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We present measurements and calculations of the resonant Raman line shape due to optic phonons
in GaAs/AlAs multiple quantum wells (MQW's). Under resonant photoexcitation conditions we

observe broad features between the bulk LO and TO frequencies in both the GaAs and AlAs optic
phonon regions, due to modes propagating in the layer plane (in-plane modes). These are much
stronger for the outgoing than the incoming resonance condition due to relaxation of the photoex-
cited exciton to states of the finite in-plane center-of-mass wave vector. The broad feature in the
GaAs region displays a number of dips that can be assigned to the anticrossing of the interface
dispersion with odd-order confined modes. We present a macroscopic model for calculating the res-
onant Raman line shape that incorporates the coupling to the in-plane modes, described realistically
as combinations of interfacelike and confinedlike parts. Calculated line shapes reproduce closely the
spectra measured for several MQW's of difFering layer widths. In particular, good agreement is

found for the dependence of both the GaAs and AlAs optic phonon regions on the AlAs thickness,
which provides convincing proof of the role of interface modes in the spectra.

I. INTRODUCTION (z direction) given by

The layering of the dielectric constant in polar semi-
conductor heterostructures results in the &equency of
their in&ared-active, optical phonons being strongly de-
pendent on the propagation direction. This arises es-
sentially &om the variation of the electrostatic restoring
force responsible for the LO-TO splitting on the wave
vector orientation. As a consequence, the LO and TO
vibrations converge to a common intermediate frequency
with increasing in-plane wave vector (q ). This band
of phonon modes between the LO and TO &equencies,
widely referred to as interface modes, is known to be re-
sponsible for the broad feature seen in the A1As region
of resonant Raman spectra of GaAs/Al Gai As multi-
ple quantum wells (MQW's) and superlattices (SL's).
Since these Raman spectra were recorded with the inci-
dent and scattered light propagating normal to the layer
planes, so that the in-plane wave vector transferred to
the phonon (q ) by the light is zero, observation of the
interface modes required the involvement of an additional
elastic scattering mechanism in the Raman process.

Confinement of the optic vibrations to individual lay-
ers in MQW's arises when the phonon frequencies of the
constituent materials differ considerably, preventing the
optic modes &om propagating &om one layer to the next.
For instance, the confined modes obtained in GaAs/AlAs
MQW's, where the bulk AlAs LO and TO frequencies are

100 cm higher than those of GaAs, due to the lighter
cation mass of A1As. For q = 0, the normal modes are
analogous to those of a vibrating string with fixed ends,
with quantized wave vector along the normal to the layers

di+L '

where m is an integer called the mode order, di is the
con6ning layer thickness, and 4 is the penetration of the
vibration into the barrier. Since the vibration usually
extends to the first cation plane in either barrier, beyond
the interface boundary defined by the anion plane, 4 = 1
monolayer (ML). As the wave vector along the z direc-
tion need not be conserved in the scattering process, a
number of peaks are observed in the Raman spectra, cor-
responding to modes of different order (m), labeled LO
and TO for the longitudinal and transverse vibrations,
respectively. ' Several works have demonstrated that
the frequencies of these so-called confined phonons, plot-
ted against their effective wave vector due to confine-
ment, given by Eq. (1), roughly map onto the bulk optic
dispersions. ' ' '

There has been a great deal of theoretical interest
in the dispersion of the confined modes away &om q
= 0. Microscopic calculations showed that the con-
fined phonons with m = odd disperse strongly with q
and anticross with one another, while, in contrast, the
even-order modes are almost dispersionless. The inter-
face mode dispersions calculated after neglecting confine-
ment effects, pass through the anticrossings of the odd-
order branches. Macroscopic models ' described the
MQW phonons as a inixture of confined and pure inter-
face parts, which together satisfy both the mechanical
and electrostatic boundary conditions. While the macro-
scopic approach could reproduce the dispersions calcu-
lated by the more rigorous microscopic models, they
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also provide considerable insight into the origin of the
rather complex dispersion.

Experimental confirmation of the strong dispersion of
the confined modes has come &om nonresonant Raman
spectra taken with the light incident on cleaved and
polished edges of the layers, which induces an in-plane
phonon wave vector. ' " The experimentally measured
dispersion was shown to be well reproduced by the
macroscopic phonon model that we have employed in
this paper. We demonstrate here that, thanks to a break-
down in the wave vector conservation rule under reso-
nant photoexcitation conditions, this complex dispersion
of phonons in MQW's also determines the structure in
resonant spectra recorded in the more usual geometry
with the light propagating normal to the layers.

The selection rules regarding which orders are observ-
able in Raman spectra are governed by the parity of the
modes, with respect to the reHection plane bisecting the
well. The scattering amplitude for each confined mode
is determined by the electron-phonon interaction matrix
element,

(2)

where vP(z) and y(z) are the envelope functions that
describe, respectively, the electron wave function and
phonon potential along the z direction. Since the elec-
tron probability density, ~@(z)

~

is, to a good approxima-
tion, symmetric about the plane bisecting the well [this
symmetry is exact with respect to the twofold rotations
with respect to the axes (1, + 1, 0) perpendicular to z],
M(m) = 0 for those modes with antisymmetric interac-
tion potential g(z). The atomic displacements, u (z),
of the odd- and even-order GaAs con6ned phonons are
symmetric and antisymmetric about the center plane of
the well, respectively, as apparent by analogy with the
normal modes of a vibrating string with fixed ends. For
the deformation-potential interaction, which dominates
under nonresonant photoexcitation conditions, y (z) oc

u (z), so that M(m = even) = 0, thus producing a fi-
nite coupling for the odd modes alone. On the other
hand, for the Frohlich interaction, the atomic displace-
ment produces an electric field (E ), the scalar potential

(y ) associated with which satisfies, —sx = E oc u
This results in the Frohlich interaction potentials having
opposite symmet;ry to those of the deformation-potential
interaction and produces 6nite scattering strength only
for the even modes.

Evidence supporting these selection rules was pre-
sented by Sood et al. They observed only the odd-order
modes for nonresonant conditions and, conversely, peaks
at even-mode &equencies under resonant photoexcita-
tion. They argued that under resonant conditions, the
strong increase in the Frohlich interaction results in it
dominating over the deformation potential. Since then
numerous other authors (see, for example, Refs. 1, 3,
6—12) have assumed the resonant Raman spectrum to
consist of a series of peaks, due to the even-order con-
fined modes.

Recently we demonstrated that the above, widely ac-

cepted interpretation of the resonant Raman spectrum
as a series of peaks due to even-order con6ned modes is
incorrect. ' In fact, the interface modes are the origin
of most of the Raman intensity in the GaAs region, apart
&om a strong peak due to LO2. The interface modes
produce a broad feature between the LO and TO &e-
quencies in the GaAs optic region, as in the A1As region.
However, in the GaAs region the interface feature has a
number of minima, due to anticrossings of the interface
branches with the odd-order con6ned modes, which pro-
duces gaps in their dispersions. The maxima between
these minima lie (coincidentally) close to the frequencies
of the even modes, but do not derive &om scattering by
the even-order modes. The intensities of the even-order
modes decreases monotonically with mode order, so that
they are too weak to be seen above the contribution of
the interface mode. Other authors have considered non-
resonant Raman scattering theory in GaAs/A1As super-
lattices, using an effective bond orbital method. How-
ever, a simplified phonon model is used, derived &om a
rigid-ion model, where the modes are assumed to only
have wave vectors along the growth direction. A de-
tailed microscopic theory of Raman scattering in quan-
tum well structures has also been performed, where the
phonon modes are considered as separate noninteracting
sets of confined and interface modes. Neither of these
models describe the mixing of the con6ned and interface
modes which takes place at 6nite in-plane wave vector
(q ), but we demonstrate in this publication that the
treatment of this mixing is essential in order to under-
stand our recent resonant Raman scattering experiments.

In this paper, we present a model for calculating the
resonant Raman line shape, due to optic phonons in polar
MQW's, which we compare to our measurements. In the
following section, we present experimental spectra and
brieHy summarize its correct interpretation. A model,
which uses realistic phonon potentials for the electron-
phonon interaction when calculating the resonant line
shape, is presented in Sec. III. In Sec. IV, we com-
pare the results of the calculations to Raman spectra
measured in GaAs/A1As MQW's of differing layer di-
mensions. The difference in the Raman line shape of
the GaAs modes for incoming and out;going resonance,
their dependence on A1As layer widths, and the spectra
of the AlAs modes is well reproduced by our calculations
and supports our interpretation of the line shape.

II. EXPERIMENTAL RAMAN LINE SHAPES

A. Experimental results

We have measured Raman spectra of a number of
GaAs/AIAs MQW's with difFerent layer widths, grown
by molecular beam epitaxy on (100) oriented GaAs sub-
strates. The four samples had MQW's with layer widths
of 45/22, 46/46, 51/46, and 43/85 A. determined by x-ray
crystallography to an accuracy of 1 ML (+ 2.83 A.). The
samples were cooled to a temperature of 10 K for the res-
onant measurements, while the nonresonant spectra were
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recorded at 80 K. Raman spectra were taken in the nearly
backscattering geometry, with the incident and scattered
light propagating alxnost normal to the layer planes (z
direction) and palarized along the principal crystal axes
(z and y). A tunable Ti-sapphire laser induced the reso-
nant spectra, while the discrete lines of an argon-ion laser
were employed for the nonresonant measurements.

Figure 1 plots Raman spectra measured on the 46/46
GaAs/A1As MQW with the 488 nm line of the argon-

ion laser, the energy of which is away Rom any strong
critical points in the band structure. A series of peaks are
observed in the crossed polarization geometry, z(x, y)z,
due to confined phonons with odd-mode order. No struc-
ture was resolved for the parallel geometry, z(2;, x)z. The
inset shows the Raman shifts of the peaks plotted against
their efFective wave vector due to confinement, given by
Eq. (1), where it can be seen that the points map closely
onto the bulk GaAs LO dispersion. The horizontal bars
indicate the systematic error caused by inaccuracy of the
GaAs layer width measured by x-ray crystallography of
one monolayer. The polarization of the Raman signal, in
addition to mode-order selection rule, is consistent with
scattering due to the deformational-potential interaction,
which dominates under nonresonant conditions. Notice
that the intensities of the peaks decrease monotonically

with mode order, as expected for deformation-potentjal-
induced scat tering.

When the laser energy is tuned to energies around the
MQW band gap, the LO Raman intensity increases by
several orders of magnitude, due to the resonant enhance-
ment of the Frohlich interaction, as discussed in detail in
Refs. 23 and 24 for the 51/46 A. MQW. The strongest
Raman scattering is observed, when the scattered photon
energy is close to that of the bound exciton formed be-
tween the lowest electron and heavy-hole subbands, i.e. ,
outgoing resonance with el —hhl(ls). Weaker maxima
are observed for incoming resonance w'ith el —hhl(ls),
when the incident photon energy is tuned to the MQW
band gap and also for outgoing resonance with the light-
hole exciton, el —lhl(ls).

The Raman line shape measured under resonant pho-
toexcitation is completely difFerent Rom that for nonreso-
nant conditions, as can be seen in Fig. 2, which compares
spectra recorded for outgoing resonance with el —lhl(ls)
and incoining resonance with el —hhl(ls). In this fig-
ure, the spectra are recorded. for parallel polarization,
z(x, x)z. For z(y, x)z, we measured very similar line
shapes, with typically about half the strength of the par-
allel geometry. The strong photoluminescence of the
el —hhl(ls) transition prevents accurate measurement
of the Raman line shape for outgoing resonance with
el —hhl(ls). However, the nature of the exciton has
little inHuence on the Raman spectrum, since line shapes
measured on the high-energy side of the el —hhl(ls) out-
going resonance are very similar to those recorded for the
el —lhl(ls) outgoing resonance. There was also no vari-
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FIG. 1. Raman spectrum taken on a 46/46 A. GaAs/AlAs
MQW at 80 K in z(y, z)z polarization, with 2.54 eV laser
line, corresponding to nonresonant photoexcitation condi-
tions. The peaks are due to odd-order confined modes. The
frequencies of these peaks are plotted against their efFective k
vector, due to confinement (solid syinbals) in the inset, which
map the bulk GaAs LO dispersion (solid lines). Also platted
(opeu symbols) are the frequencies of the peaks in the outgo-
ing resonant spectrum, assuming (incorrectly) that they are
due to even-order modes.
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FIG. 2. Comparison of the GaAs optic phonon region of
Raman spectra taken for the outgoing and incoming reso-
nance conditions. Spectra taken on MQW's with difFerent
layer dimensions (as indicated) are plotted, each recorded for
z(x, x)z polarization at 10 K. The spectra are normalized to
have the same height and are shifted vertically for clarity.
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ation in the line shape within each resonance, consistent
with the system being inhomogeneously broadened.

Both the outgoing and incoming resonant spectra of
Fig. 2 are dominated by the peak due to the LO~ confined
mode. As discussed in Sec. I, the Frohlich interaction,
which dominates under resonant conditions, is expected
to couple to only the even-order modes (at in-plane wave
vector, q = 0). We demonstrated recently, ~s ~s and dis-
cuss brie6y in the following section, that the structure
in the outgoing resonant spectrum below the LO2 fre-
quency is due to the interface mode, correcting the pre-
vious interpretation of the structure as due to the higher
even-order modes. For now, we point out that this inter-
face mode feature is much more prevalent in the outgoing
than the incoming resonant spectrum.

Figure 3 shows Raman spectra recorded under the out-
going resonance condition in the region of the GaAs-like
optic phonons for each of the MQW's studied. Since
the GaAs layer width of the MQW's are similar, we
can expect similar GaAs confined-phonon frequencies for
each. Notice, therefore, the unexpected dependence of
the GaAs-like optic phonon line shape on the AlAs layer
thickness. As we discuss later, this is a clear indication
that the structure in the outgoing resonant spectra is due
to the interface mode. Interface mode features are also
observed in the AlAs optic phonon region of the outgo-
ing resonant spectra measured on the MQW's, shown in
Fig. 4. The AlAs-like interface modes are not resolved
above the photoluminescence background for incoming
resonance.
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B. Interpretation of resonant Raman line shape

FIG. 4. Comparison of calculated (solid lines) and mea-
sured (dashed) Raman spectra of the A1As-like optical modes
of the four GaAs/A1As MQW's, recorded near outgoing res-
onance with el —Ihl(ls), at 10 K, for parallel polarization
geometry.
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FIG. 3. Comparison of calculated (solid lines) and mea-
sured (dashed) Raman spectra due to GaAs-like optical modes
of GaAs/A1As MQW's with difFering layer dimensions, for
outgoing resonance with el —Ihl(ls), at 10 K, in parallel po-
larization geometry. Spectra are normalized to have the same
height and are shifted vertically for clarity.

Two aspects of our experimental data are particularly
striking: (I) the line shape due to GaAs-like phonons
measured for outgoing and incoming resonance diBer con-
siderably, as demonstrated by Fig. 2; and (2) the outgo-
ing resonant line shape depends on the AlAs layer thick-
ness, as shown by Fig. 3. We will demonstrate in this
section how these two key findings lead to the correct
interpretation of the resonant Raman line shape.

In the experimental geometry used here (and in most
Raman experiments on MQW samples), the incident and
scattered light propagate almost perpendicular to the
layers, so that, for the simplest Raman process, the in-
plane wave vector, q, imparted to the phonon is zero.
This forbids coupling to the interface mode. We sup-
pose that under resonant conditions there is a breakdown
of the wave vector selection rule, which occurs by elas-
tic scattering of the photoexcited exciton to finite in-
plane center-of-mass wave vectors. Consequently, inter-
face mode features are observed in both the GaAs and
AlAs optic phonon regions of the Raman spectra under
resonant conditions.

The elastic scattering occurs most readily for the out-
going resonance condition, where the photoexcited state
is an extended continuum state, as illustrated in Fig. 5.
On the other hand, for incoming resonance, where real
excitation takes place to a bound 18 exciton, there is a
lack of states at finite in-plane wave vector to elastically
scatter to; this process can only be virtual. This explains
why the interface feature is observed more strongly for
outgoing, than incoming, resonance, for the GaAs-optic
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FIG. 5. Schematic of the exciton dispersion showing the
laser (RI, ) and scattered (Rs) photon energies for the out-
going and incoming resonant conditions. For outgoing reso-
nance, the excitons are photoexcited in the continuum and
can, therefore, scatter to 6nite in-plane center-of-mass wave
vectors, K, providing a coupling to the interface phonons.
This explains why the interface modes are observed for out-
going, but not incoming, resonance in Fig. 2.

phonon region in Fig. 2. Similarly in the A1As region,
the interface modes are much stronger for outgoing, than
incoming, resonance.

It can be seen that the interface feature observed in
the GaAs region displays a number of peaks and dips.
This structure arises from the anticrossing of the inter-
face mode dispersion with the odd-order confined modes.
The anticrossings produce gaps in the interface dispersion
and hence minima in the broad interface features at the
frequencies of the odd-order confined &equencies. The
dips in the outgoing resonant spectra coincide with the
peaks of the nonresonant spectra, which are also asso-
ciated with the odd-order confined modes. The lowest-
&equency dip derives &om a high even-order mode, e.g. ,
LO8 for the dip near 281.7 cm seen in Fig. 3 for the
46/46 A. MQW, which also anticrosses with the inter-
face dispersion away &om q = 0, as discussed in Ref.
15. Similar peaks and dips are not observed in the inter-
face mode features of the AIAs region, because the bulk
AlAs LO dispersion is much weaker, with the result that
the odd-order LO modes confined to the AlAs are much
c1.oser in &equency and not resolved.

With our interpretation, the dependence of the reso-
nant Raman line shape in the GaAs region upon the A1As
layer width can be readily understood. Sood et a/. have
discussed the dependence of the intensity of the interface
modes upon the layer widths in terms of the symmetry of
the Frohlich potentials of the upper- and lower-&equency
branches for zero phonon wave vector along the z direc-
tion. When the AlAs layers are thinner than the GaAs
ones, the upper branch of the GaAs-like and the lower
one of the AlAs branch have a symmetric potential about
the midplane of the GaAs layers and couple strongly in
the Raman spectra. On the other hand, for thinner GaAs
layers, the lower GaAs-like and upper AlAs-like branches
couple in the Raman spectra. Consistent with these argu-

ments, Sood et al observed that the maximum of the in-
terface feature of the AlAs optic phonon region is shifted
towards lower &equencies for SL's with thinner AlAs lay-
ers. Similar behavior can be observed in Fig. 4 for the
AlAs I'egIoI1 of our MQW's, where the maximum of the
interface feature is shifted to lower and higher &equen-
cies for the 45/22 and 43/85 A structures, respectively.
From the above argument, based on the symmetry of the
interaction potentials, opposite shifts of the maxima are
expected in the GaAs region. This explains why the in-
tensity in Fig. 3 moves out to lower frequencies as the
AlAs layer width increases.

The structure in the outgoing resonant spectrum, due
to the interface mode, has for several years been misinter-
preted as a series of peaks, due to higher (m = 4, 6, 8...)
even-order confined modes, which, as discussed
in Sec. I, couple via the Frohlich interaction. Since
the dips correspond to the odd-order &equencies, the
peaks between the dips agree (coincidentally) roughly
with the even-mode &equencies, as demonstrated by the
open symbols in the inset of Fig. 1. However, it can be
seen that the mapping onto the bulk LO dispersion is not
so good as for the odd-order modes seen for nonresonant
conditions.

The Raman intensities of the confined phonons de-
crease rapidly with mode order, so that the higher even-
order modes are not resolved above the interface mode
feature. This arises &om the dependence of the Frohlich
interaction potential on the phonon wave vector of 1/q,
resulting in the intensity of the even confined modes de-
creasing approximately as j./m2. There may, however,
be a small contribution to the spectra, due to the LO4
mode. Clearly the variation in the intensities of the max-
ima (apart from the LO2 peak) in the outgoing resonant
spectra are not consistent with their origin being a series
of peaks, due to even-order modes. If they mere due to
even-order confined modes, we would expect their inten-
sities to decrease monotonically and very rapidly with de-
creasing &equency, as for the odd-order peaks observed
in the nonresonant spectra. In sharp conQict with the
expected behavior, the intensities of the maxima in the
outgoing resonant spectra increase with decreasing &e-
quency. Furthermore, if the peak near 280.4 cm in the
outgoing resonant spectrum of the 46/46 A. MQW in
Fig. 3 is due to LOio, why is a peak due to LOq2 not
resolved? Ascribing the maxima to even-order modes
could also not explain the dependence of the GaAs-like
line shape on the AlAs layer thickness, or the diBerence
between outgoing and incoming resonance.

III. MODEL OF RESONANT RAMAN LINE
SHAPE

A. Electron-phonon interaction potentials

We use the continuum model of Ref. 15 to describe
the optical phonons of the GaAs/AlAs MQW's. We urge
readers to refer to Ref. 15, which describes the approach
and the calculation of the dispersion relation for the
MQW modes. Here, we concentrate on the calculation
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of the phonon mode potentials, which was not included
in the previous publication. The solution of the equa-
tion of motion [Eq. (1) in 15] and V . D, where D is the
electric displacement, can be written as a combination of
longitudinal optic, transverse optic, and interface modes.
Initially, we consider the modes vibrating with &equen-
cies close to those of the longitudinal optic (~L~) and
transverse optic (wTo) modes of bulk GaAs. Since these
GaAs MQW modes vibrate at frequencies = 100 cm
lower than those in the AlAs layers they are, practically
speaking, confined to the GaAs layers. ' The displace-
ment of the GaAs modes in the growth direction, z, in
the GaAs layer, layer 1, 0& z & di can be written as

u, = q, (Ae" —B. "")-—q. (Ce" D—. "-)

The appropriate boundary conditions are continuity of
u, u, E oc y, and of D = —E~. For the modes
of GaAs/AlAs MQW s, the rigid barrier approximation
can be used so the first two boundary conditions become
u =0 and u =0 at the interfaces instead of being con-
tinuous. Applying these four boundary conditions at the
two successive interfaces and employing the MQW Bloch
conditions, one obtains a set of eight simultaneous equa-
tions in the mode coefficients: A, B, C, D, F, G, H, I.
The seven coefficients B to I can be determined analyt-
ically in terms of the first A, which is incorporated into
an overall normalization coefficient A„, , to be calcu-
lated by canonical energy quantization. Thus, the scalar
potential of the GaAs modes in the first GaAs layer is
given by

y = A„, i (e'q" + Be 'q ')
(~ q~ z G

—q~ z ) i(q~.x—~t)
j

It is apparent that the first term comes &om the LO
modes, the second from the TO modes, and the final
term &om the interface modes. The wave vectors ql. , qo,
and q are defined in Ref. 15, where they are written as
kL„ko, and k . This is also the case for the definitions
of other symbols not explicitly given in this current pa-
per. A, B, ..., G are mode coefFicients to be determined
by application of boundary conditions at the interfaces.
Microscopic models have shown that the displacement
of the GaAs modes is zero at the first Al atoms next
to the interface, but assuming rigid barriers where the
displacement is zero at the interface has proven to be
a good approximation. Thus, the displacement of the
GaAs modes in the AlAs layer (layer 2), between z = dq

and z = di + d2 is zero. The scalar potential, y, of the
GaAs modes for 0& z & di is written:

where

with

(F q z+G —q z) z(q z —~t)e

1 fjg.r —fz (fj~+ —g.~-) + rfzLz

+B IZr Z r —fz (Zr.z+ —Z.z —) +rfz),
1

fI.f r+ f (fjet —f*~—+) + rf
Az

+& Zrf r+fr(Zrz. .—f z+). +-rfz ).,
(Xi]

0,'i2

(6)

i (Ae'q '+ Be 'q")

+s (Feq" + Ge q") e'(q (4)

2

nqq —— + sinhqodq (ifj —pK)
VL Vo

One should note that this scalar potential consists of
contributions &om only the LO and interface modes, be-
cause the interaction of the TO modes with electrons via
the Frohlich interaction is negligible. Even though there
is no displacement of the GaAs modes in the AlAs barri-
ers there is an electric field, E, (E=—V'y) in the barriers,
which comes &om the interface mode component of the
MQW modes. For dq ( z ( dq + d2, this is given by

X = 8~ms ( rt&) + Ie q ( ~&) (q ' t) (5)e e

—cosh qod& I,
—q~

& q.'fI.
(qjqo

2

2fjr cosh q~dq + fzP + 2r fz jApl qp-
2

n~2 —— * — sinhqodg (igj + pM)
QL Qo

+coshqodq
~

—qN
~

(q'g j
(qlqo )

The displacements and potential of the modes in layer
3, the second GaAs layer between di+ d2 & z & 2di+ d2,
can be determined by the use of the MQW Bloch condi-
tion that allows us to write the coefficients in layer 3 in

+

Bs——e' I"'+"'~B, and likewise for the other coefficients.

q is the global phonon wave vector in the growth di-
rection that induces the phase change of the displace-
ments and potential in subsequent periods of the MQW.

and

2

2gjr cosh q dx + fzQ + 2rfz]
+QL go

E = 4rs fzd fz = expiq (dz + d2),

fj =expiqjd~, gj = fj, f =expq dy,

gz = f, n+ ——sinhq~d2 + r cosh q d2,

n = Sinhq d2 —r coshq d2, (10)
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P = 2—r fr. coshq dq —2sinhq di sinhq~d2
—2r cosh q~d2 cosh qadi,

Z = f~ [fl, ( f—.~+ —g.n ) + 2 sinh q.d, ]

fz sinhq

L=2fi +f~[fi( f-. ++g. )
2r c—osh q~d2] + 2r fz cosh q di,

Q=P, M=K, and N=L, but with fr, replaced by gL, . All
other parameters are defined in Ref. 15. Similarly, the
scalar potential of the GaAs modes in the AlAs barrier
layers is given by

R = — . (E'q(qf) E d r
2 Rd (15)

dq dq ya —y*at (16)

e, is the dielectric function of the GaAs (i=1) and AlAs
(i=2) layers [Eq. (14) in Ref. 15] and E the electric
field of the optical modes. The derivative of the product
eiu, with respect to cu, leads to both the electrostatic
and mechanical contributions to the energy. The electric
field is given by E=—V':-, where the phonon potential:-
is written in its canonical form,

with

(~ q (&—dl) + I —q (~—d&)g i(q .~—~&)normsAlAs ( e je

(12)

~ L+BgL
2ZS AlAs

+r'r ]Ff (1+ r) + Gg (1 —r)]),

at and a are the phonon creation and annihilation oper-
ators and y is defined by Eq. (6) in the GaAs layers and
Eq. (12) in the A1As layers. In order to determine the
normalization coefficient A„, „we use the fact that the
Hamiltonian can also be written in its canonical form,

dq dq hcuata.

—(fr, + &gl. )
2&8AlAs

+1r]Ff (1 —r) + Gg (1+r)]) . (14)

The Hamiltonian of the optical phonons in the MQW
represents the total energy of the modes and is written

ata is the number of phonons of wave vector q and
q . These have energy ~ and so summing over all wave
vectors gives the total energy of the optical modes. The
normalization coefficient is then calculated by substitut-
ing Eq. (16) in Eq. (15) and equating it to Eq. (17).
A„, is then given by

""
Eg (

' — *) (qqg;+f1 s, ) +g, '(q* +q', ) (1.1, +qqa'11, )

+2q sinh(q di)s (FF*eq "' + GG*e q ')

+28q —F*T~ —BG*T~ + G*V~ + BF*V~ + GV* + B*FV*—FT* —B*GT*.

+ 2sf &f„q sinh(q d2) (HH*eq ' + II*e q ') hu) (di + d2)

8' 3~p
(18)

In the expression for A„, above, the following symbols
are defined as

'(q~ q, )~,)2s'n [(qL— qL, )"i/2]
(« —q') di/2

—i(q~ —q~) d. ~.e j
T =e'( ~ ' "'~ sin. [(qi, —iq )di/2],

—i(qL, —iq )d&T= e

& = e' q +' "'f'sin [(qr, + iq )di/2],
V = e-i(«+iq-)d~V-2— '7

,(q, +q~)d1 ]2 sm [(qL + qr. )di/2]
(ql. + ql, ) di/2

and F* is the complex conjugate of F. We have thus
deduced the complete form of the electrostatic potential
of the GaAs optical modes in both the GaAs and the
A1As layers. When considering the Raman scattering in
Sec. IIIB, we are at outgoing resonance with the GaAs
el —lhl(ls) exciton state and so calculate the exciton-
phonon interaction in the GaAs layers, using the poten-
tial given by Eq. (6) and Eq. (18). When calculating
the Raman intensities of the AlAs phonon modes, we
are still at resonance with states in the GaAs and so it
is the interaction of the AlAs modes' potential in the
GaAs layers that is important. The AlAs phonon modes
are modeled in an analogous manner, but the first AIAs
layer is defined for 0& z & di and the first GaAs layer
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for dq & z & dl + d2. The same equations as for the
GaAs modes can then be used, but with the parameters
previously given for GaAs replaced by those for AlAs and
those for AlAs replaced by those for GaAs. The exciton
phonon interaction for the AlAs phonons in the GaAs lay-
ers, now the barrier layers for the AlAs modes, is given
by Eq. (12) and Eq. (18), with the parameters for GaAs
and AlAs interchanged.

B. Resonant Raman intensity due to optic modes

Light scattering by phonon emission is usually de-
scribed by a three step process, involving (i) photoex-
citation of an electron/hole pair by the incident photon
of energy EL, and center-of-mass wave vector Kl„(ii) in-
elastic scattering of the electron/hole pair by emission of
a phonon of energy E~„and wave vector q, (iii) recombi-
nation of the electron and hole with emission of a photon
of energy Ep and center-of-mass wave vector Kp.

Energy and wave vector conservation dictates EL, ——

Es + Ep„and KI. = Ks+ p- In the usual geometry in
which Raman experiments are performed on MQW sam-
ples, with the incident and scattered light propagating
along the direction perpendicular to the layer plane, wave
vector conservation requires that the in-plane wave vector
transferred to the phonon be zero. This forbids coupling
to the interface modes, which by definition have a finite
in-plane wave vector. Consequently, in order to obtain a
finite intensity for the interface modes, it is necessary to
assume that elastic, as well as phonon, scattering takes
place. The eKect of this elastic scattering is to impart a
finite in-plane center-of-mass wave vector to one of the
intermediate states. The origin of the elastic scattering
is irrelevant to the analysis presented here, but we sug-
gest it could derive from interface roughness, which is
well known to cause inhomogeneous broadening in these
systems.

The experimental spectra we wish to model are taken
under outgoing resonance conditions, where the scattered
photon energy is equal to that of the 18 exciton with

+

zero in-plane center-of-mass wave vector (K), as shown
schematically in Fig. 5. The photoexcited exciton lies in
the exciton continuum and has an energy associated with
its relative electron-hole motion equal to (Er„—Eb, ),
where Eb is the binding energy of the 18 exciton. Since
this continuum state has a spatially extended envelope
function, it should have a high probability of being elas-
tically scattered. This facilitates a coupling to phonons
with in-plane k vector, q ( +2M (E~„—Eb, )/5, repre-
sented by the solid arrows in Fig. 5. Additionally, elastic
scattering to the ls bound state (dashed arrows in Fig.
5) produces coupling to phonons with q = +2ME~„/h.
The total integrated Raman strength for outgoing reso-
nance with the 18 exciton can be written

0 Hpt 18' K 0 18 K 0 Hp G

Es —Ei, + iI &,

where g, (z, ), @h, (zh, ), and P(r) are the envelope func-
tions describing the motion of the electron along the z
direction, the hole along the z direction, and the in-plane
relative motion.

Assuming the electrons and holes to be perfectly con-
fined within the well in the lowest subbands, their enve-
lope functions along the z direction are both given by

@(z)
2 . furze

sin
di (di) (22)

For the 18 exciton, the relative in-plane motion is given
by

1 —v/a
) (23)

while for the continuum state, the Coulomb interaction
of the electron and hole is ignored, allowing the relative
motion to be approximated by another plane wave,

where Hpq and Hp„are the Hamiltonians describing
the electron-photon and electron-phonon interactions, re-
spectively, and ~a) labels the excitonic state induced by
the elastic scattering. This approach is a simplified ver-
sion of previous calculations, which have described the
Raman scattering by a four step process, involving one
elastic and one phonon scattering event. ' It im-
plicitly assumes that the matrix element for the elastic
scattering is constant, independent of ~a), while ignoring
the other constant terms. Alternatively, we can view Eq.
(20) as a second-order process, where coherency with the
incoming photon is lost due to multiple elastic scatter-
ing events, and the occupancy of the initial state ~a) is
a constant, which is independent of ~a). This is rather
similar to previous treatments of phonon sidebands in
photoluminescence spectra. In the following analysis,
we consider separately the two contributions to the in-
tensity where, first, ~a) is a bound ls exciton, and, sec-
ond, where ~a) is a continuum state. The other bound
excitonic states make a negligible contribution and are
ignored.

We adopt a two band approach, where the electron
and hole positions are expressed in cylindrical coordi-
nates, (z„r,) and (zh, eh ), respectively. The motion
in the xy plane is recast in the center-of'-mass frame,
R = (m, r, + mh, rh, )/(m, + mg) and r = r, —rh, with the
total and reduced masses defined as M = m + mh and
p, = (m, + m& ) i, respectively. The exciton envelope
functions are assumed to be separable into parts describ-
ing the motion perpendicular (z direction) and parallel to
the quantum wells, which is a good approximation pro-
vided the well width is much narrower than the exciton
diameter. Hence, the envelope functions in Eq. (20) are
represented by

xb(E —E's —Epn) ) (20) normalized such that f P„', (r) Pg (r) d r" = h(k' —k).
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The phonon interaction potential acting on the elec-
tron and the hole can be expressed as a product of terms
involving the motion perpendicular and parallel to the
layers,

straightforward algebraic manipulation the in-plane in-
tegral can be reduced to

3

M =
~

4a, '+( q)

qz q~

(25)

3

4a,„+ 'q (32)

The form of Eq. (21) for the exciton envelope function
allows the electron-phonon matrix element to be sepa-
rated into integrals over the perpendicular and in-plane
directions,

(t~)IIp„~a) = ) ) M, (q ) M„(q ) b(K +q ),

(26)

and, hence, the Raman intensity can be shown to be
proportional to

I((u) = 2qrKi. ~ ~M, [q = K...q, (cd, q = K„)]~

.(q. = K .)~
'( ' * ')

, (
i9(d

d

M, = g*(z) yq (z) @(z) dz,
0

(27)

M„= r t Mq —e Mq r dr.

where Ki, ——/2ME&„/h.
Turning now to the contribution of the continuum

states to the Raman intensity, i.e. , a = ~k, K ), the in-
plane integral of the electron-phonon matrix element can
be reduced to

(28)

As discussed in Sec. IIIA, the z dependence of phonon
potential y(z) can be expressed as a sum of confined-
phononlike and inter facelike components. Substituting
Eq. (6) into Eq. (27) yields,

a,„

a + kex CL

me ~
g~

3
2 2

(34)

M = Mp + Mf, (29) leading to the Raman intensity being proportional to

M,p

qL d1.s4norm
(

qL, d,
2'

(3O)
I(to) = f Isq dq ~M, (q, q. (ts, q ))~' I.

d6 ~M„(e)~'
|9co

(35)

M;g
A„, ~

—q d1
IIOIIII (F q QI + G)

+ 2'
(31)

We consider, first, the contribution to the Raman in-
tensity of the process, where the elastically scattered ex-
citon is a 1s bound exciton with finite in-plane center-
of-mass wave vector, f.e., ~a) = ls, fc ). After some

where k, = /2h p(E&„—Eb, ) —pM iq2, and 8 is

the angle between k and q .
To take account of broadening, the calculated spec-

trum is convoluted with a Lorentzian function L of full
width at half maximum p and unit integrated strength.
Hence, the total Raman intensity, including the contri-
butions of both the continuum and the 1s states is pro-
portional to

i/2M(Ep EI, )/If- 7r m/d

I(cd) = 27rq dq k de [M (0) [ dq [M (q, q ) ) L(cct)p(t)q, q ), p)
0 —7r 0

vr jd
+2qrKi, dq. (M. (q = Ki. q. )l' L[~ ~p(q* = Ki q. ) 'yj .

0
(36)
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IV. COMPARISON OF EXPERIMENTAL
AND CALCULATED RAMAN LINE SHAPES

We calculate the Raman spectra taking the following
parameters: ~LQ ——295 cm ~TQ=271 cm ~0=12.4,
vt, ——2.90 x 10 ms, vT ——2.00 x 10 ms, p=l cm
Ep: 38 6 meV for GaAs; uf Q —404 cm, wTQ ——360
cm, ~0——10.1 vt. ——1.24 x 10 ms, v~ ——2.18 x 103
ms, p=3 cm, Ep„=52.8 meV for AlAs; m =0.067;
my=0. 2; Eb,= ll meV, and a,„=93 A. . The ls exciton
binding energy and extent were calculated variationally
for a 46 A. GaAs/AlAs QW. The layer widths taken for
the calculation are those determined by x-ray diffraction
as discussed in Sec. IIA. In order to simulate the pen-
etration of the GaAs confined modes into the barrier,
we increase the thickness of the confining layer by one-
monolayer. We noticed that the agreement with experi-
ment could be improved slightly for the 51/46 A MQW
by decreasing the GaAs layer width by 1 ML, which is
roughly the accuracy of the x-ray determination.

The solid lines in Fig. 3 plot the Raman spectra calcu-
lated for the four MQW's. The peak near 294.2 cm for
each MQW is due to the LO2 mode, while nearly all of the
rest of the structure derives &om the dispersive regions of
the phonon dispersion, i.e., the interface modes. As dis-
cussed in Sec. II8, the dips in the spectra at &equencies
below that of LO2 are due to anticrossings of the interface
branches with the odd-order confined modes. However,
the lowest-&equency dip for each spectrum is due to an
anticrossing with a high even-order mode, which has been
demonstrated to occur in Ref. 15. Good agreement with
the experimental spectra (dashed lines) is immediately
apparent. In particular, notice that the calculation re-
produces the dependence of the line shape on the A1As
layer width, for which we gave a qualitative argument in
Sec. IIB.

In Fig. 6(a), the dispersion of the GaAs modes for
fixed q = 8 x 10 cm and varying q is compared to
the calculated spectrum for the 45/22 A sample. One
can see that the scattering is predominantly due to the
highly dispersive upper interface mode, with dips coin-
ciding with the anticrossings where the phonon density
of states is reduced. It can also be seen that the scatter-
ing due to the lower interface mode is negligible for this
MQW, as its Frohlich interaction potential has basically
the wrong symmetry to couple to the exciton in the GaAs
well.

The spectra calculated (solid lines) for the AlAs op-
tic phonon region are compared with the experimental
data (dashed) in Fig. 4. Again the dependence on the
AlAs layer thickness is in good qualitative agreement.
The A1As curves in Fig. 4 were calculated with p = 3
cm, which is rather broader than the value taken for
the GaAs modes in Fig. 3. However, 3 cm i is in agree-
ment with the values determined from the AlAs optic
phonon lifetimes and broadenings and, furthermore,
ab initio calculations of anharmonic phonon decay indi-
cate shorter hfetimes for A1As than GaAs. This is es-
sentially because the AlAs optical modes have a greater
probability of decaying into two lower-&equency acoustic
modes, whose frequency sum equals that of the optical
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mode, because of the accidentally larger density of states
of the latter. In GaAs/AlAs MQW's, there is also the
added possibility of the A1As modes decaying into two
GaAs modes. The very broad experimental spectra sug-
gests that the A1As linewidth may be even larger than 3
cm

Notice that, as argued in Sec. IIB, the interface fea-
tures in Fig. 4 have complementary shapes in the GaAs
and AIAs phonon regions. For example, for the 45/22
A MQW, the maximum of the interface feature is shifted
to lower frequency in the AlAs region and higher &e-
quency in the GaAs region. On the other hand, the AlAs
region differs from the GaAs one in that the minima, due
to anticrossing of the interface dispersion with odd-order
modes, are not seen since the &equency separation of the
AlAs confined modes is much smaller and they are not
resolved.

Figure 6(b) plots resonant Raman spectra calculated
for the AlAs modes of the 45/22 A. MQW alongside the
mode dispersion for the limiting values of q = 0 and
7r/(di + d2) (= 4 x10' cm '). From the upper part
of the figure it can be seen that for q, =0 (solid lines),
the interface modes and confined modes are well sepa-
rated in frequency. For q, =m/(di + d2) (dotted), the
confined modes have basically the same dispersion as be-
fore, but the upper interface mode now anticrosses with
them. This is barely seen on the figure, due to the close-
ness of the confined modes to one another, which is a
result of the shallow dispersion of the LO phonon in bulk
AlAs. No significant Raman intensity occurs due to the
AlAs confined modes (i.e., LO2 or other even m), since
their interaction potentials have negligible overlap with
the exciton wave function confined mostly to the GaAs

FIG. 6. Calculated Raman spectra of the (a) GaAs and

(b) AIAs modes alongside their dispersions for the 45/22
MQW. In (a) the dispersion is plotted for q, =8 x 10

cm, while for (b) q = 0 (solid lines) or q, = vr/(di + d2)
(dotted). The Raman spectra are calculated for p =1 cm
(a) and [(b), solid line], and p =3 cm [(b), dashed line].
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layers. Therefore, nearly all the intensity in the AlAs
region is due to the interface mode, as already conjec-
tured in Ref. 3. The lower interface branch couples more
strongly in the Raman spectrum than the upper one,
since it has the more symmetric potential, with respect
to the center of the GaAs layers. Notice that, due to the
weak bulk AlAs LO dispersion, the confined modes are
bunched just below the zone-center LO bulk frequency.
Consequently, dips in the Raman intensity due to anti-
crossing with the odd-order modes, which are so striking
for the GaAs modes, are not resolved in the AlAs region.
The peaks in the interface feature that can be seen to cor-
respond to maxima in the phonon density of states, which
is inversely proportional to Oui/Bq . These are seen most
clearly for the spectrum in Fig. 6(b), calculated with the
narrower linewidth (of 1 cm ). Increasing the broaden-
ing to 3 cm smears out these features and gives better
agreement with experiment, as shown in Fig. 4.

It is apparent that the spectrum calculated for the
45/22 A. MQW in Fig. 4 shows a gap around 384
cm, which is not seen in the experimental spectrum.
This gap, which can again be seen in Fig. 6(b), arises
&om the lack of modes between 379 and 386 cm for
q~ & 8 x 10 cm, the upper limit of our integration of
q = Ai, . At this in-plane phonon wave vector the LO-
and TO-like interface branches have not yet converged
to their common intermediate frequency. The calculated
spectra could, therefore, only be improved by consider-
ing phonons of larger q . This will arise due to mixing
of the light- and heavy-hole excitonic states, which we
have ignored and has the e8'ect of providing a coupling
to phonons with a larger in-plane wave vector. The mix-
ing of the light- and heavy-hole states is also responsible
for the considerable Raman intensity observed for crossed
polarization geometry, z(y, x)z. It is well known that for
the simplest Raman process, scattering is only allowed in
parallel polarization geometry, z(2:, x)z, for the Frohlich
interaction. However, we can also expect intensity in the
crossed geometry if there is relaxation to both light- and
heavy-hole states at finite K.

(i.e., interface modes) for outgoing, but not incoming,
resonance. Furthermore, the mixing of the light- and
heavy-hole excitonic states away kom the Brillouin zone
center can account for the depolarization of the Frohlich-
induced scattering observed under resonant conditions.

Our model incorporates realistic electron-phonon in-
teraction potentials, which are a mixture of interface and
confined parts. This mixing is responsible for the struc-
ture (peaks and dips) seen in the GaAs optic phonon
region. The odd-order confined modes anticross with the
interface branches and produce corresponding minima in
the broad interface feature. On the other hand, the even-
order modes do not mix so strongly and have little in8u-
ence on the spectra, except, of course, for the strong peak
due to LO2. High even-order modes, which do undergo
some hybridization, can also produce dips in the interface
feature. We have demonstrated, therefore, how resonant
Raman spectroscopy provides a method of studying the
complicated dispersion of the confined modes away &om
q = 0. Since the dispersion of the optical modes in AlAs
is very slight, the A1As confined modes of the MQW's are
not greatly separated in &equency and so their anticross-
ings with the upper AlAs interface mode is not visible in
the spectra. The features of the A1As spectra are also
less distinguishable, due to the larger broadening of the
AlAs modes.

The dependence of the GaAs-like optic phonon reso-
nant Raman line shape on the AlAs layer width, is partic-
ularly convincing proof of the role of the interface modes,
since a complementary dependence of the AlAs interface
modes on the layer widths is well known. ' Our calcula-
tions reproduce the dependence of both the GaAs- and
A1As-like regions on the AIAs layer width and thus con-
firm our interpretation of the spectra. This interpreta-
tion contradicts many previous experimental studies of
resonant Raman scattering in MQW's, which now need
to be reexamined.
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