribution of terrace widths
known for vicinal surfaces. '

The detailed study of facet width distribution and
finite-temperature corrections to the &ee energy of a
faceted surface will be presented elsewhere. Below we fo-
cus on heterophase structures where an epitaxial growth
is being performed on a faceted surface. For these pur-
poses, it is sufBcient to consider the substrate as a pe-
riodically corrugated one. In our treatment, we will not
distinguish the energy and the &ee energy of the system
and we will search the minimum of the energy of the
heterophase system.

III. ENERGY OF A HETEROEPITAXIAI
SYSTEM ON A FACETED SUBSTRATE

The surface energy of a heteroepitaxial system where
material 2 is being grown on a faceted substrate 1 is as
follows:

E = Efacets + Einterface + Eedges + Eelastic ~

We start the discussion of the energy terms of Eq. (10)
with the energy of facets Ef „t„which was the major
contribution to the surface energy of a homogeneous sys-
tem. If the planar surface with the orientation np is a sta-
ble surface of material 2, then the first term in Eq. (10)
exhibits the tendency to planarization. We study here
the opposite situation where both material 2 of the grow-
ing film and substrate 1 are unstable against faceting.

Concerning the elastic strain energy E ~,t, , the fol-
lowing note should be given. There are two sources of
the strain field in a heterophase system, namely, effec-
tive elastic forces P acting at crystal edges and the lattice
mismatch (Aa/a). The contribution of these two sources
into the energy of the system, which undergoes surface
faceting, was considered in Ref. 25 for the heteroepitax-
ial lattice-mismatched growth on a p/anar substrate. The
results of Ref. 25, which are qualitatively applicable also
in our case, read that the surface-stress-induced strain is
the dominant one if

consider below only those heterophase systems where all
facets are tilted by the angle +yp, and Ef „t, attains
its minimum value. Material 2 deposited onto a faceted
substrate 1 may form either a homogeneous coverage or
clusters. Distinct heterophase structures are shown in
Fig. 3. Figure 3(a) displays the case of homogeneous
coverage of the periodically corrugated substrate. It cor-
responds to the amount 0 of the deposited material 2,
where 0 ) 1 ML. The periodic corrugation of the top
surface of the heterophase structure persists in this case.

Figure 3(b) displays the heterophase system where iso-
lated clusters of material 2 fill locally the entire depth of
grooves in some places of substrate 1, whereas grooves
remain empty on the rest of the substrate. The typical
view of this heterophase system is presented in Fig. 4.
The periodic corrugation of the surface disappears in this
case due to clusters. The substrate 1 is covered only par-
tially as long as the amount 0 of the deposited material
2 is 0 & Nz. (Nz being the height of the surface corru-
gation, defined in units of the monolayer height. ) If the
amount 0 of the deposited material 2 is 0 & Nz, the
periodic corrugation of the surface with the period Lp is
recovered. Then the hills of the top surface of the het-
erophase system appear over the valleys of the substrate
and vice versa. Thus, a continuous layer of the deposited
material with periodically modulated thickness is formed
[Fig. 3(d)].

Figure 3(c) displays the heterophase system with
"thin" clusters of material 2, the clusters being formed
in all grooves of the corrugated substrate 1. The peri-
odic corrugation of the surface persists in this case but
the particular shape of the surface is different from the
substrate shape due to clusters. If the amount 0 of the

2

a)

La YLp &
6 27 c)

T2 ~~T T(~T Tg Tg r)~TT2 ~T'
72 r2 72 72 r2 r2rl i rl 71 71 71

Substituting Y 500 meV/A, v' 100 meV/A, and

Lo 30 A. , the estimate yields Aa/a & 1.3%%uo. Below

we study the case where conditions (11) are satisfied, and
we neglect mismatch-induced strain.

We focus here on the particular situation where both
materials 1 and 2 tend to form faceted structures, facets
being tilted at the same angle yp to the reference Bat sur-
face, and both structures having the same period Lp. A
practical exainple of such a system [the GaAs/AlAs(311)
heterophase system] will be considered in detail below,
in Sec. IV. Then, the energy of facets Er „t, [the first
term in Eq. (10)] remains the major contribution to the
total surface energy E of the heterophase system. We

r2 72 T2

d)

FIG. 3. Distinct structures of the heterophase system and
effective elastic forces. (a) Homogeneous coverage 0 ) 1; (b)
System with separated thick clusters; (c) System of thin clus-
ters; (d) Heterophase system at high coverage 0 ) Nz, where
the periodic surface corrugation is restored, and the hills of
the top surface of the heterophase system appear over the val-

leys of the substrate and vice versa. The heterophase system
contains a continuous layer of material 2 with periodically
modulated thickness.
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FIG. 4. Clusters in the heterophase system on a periodi-
cally corrugated surface.

deposited material 2 is 0 & Nz, the surface of material
2 exhibits the configuration of Fig. 3(d).

In order to find the criterion of formation of each of the
heterophase systems displayed in Fig. 3, we have to make
certain assumptions about the growth kinetics. During
the deposition of the first monolayer of material 2, de-
posited atoms migrate in order to decrease the total en-
ergy of the system. There exist two characteristic time
intervals. The first is the time interval At, q, which is
needed to bring the surface to the equilibrium configu-
ration by means of the migration of surface atoms. The
second is the time interval Ltg p required for the depo-
sition of 1 ML. At low growth rates where

the migration kinetics are sufFiciently fast in order to
bring the surface to the equilibrium configuration cor-
responding to the minimum of the surface energy. The
selection between the homogeneous coverage [Fig. 3(a)]
and the formation of clusters [Figs. 3(b) or 3(c)] occur
during the deposition of the first monolayer. Then, if
the system with fractional monolayer coverage is ener-
getically favorable, the further deposition will result in
the completion of the monolayer and in the continuous
growth of the periodically corrugated heterophase struc-
ture of Fig. 3(a). If the system of separated thick clusters
[displayed in Fig. 3(b)] is favorable, the further deposition
will lead to formation of new clusters and to elongation
of existing ones until they fill all the grooves at the cov-
erage 8 = Nz. If the system of thin clusters [shown in
Fig. 3(c)] is favorable, the further deposition will result
in the expansion of clusters until they fill all the grooves
at the coverage 0 = Nz.

It should be noted that a homogeneous coverage of sub-
strate 1 may lead to the formation of stripes if the amount
of the deposited inaterial 2 is less than 1 Ml (0 ( 1).
Striped patterns were observed, e.g. , in heterophase sys-
tems 0/Cu(110), InAs/GaAs(100) Ref. 37 with sub-
monolayer coverages of planar substrates. The stripe for-
mation was explained theoretically in Refs. 38—42. It is
caused by efFective elastic forces acting at steps between
two materials. Such a mechanism exists only in the case

of submonolayer coverage; it vanishes if the monolayer is
completed. We do not consider here the case of a sub-
monolayer coverage 0 ( 1.

To find the criterion that determines the growth mode
occurring on a faceted substrate, we will calculate the
energy of all structures shown in Figs. 3(a)—(c) for the
amount of the deposited material 0 equal to 1 ML.

The energies Efacets& @interface& aild Eedges lil Eq. (10)
may be found by calculating areas of facets and interfaces
and the number of edges. Although we neglect the small
lattice mismatch between materials 1 and 2, we consider
the difference between these two materials in the follow-
ing sense. We take into account a possible difFerence in
energies of facets, s2(pp) —si(pp), and a difFerence in val-
ues of the intrinsic surface stress, ~2 —~i. The former gov-
erns effects of wetting or nonwetting in the heterophase
growth. The latter gives an additional contribution to
the elastic strain energy, besides the contribution caused
by effective elastic forces at edges. On the other hand,
we neglect the difFerence in values of Young's moduli Y
as well as in values of Poisson's ratios v, which does not
lead to any principal effect.

To make an analytic calculation of E,i,&,, possible, we
consider here a faceted surface with a small tilt angle of
facets po QQ 1. Then E ~,&,, may be expressed in terms
of efFective elastic forces as follows:

8(1 —v )w p2

~YLO (14)

Here 6'i(pp)& 6'2((pp) are the surface energies of materi-
als 1 and 2, respectively, energies being defined per unit
surface area, and pi2(pp) is the interface energy per unit
interface area. The energies si 2(pp) are not expanded
in powers of the small angle po because they might have
cusps at p = po.

Figure 3(b) displays a heterophase system with thick
clusters. If the coverage is equal to 0 & Nz, only the
&action q = 8/Nz of the faceted substrate is covered by
clusters. EfFective elastic forces creating the strain field
in the system are shown for the particular positions of

@e]astic dx dx dg dy Pi xy g2L Ly
x G,.~ (x —x', y —y') P~ (x', y'), (l3)

G;-z (x —x', y —y') being the surface Green's tensor of the
equilibrium equations of the theory of elasticity, L, L„
being the dimensions of the substrate projected onto a
reference fIat surface. The Green's tensor for elastically
isotropic medium is given, e.g. , in Ref. 43.

EfFective elastic forces P;(x, y), which are the sources
of the strain field, are displayed in Figs. 3(a)—(d). Note
that, besides forces P, = +2& sin po —+27 po act-
ing at crystal edges, there appear forces P = +(72—
ri) cos happ +(T2 —Ti) acting at interphase line bound-
aries on the surface.

Let us first discuss the energy of a heterophase system
with the homogeneous coverage 0 ) 1 (Fig. 3a). The
surface energy is then equal to
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clusters in Fig. 3(b). To find the energy E,',t;, it is nec-
essary to describe effective elastic forces for an arbitrary
distribution of clusters. We define the quantity q„(y),
which is equal to 1 if the nth groove of the substrate is
covered by a cluster at the point y, and is equal to 0 oth-
erwise. Then the density of effective elastic forces may
be expressed in terms of q„(y) as follows'

P (x, y) = (7g —Ti)) (b'[x —(n —~)Lp]

—8[x —(n+ 2)Ip]}q„(y), (i5a)

P, (x, y) =(pp) (7i(—h[x —(n —2)Io]+2b(x —nLo)

—b[x —(n+ 2)Lp])

+( i+ ~2) (~[x —( —-') Lo] —2'( — Lo)

+'(*- (-+-,') L ).-(.)) (i5b)

To evaluate the energy E,~,t,„a certain information
about distribution of clusters is needed. Expressing q„(y)
as a sum of the average and Huctuations,

q-(y) = q+ ~q-(y),

we may give the following note concerning correlations in
Huctuations ~'q (y). Each cluster with finite length t„has
&ont and back surfaces (e.g. , front surfaces and marked
by the number "2" in Fig. 4). The larger the length of
clusters l„, the smaller the contribution of &ont and back
surfaces into the total energy of the system. Therefore,
only clusters with l~ )) I p are energetically favorable.
The correlation function of bq (y) may then be written
as follows:

('q (y)~q (y')) = q(1 —q)~~ n —n'; ~, (17)
corr

where the correlation length L, „))Ip.
Correlations in positions of clusters in a real system de-

pend on kinetics. First clusters are being formed at low
coverage 0 ( 1. Changing the coverage 0 results in the
change of the minimum energy configuration. Attaining
the energy minimum involves rearrangement of matter al-
ready assembled in thick clusters with the height Hz & 1
ML. Time required for such a rearrangement is essentially
longer than the required time during the growth of the
first monolayer in the case of a homogeneous coverage
of Fig. 3(a). The relation (12) between the migration
time and the deposition time may be not valid in this
case, and the equilibrium distribution of clusters may be
not attained. Below we do not search the equilibrium
distribution of clusters.

To evaluate the energy of a heterophase system with
thick clusters, we will calculate first the energy of a sys-
tem of uncorrelated clusters. Then, to estimate the effect
of correlations, we will calculate the energy for certain
particular correlated arrays of clusters.

I et us consider the system where positions of clusters
in different grooves are not correlated, and the typical
length of a single cluster exceeds Lp. Then the correlation
function reduces to

Lcorr ) ' ( Lcorr

where f(0) = 1. Substituting elastic forces P (x, y),
P, (x, y) from Eq. (15) into Eq. (13), and using the corre-
lator of Huctuations (Sq (y)8q '(y')) from Eqs. (17) and
(18), we get the surface energy of the heterophase system
of Fig. 3(b) as follows:

V'o
E2 = (Ei(pp) + [e'(po) + pi2(vo) —~i(~o)] q) I

1+
2

8(l —v')yo -( )
2

vrYLp

(19a)

(19b)

2(1 —v')(~g —~i)'—q(i —q) ln + ln~Lp
2&G

+'~'-'~'* '~'- *~
(v, +r, ) ~

ln '+In",'~ —((,.+~;)).
Lp vr Y ( 2vrea

(i9d)

The term of Eq. (19a) is the energy of facets and in-
terfaces. This term depends linearly on the fraction of
the substrate surface q = 0/Nz covered by material
2. The term of Eq. (19b) is the value of the quantity
W = E dg„+ E ~,q,

. evaluated for the periodic corruga-
tion with the period Lp, material 1 and 2 contributing
with factors (1 —q) and q, respectively. The term of
Eq. (19c) is the negative contribution to E,',t;, due to
the difference in values of the intrinsic surface stress be-
tween materials 1 and 2. The term of Eq. (19d) is the
contribution to the energy W = Eegg~s + EeI~stjc due to

I

clusters. Since we consider here the case of small tilt an-
gle of facets &po, then the term of Eq. (19c) is essentially
larger than that of Eq. (19d) [if ~v2 —wi~ is not especially
small and obeys the relation ~w2

—wi~ )) (7i+ 72)&po].
In the particular case where Ti =— 72 = T
and (2+ —— (i+, the term of Eq. (19c) vanishes, and
the term of Eq. (19d) reduces to the positive quantity
q(1 —q)8(1 —v )7 po(mYLp) ln(16e/7r ). The latter
means the energy loss in the energy W = E,pg, +E,~,t„
for an aperiodic system with clusters with respect to the
periodically corrugated surface.
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To estimate the efFect of correlations in positions of
clusters on the energy of the heterophase system of
Fig. 3(b), we will calculate the energy E for particu-
lar values of the coverage 0 where q = O/Nz = 1/M
(M being an integer number). Then a periodic distri-
bution of clusters is possible where clusters are arranged
in a periodic structure and occupy totally 1 of each M
neighboring grooves of the faceted substrate, all the rest

I

grooves remaining empty. (In reality, this array of clus-
ters at difFerent values of the "y" coordinate may be tied
to difFerent sets of grooves. Since the typical length of
clusters is E& )) Ip, this does not afFect the energy of
the system. ) Correlations in positions of clusters lead
to some changes in the energy terms of Eqs. (19c) and
(19d). The sum of these terms for a correlated system is
equal to

2(l —v2)(~2 —~g)2

sr YLo
I o sin(7rq)

ln + ln vr —ln-
27r Q

q1oo q(1 —o ) s
S' Io lqe siss(seq) siss(eq/1) +

) I
~g + 7.2 ln + ln + ln —41n

vrY ( 2vrea mrs vrq vrq/2
(20)

For small values of q = 8/Nz (( 1, correlations in positions of clusters are not essential, and energies of Eqs. (19)
and (20) coincide within the linear approximation in q. The main deviation from the linear approximation at small q

occurs due to the factor (1 —q) in Eqs. (19c) and (19d).
The surface energy of the heterophase system, which contains thin clusters in all the grooves of the faceted substrate

[Fig. 3(c)], is equal to

(&z(po) + [&2(po) + ~&2(&po) ~x(ao)] Kf) I
1+ vo&

2)
8(1 —v )V'o

7 ]~YLp

(21a)

(21b)

2(l —v') (~2 —~g)' Lo
ln sin(err)

YLo 27rc
/Lpl

+ ' (2(,, —(, —(, ) + (~2 —~~)'»
I l

—4(&2 —&i)(2vra)

(21c)

(21d)

7rr 7jr
+ (7y + 72) —472 ln sin —+ 4'r) ln cos —+ (rq + r2) ln sin (ar)

2 2
(21e)

Here r = QO/Nz is the fraction of the substrate sur-
face covered by material 2. Equation(21) is valid if the
widths of all facets of both material 1 and material 2 ex-
ceed the lattice constant, i e , if o./(. 2LO) (( r, (1 —r).
The term of Eq. (2la) includes the energy of facets
and interfaces. Equation (21b) represents the value of
TV = E gz„+ E,~,q,, for the periodically corrugated
surface with the period Io. The term of Eq. (21c) is
the negative contribution to E,j,t,, due to the difFerence
(&2 —7'q). The terms of Eqs. (21d) and (21e) are contribu-
tions to TV = E,~~, +E ~,t,, due to clusters. In the par-
ticular case where +2 ——vq = w, (zz

——(z ——(2, the terms
of Eqs. (21d) and (2le) yield the positive contribution to
the energy 8(1 —v )x po (7rYLo) ln(4/ [csin(err)]).

It follows from Eqs. (14), (19), and (21) that main
contributions to the surface energy for various configura-
tions of the heterophase system comes &om the energy
of facets and interfaces. These are erst terms on the
right-hand sides of Eqs. (14), (19), and (21). Other en-
ergy terms, namely, the energy of edges and the elastic
strain energy are proportional to a small parameter a/Lo.
Comparing the energies Er«, q, + E;„q„g„in Eqs. (14),
(19), and (21), one comes to the following conclusion. In
the meting case where

s'2(«) +»2(«) s~(V'o) & 0 (22)

the heterophase system with homogeneous coverage
shown in Fig. 3(a) is favorable. The example is the
growth of AlAs on periodically corrugated. vicinal sur-
face of GaAs(001) 3'-off towards [110].7

In the nonmetting case, where

s2(VO)+Vi2(Vo) —si(po) & o, (23)

the heterophase system with thick separated clusters dis-
played in Fig. 3b and in Fig. 4 is favorable. At high cover-
age, 0 ) Kz, the periodic surface corrugation is restored.
Then the hills of the top surface of the heterophase sys-
tem appear over the valleys of the substrate and vice
versa. Thus, a continuous layer of the deposited material
with periodically modulated thickness is formed. This
situation seems to be realized for the growth of GaAs
on the vicinal surface of A1As(001) 3'-off towards [110],
and for both GaAs/A1As and AlAs/GaAs heterophase
growth on the (311)A surface.

The heterophase system with thin clusters shown in
Fig. 3(c) is not favorable in any case.

The two criteria of Eqs. (22) and (23) allow us to dis-
tinguish two principally difFerent situations that may oc-
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cur for the heterophase growth. Neither of these criteria
contains the value of E,~,t,, Therefore, these criteria,
which were derived in the approximation of the small tilt
angle of facets, yo && 1, are valid in the general case.

If the difference in surface energies le2(po) —ei(po)l
exceeds the interface energy pi2(pp), then the situation
at the heteroepitaxial growth of material 1 on material 2
is opposite to that where material 2 grows on material l.
I et, e.g. , s2(pp) ) s'i(pp). Then material 2 does not wet
material 1, which promotes formation of separated clus-
ters. On the contrary, it follows from Eq. (22) (indices
1 ++ 2 being interchanged) that material 1 wets material
2, which promotes homogeneous coverage.

If the difference in surface energies is especially small,

ls'3(&po) —&i(yo) I
& v12( po), (24)

the nonwetting situation may occur both for the growth
of material 2 on material 1 and vice versa. Energy terms~ —Eepges+Ee&astic may become important in this case.
Then the calculation of E,~,q,-, depends on the actual
value of the tilt angle of facets po. This situation will
be considered for the particular GaAs/A1As(311) system
in Sec. IV, where E ~,&,-, will be found numerically for a
large tilt angle of facets.

IV. FACETING IN THE HETEROPHASE
SYSTEM GaAs/AIAs(311)

We consider in Sec. IV an example of the het-
erophase system grown on a faceted substrate, namely
the GaAs/AlAs(311) system. There exist two sets
of experimental data concerning the faceting of the
GaAs(311)A surface. Experimental data by Notzel et
al. i2 i3 read that the (311)A surface of GaAs breaks up
spontaneously into a one-dimensional array of facets with
the lateral periodicity in the [011] (x) direction, the pe-
riod of surface corrugation Lo being equal to eight lattice
constants, Lp = 8a = 8a[iip] = 32 A. , and the height of
surface corrugation H being equal to six lattice con-
stants, H = Nza, = 6a, = 6a[3ii] —10.2 A. . According
to Ref. 12, the faceted (311)A surface of GaAs consists of
alternating (313) and (331) facets separated by narrow
(d = 4 A wide) (311) terraces (Fig. 5). The structure is
oriented along the [233] (y) direction.

Alternative experimental data obtained by scanning
tunneling microscopy by Wassermeier et aI,. read that
the period of the corrugation is Lp ——8a = 32 A. ,
whereas the height of the corrugation is H = 2a, = 3.4 A. .
The reason for this discrepancy is not clear so far. Prob-
ably, it may be caused by unintentional misorientation
of the substrate with respect to the exact (311)A direc-
tion, which is noted in Ref. 13. However, no results on
the heterophase growth in the GaAs/A1As(311) system
where the height of the corrugation is 2 ML have been
reported up to now, to our knowledge. Therefore, we
focus here on the heterophase GaAs/AlAs system in the
case where the height of the corrugation is 6 ML.

Experimental data of Refs. 12, 13, and 33 read (i) if
AlAs is being deposited on the periodically corrugated

[311] e [233]

FIG. 5. Schematic view of the faceted GaAs(311)A surface.

GaAs(311) surface (or vice versa), the periodic surface
corrugation is restored after the deposition of 6 ML. Then
the hills of the top surface of the heterophase system
appear over the valleys of the substrate and vice versa.
The system of alternating wide and narrow channels of
GaAs and AlAs is formed, which is a quantum-well-wire
superlattice. (ii) If the amount of deposited GaAs is not
sufficient to fill all the grooves on the A1As surface (and
vice versa), then isolated clusters of GaAs are formed.
Such clusters of GaAs embedded into the AlAs matrix
are isolated quantum wires.

Before applying our consideration of Sec. III to the
GaAs/A1As(311) heterophase system, the following notes
should be given:

(1) Since the range of interatomic interactions may ex-
ceed one lattice constant, we take into account the pos-
sible d.ependence of the interface energy on the thickness
of the epitaxial layer.

(2) It was experimentally proven by Brandt et al.45

that the continuum theory of elasticity predicts correct
strains in epitaxial layers on a lattice-mismatched pla-
nar substrate if the epilayer thickness is 3 ML or larger.
These results encourage us to use the continuum theory
of elasticity for the system where the height of surface
corrugation is 6 ML.

(3) There exist certain experimental data on the mi-
croscopic structure of (331) facets of GaAs and A1As. i3

However, the existing data are not suKcient to be the
basis for microscopic calculations. Some more scanning
tunneling microscopy information is necessary, like, e.g. ,
for the case of the corrugated Si(211) surface. Here,
following the general approach of the paper, we describe
the (331) surfaces of GaAs and A1As by macroscopic pa-
rameters such as the energy of facets e and the intrinsic
surface stress v, which, of course, may be different for
two materials.

(4) The lattice-mismatch in the GaAs/AlAs het-
erophase system, equal to approximately 0.04% at typi-
cal temperatures of the epitaxy, satisfies the criterion of
Eq. (11). Therefore, the mismatch-induced strain is small
compared to the surface-stress-induced. strain. The for-
mer is neglected in our treatment. The GaAs/A1As sys-
tem in question is thus considered as a lattice-matched
one.

(5) The anisotropy of elastic moduli, which exists in
III-V semiconductors, may lead, in certain cases, to prin-
cipal effects. For example, it was shown by De Caro and
Tapfer, that a shear strain appears in epitaxial lay-
ers grown on planar low-symmetry lattice-mismatched
substrates. The highest value of the shear strain (equal
to 40% of the tetragonal deformation) was obtained for



17 776 SHCHUKIN, BORQVKOV, LEDENTSOV, AND KOP'EV

the (311) substrate. However, according to point (4), all
components of the mismatch-induced strain tensor are
negligibly small for the GaAs/A1As system in question.
As concerns surface-stress-induced strain, both tetrago-
nal deformation u, u, and shear strain u appear in
the plane strain geometry in the approximation of elasti-
cally isotropic medium. Therefore, we consider this ap-
proximation to be a suitable one for our purposes and
use it in the present section.

(6) Narrow (4 A wide) (311) terraces on the faceted
surface of GaAs together with two neighboring edges may
be considered as "complex" edges of the faceted surface.

Analyzing experimental data (i) and (ii), we will find
relations between energetic parameters of the system,
which provide formation of isolated clusters in the het-
erophase system GaAs/A1As(311).

We consider the heterophase system (either
GaAs/AlAs or vice versa) where 8 = 1 monolayer of
material 2 is deposited on the periodically corrugated
substrate of material 1. Let us compare energies of
two possible configurations of the heterophase system,
namely, the system with a homogeneous monolayer cov-
erage [Fig. 6(a)] and a periodic array of clusters contain-
ing one cluster per six periods Lo [Fig. 6(b)]. For the
first structure, the energy is

~2 (&o) harnEh. —— — + Ei„t., + Wp,
COS (Pp

(25)

where AR' is the change of the energy Eepges+Eel~st, c for
the system containing clusters with respect to the period-
ically corrugated surface with the period of corrugation
Ip.

It follows &om experimental data that formation of
isolated clusters occurs both for the growth of AlAs on
the GaAs(311)A surface and vice versa. This implies that

where Wp contains energy terms Eegges + Eelastic for the
periodically corrugated surface. For the second structure,
the energy is

z, ='"(")+'"(")+z-+w, +~w
6 cos (Pp 6 cos Pp

(26)

the nonwetting situation occurs in both cases. Now we
may write the inequality

5 ~2(V o) —si(V o)
inter Einter 6 COS (Pp

) max(EW),

(27)

which is the sufhcient condition of nonwetting both for
the growth of material 2 on material 1 and vice versa.
If it holds, then the energy of a system with separated
clusters given in Eq. (26) is lower than the energy of a
system with homogeneous coverage given in Eq. (25).

Now let us check whether the condition of Eq. (27)
may hold for reasonable values of parameters.

First, we will evaluate the interface energy. The in-
terface energy in the lattice-matched GaAs/A1As system
is determined by short-range pair interactions of Ga and
Al atoms calculated by Wei and Zunger. For the het-
eropIIiase structures in question, E;„t„g„is then equal
to 2(L a&) P (2 J2 . Here L = Lo for the homo-

geneous 1-ML coverage and L = 6Lrp for the structure
with one cluster per six periods Lo, a&

——4~11 A is the
lattice constant in the y ([233])direction, (2 is the num-
ber of pairs of Ga and Al atoms separated by the mth
(m & M = 4) nearest-neighbor distance in the cation
sublattice, the numbers of (2 are defined per one period
L x a„of the faceted surface. Interaction energies J2 ~
are equal to J2, j ——+0.758 meV, J2,2

———0.089 meV,
J2 3

———0.022 meV, and J2,4 ———0.112 meV. The
largest "repulsive" term J2 ~ determines the positive sign
of the interface energy. The coefficients (2 calculated
by counting atoms and the resulting interface energies for
the two structures in question are given in Table I. Note
that the coeKcients J2 were calculated in Ref. 48 for
interfaces in essentially the bulk GaAs/A1As heterophase
systems. Therefore, applying these numbers is rather ac-
curate for the interface in the system with isolated clus-
ters [displayed in Fig. 6(b)] and less accurate for the
system with a homogeneous 1-ML coverage [shown in
Fig. 6(a)]. We expect, however, that the model of the
interface energy may give a reasonable estimation also
for the latter structure.

Thus, the gain in the interface energy of the het-
erophase AlAs/GaAs structure with separated clusters
versus the structure with the homogeneous 1-ML cover-
age equals

horn clus meV
inter Einter (28)

TABLE I. Interface energies of two heterophase
GaAs/A1As structures.

b)

FIG. 6. Possible 1-ML coverages of the (311) faceted sur-
face in the GaAs/AlAs system. (a) Homogeneous monolayer
coverage; 1, A1As, 2, GaAs. (b) Structure with separated
GaAs clusters on the A1As(311) faceted surface; 1, A1As, 2,
GaAs.

Number of pairs
of Ga and Al
Homogeneous
1-ML coverage
one cluster
per six periods I0

(2,4

82 44 166

117 87 400 226

inter'

meV/A

0.212

0.037
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Now let us calculate the difference in the energy W =
E,gz„+ E ~,t,, between the structures with homoge-
neous 1-ML coverage and the structure with one clus-
ter per six periods of corrugation. Note that the con-
tribution to E pg„ for faceted structures in question in-
cludes energies of flat narrow (311) terraces and ener-
gies of edges themselves. We will describe this energy
term by a macroscopic parameter Le. Then the energy
E gz, de6ned per unit area of the reference flat surface
is E,~s„——b,s/L. To evaluate the sum of energy terms
W = E,gg, + E ~,q,

.„it is convenient to use the relation
between Io, v, and As similar to that of Eq. (9). Note
that the value of the period L = 8a = 32 A. corresponds
to the minimum of the energy W —E@gg,s + Egf~stjg
among allowed values of L = N a, N being an inte-
ger number. It implies that

Ya
+ E,l,t;, (7a ) ) + E,l,t;,(8a ),8a

8a + Eelastic(8ue) + + @elastic(9Oe) .
9a (29)

To 6nd the allowed interval for the quantity Le, we need
values E ~,q,, for a set of periods Ls EfFective elastic
forces acting in the periodically corrugated system in
question are displayed in Fig. 7(a). Unlike the difference
in the values of w between two materials that yield im-
portant negative contribution to E,l,t;, in Eqs. (19) and
(21), the difference between values vl and Fq for neigh-
boring facets of the same material makes no principal

efFect on E,~,t,, To simplify our treatment we let for
each material vq ——w~ and 72 = 72.

To 6nd E ~,t,„as a function of L, we solve the plane
strain problem of the theory of elasticity, that is, we
solve the equilibrium equations for the displacement vec-
tor u(x; z) = (u (x; z);u, (2:;z)):

(1 —2v) V' u(x; z) + 'Iv'divu(x; z) = 0. (30)

2 2

the similar relation being valid also for material 2. The
normalization quantity Tp = 100 meV/A. in Eq. (31) is
the characteristic value of the intrinsic surface stress.

Now, to find the difference in the energy W = E,pg, +
E,~,q,, between the structure with homogeneous mono-
layer coverage and the structure containing one cluster
per six periods of corrugation, we solve Eq. (30) by the
6nite element method also for a half period of the het-
erophase structure with clusters [displayed in Fig. 7(b)].
We assume quantities Le to be equal to the arithmetic
mean of two limiting values of the interval in Eq. (31).
Finally, we get

Since the structure is periodic and has two mirror planes
per each period, we solve Eq. (30) for a half period of pe-
riodic structures with different periods L, applying sym-
metric boundary conditions (BC) (u = 0, Bus/I9x = 0)
at mirror planes (x = 0 and x = I/2) in Fig. 7(a), zero
BC in the bulk (u, u, + 0 as z -+ —oo), and BC of
a stress-free surface (cr;~ m2 = 0.) everywhere at the up-
per surface except edges. Solving Eq. (30) by the finite
element method yields values of E,~,&,, for a set of pe-
riods L. Substituting the values of E ~,q,, calculated for
I = 7a, L = 8a, and L = 9a into Eq. (29), we get the
following interval for possible values of Le:

a)

(32)

Wclus Whom
2

= 0.044 !
—

!
—0.151 ! !

meV t'vl l (w2 —rl ) meV

E oJ A.
' &~of & o ) A.

'
2

—0.132
)~2-~, & m.v

) A.

A

I

I

I

I

b)

7l 71

FIG. 7. Effective elastic forces in the faceted heterophase
GaAs/AIAs(311) system. (a) Half period of the periodically
corrugated structure with the period 10,. A and H denote mir-
ror planes x = 0 and x = Lc/2, respectively. (b) Half period
of the heterophase system containing one cluster of GaAs per
six periods Lc of AlAs(311) faceted surface. 1, AlAs, 2, GaAs,
A and R denote mirror planes x = 0 and x = 310, respec-
tively.

In the particular case where ~2 ——v.q, the quantity LW
has a positive value 0.044 meV/A2. It is the loss in the
energy E gg„+ E ~,t,, for the heterophase system with
clusters compared to the heterophase system with homo-
geneous coverage. If w2 g 7l, there appears some negative
contribution to AW proportional to (v2 —vl ), as well as
the contribution Tl (72 —7l). Contrary to faceted struc-
tures with small tilt angle of facets considered in Sec. III,
all contributions into LW for the structure with large tilt
angle of facets are of the same order of magnitude.

To check whether the suKcient condition of the non-
wetting situation [that of Eq. (27)] holds, we compare
E,"„t„—E „'t,', from Eq. (28) and AW from Eq. (32).
Although values of the intrinsic surface stress for (331)
facets of GaAs and A1As are not present in literature, we
may use for estimations the values of v for Si(100) 2 x 1 re-
constructed surface ' ' and those for GaAs(100) 2 x 4
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reconstructed surface. None of these values exceeds
wo

——100 meV/A2. It follows then from Eq. (32) that
AW & 0.087 meV/A. 2, i.e. , b, W is less than one half of
the gain in the interface energy from Eq. (28). Substitut-
ing this value into Eq. (27) we find that if the difFerence
in the energy of the (331) facets between GaAs and AlAs
is small enough, ~s2 s—i

~

& 0.067 meV/A. , than the sufli-
cient condition of the nonwetting [Eq. (27)] holds. This is
rather strong restriction on the value ~s2 —si ~. There exist
certain possibilities where weaker restrictions on ~s2 —si~
may be suKcient to provide cluster formation both for
GaAs/A1As(311) and for A1As/GaAs(311) growth. First,
if the values of the intrinsic surface stress wq and w2 are
close to each other, ~w2

—wi && wi, Eq. (32) reduces to
AW = 0.044(~i/7o) meV/ . Second, we may use for
the estimation of ~q the maximum value of intrinsic sur-
face stress calculated for GaAs(001) 2x4 reconstructed
surface, which equals 66 meV/A .s2 Then the sufficient
condition for the formation of clusters [Eq.(27)] reduces
to ~e'2 —si~ & 0.145 meV/A . One inore possibility to
get a weaker restriction on ~s2 —si~ is associated with
the above used approach for evaluation of the interface
energy. The evaluation of the interface energy for a sys-
tem with a homogeneous monolayer coverage, E;"„t„,by
using bulk values of interaction energies between Ga and
Al atoms may yield an underestimation of the interface
energy. Then the value of the gain in the interface en-
ergy, E;"„~„—E „t,'„may be larger than 0.175 meV/A2
calculated in Eq. (28). This again favors formation of
clusters.

Summarizing the discussion of the present Section, we
make the following remarks. If the suKcient condition
for the nonwetting (27) holds, then the gain in the inter-
face energy for a system containing one cluster per six
periods of corrugation with respect to the system with
the homogeneous monolayer coverage exceeds the loss in
the energy E gg, + E,~,t,, This promotes formation of
isolated clusters during the deposition of the first mono-
layer of GaAs on the AIAs(311) periodically corrugated
surface. The periodic surface corrugation is restored after
the deposition of 6 ML. Then the hills of the top surface
of the heterophase system appear over the valleys of the
substrate and vice versa. The system of alternating wide
and narrow channels of GaAs and AlAs is then formed,
which is a quantum-well-wire superlattice.

V. CONCLUSIONS

We have developed the macroscopic theory of the
quasiequilibrium heterophase growth on periodically cor-
rugated substrates. Our approach consists of calculating
the energy of the heterophase system. The energy in-
cludes the energy of facet planes, interface energy, short-
range energy of crystal edges, and elastic strain energy.

We have shown that our macroscopic approach allows
us to answer the question of whether the coverage of a
corrugated substrate is homogeneous or inhomogeneous.

The selection between two possible growth modes is
determined in the macroscopic approach by the fact of
whether the deposited material nets or does not met the
substrate. If the deposited material wets the substrate,
then the homogeneous coverage of the periodically cor-
rugated substrate occurs. The example is the growth
of AlAs on the periodically corrugated vicinal surface of
GaAs(001) 3' ofF towards [110].

If the deposited material does not wet the substrate,
then isolated clusters of the deposited material appear
on the periodically corrugated substrate. This situation
seems to be realized for the growth of GaAs on vicinal
surface of AlAs(001) 3 off towards [110], and for both
GaAs/AIAs and AlAs/GaAs heterophase growth on the
(311)A surface.

In the case of inhomogeneous cluster coverage, the pe-
riodic surface corrugation is restored. after the deposition
of the first several monolayers. Then, the hills of the top
surface of the heterophase system appear over the valleys
of the substrate and vice versa, and a continuous layer
of the deposited material with periodically modulated
thickness is formed. Thus, formation of clusters allows
direct fabrication of quantum-well-wire superlattices in
heterophase semicond. uctor systems.

Surface reconstruction on facet planes is taken into ac-
count in our theory as follows. Macroscopic material pa-
rameters, namely, energy of facet planes c and intrinsic
surface stress v;~ are taken to be difFerent for two mate-
rials.

To analyze the instability of planar surfaces and to find
the equilibrium orientation of facets, detailed information
on the orientational dependence of the surface free energy
s(m) is needed. This problem is beyond our macroscopic
theory.
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