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We present a theoretical treatment of the spin-orbit interaction in luminescent porous silicon. We cal-
culate the radiative lifetime of the triplet exciton, which is determined by the spin-orbit interaction, and
compare the results with experiment. We discuss previous work on the optically detected magnetic reso-
nance (ODMR) of porous silicon. We show that the spin-orbit interaction causes a substantial fine-
structure broadening of the ODMR. Other workers have argued that the large linewidth of the triplet
ODMR cannot be explained within the quantum-confinement theory of porous silicon. Our results

demonstrate that this argument is incorrect.

I. INTRODUCTION

In 1990 highly porous silicon, made by anodization of
silicon wafers in a hydrofluoric acid solution, was shown
to give efficient visible photoluminescence (PL) at room
temperature.! This PL was attributed to quantum-
confined carriers in crystalline silicon nanostructures that
are formed by the electrochemical etching process.! In
the last four years several hundred papers have been writ-
ten on light-emitting porous silicon, and a great deal of
experimental work has been reported. Transmission elec-
tron microscopy has demonstrated that the main constit-
uent of freshly prepared highly porous silicon is undulat-
ing wires of crystalline silicon with mean diameter ~30
A.? Detailed PL spectroscopy has confirmed that for the
main visible PL band (the S band) the luminescent state is
a quantum-confined exciton, with a large singlet-triplet
splitting, in a crystalline silicon structure.>~® These con-
clusions were based on observations of phonon structure
in resonantly excited PL,>"® and of the temperature
dependence of the PL lifetime.>>%~12

Many papers have been written on the quantum-
mechanical theory of the luminescent states.!>~?> These
have addressed the most important aspects of the
luminescent states, i.e., their energy, radiative lifetime,
and radiative efficiency.’*”22 Other properties that are
clearly manifested in PL spectra, the exchange splitting
and (in resonantly excited spectra) the phonon-assisted
transitions, have also been discussed and explained.> %%
The significance of the spin-orbit interaction to the triplet
radiative lifetime has been pointed out.»> However, until
now, to our knowledge, a theoretical treatment of the
spin-orbit interaction, and a detailed discussion of its ex-
perimental consequences, have not been given. The
present paper is intended to rectify this omission.

The spin-orbit interaction, though weak, has important
consequences. It makes the radiative decay of the (other-
wise spin forbidden) triplet exciton weakly allowed. It
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also induces energy splittings in the triplet state, which
are too small to be detected in conventional PL spectros-
copy, but are large enough to be observable in magnetic-
resonance experiments. We present a theory of these
phenomena, based upon a perturbation treatment of the
spin-orbit interaction. We then compare this theory with
published experimental results, both for the triplet radia-
tive lifetime and for optically detected magnetic reso-
nance (ODMR). The interpretations that have been pro-
posed for ODMR experiments are critically discussed.

The rest of this paper is organized as follows. Section
IT discusses the spin-orbit interaction in silicon, and ob-
tains the basic form of the interaction that is applied in
the rest of the paper. Section III calculates the radiative
lifetime of the triplet exciton and compares the results
with experiment. Section IV discusses ODMR, and the
fine-structure splitting of the triplet exciton that is in-
duced by the spin-orbit interaction. Section V discusses
the results of this work, and Sec. VI summarizes our con-
clusions.

II. THE SPIN-ORBIT INTERACTION
IN SILICON

The spin-orbit interaction H5C for an exciton has two
terms, one for the valence-band (VB) hole and one of the
conduction-band (CB) electron. We consider the VB
term first. In bulk Si, H5C couples the degenerate VB
states at T, leading to a 44-meV splitting.?’> For a VB
electron in effective-mass theory, H5C can be written as
Al-s,%* where s is the spin, [ is the operator for unity an-
gular momentum, and A=2X44 meV (the sign of A is re-
versed for a VB hole). [ is the effective angular momen-
tum that acts in the basis of the three degenerate P-like
orbitals of the bulk valence-band maximum (VBM).?®> In
a quantum-confined structure of irregular shape, the VB
degeneracy is completely lifted (Fig. 1). The three VB
states are separated by the difference in their quantum-
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quantum
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FIG. 1. One-electron energy levels for the highest-energy
valence-band states of crystalline silicon, neglecting the spin-
orbit interaction. The first column shows the threefold degen-
erate P orbital for the valence-band maximum of bulk silicon.
The second column shows the effect of quantum confinement in
an irregular structure. The removal of symmetry lifts the orbit-
al degeneracy of the bulk valence-band maximum. If the cou-
pling between the different P orbitals is ignored, then the quan-
tized energy levels can be labeled in three series, P,, P,, and P,.
The highest level of each series is shown in the figure. P,, P,
and P, are orthogonal P orbitals of the effective angular
momentum [, where x, y, and z are Cartesian coordinates in a
basis determined by the valence-band Hamiltonian for the irreg-
ular structure. The energy levels are used in the text as basis
states for a perturbation treatment of the spin-orbit interaction.

confinement energies, and are weakly coupled by HSC,
The operators /,, ,, and I, are not conserved quantities
even in the absence of spin-orbit coupling (in contrast to
the bulk k =0 no-spin-orbit case), because the Hamiltoni-
an includes the confinement potential for the irregular
shape, as well as terms that couple / to the bulk crystal
momentum k.2* The spin-orbit interaction is less impor-
tant for CB states than for VB states. In bulk Si, HS°
couples the conduction-band minimum (CBM) to states
with the same crystal momentum, which occur far away
in energy ( ~8 eV) from the CBM (the spin-orbit coupling
of the CBM to the second CB at ~0.5 eV above the
CBM vanishes for symmetry reasons). The larger energy
denominator makes the electron term in H5C a less im-
portant perturbation than the hole term, and so we
neglect it. For the same reason, VB to CB matrix ele-
ments of H3C can be neglected. In the bulk, the different
conduction-band valleys are not coupled by H 3 because
they occur at different values of crystal momentum.
When the translational invariance is removed, e.g., by a
donor, a small intervalley spin-orbit interaction (some-
times called the spin-valley interaction) can be detected.
For the interstitial Li donor in bulk Si, this spin-valley in-
teraction arises from the spin-orbit interaction of the Si
host crystal, and is extremely small, ~7 ueV.?%?’ The
spin-valley interaction in a Si nanostructure can be com-
pared to the zero-phonon interband radiative transition
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rate, since both quantities vanish for the bulk and, in
quantum-confined systems, are stronger for smaller struc-
tures because they depend on the breakdown of momen-
tum conservation. In view of this analogy, matrix ele-
ments of the spin-orbit interaction in quantum-confined
Si systems are expected, except in structures only a few
atoms in size, to be much weaker between states derived
from different bulk-Si k values (e.g., the bulk CBM states
from different valleys) than for states derived from the
same bulk-Si k value (e.g., the bulk VBM states). There-
fore we neglect the spin-valley interaction.

A crude calculation of the effects of spin-orbit interac-
tion can be performed as follows: by treating only the
hole term of HSO, by assuming that the different
quantum-confined VB states are pure P,, P, and P,
states (for a suitable choice of Cartesian axes, not neces-
sarily the cubic crystal axes), with the VBM labeled P,
(Fig. 1), and by including in the calculation only the
lowest-energy hole state with each P;.

We use the basis of (S,mg) states of the exciton, where
S is the total (exciton) spin, and the four basis states are
labeled (0,0), (1,1), (1,0), and (1,—1). In this basis,
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S:=oo0 o S|oo2o0]|"
000 —1 000 2

and the hole spin operators s are
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From these, the hole term in HS3C, —Al-s, can be con-
structed.

III. TRIPLET RADIATIVE LIFETIME

The triplet radiative transition rate arises from the
coupling by HSC of the triplet exciton to excited-state
singlets. The wave function |a) for one of the com-
ponents of the triplet is perturbed to |a’) by HSO, so
that, to first order in HSC,

lvYHSQ

{a')=|a)+2'E—_E— ,

v

which leads to a radiative transition rate proportional to
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where H'" is the electronic factor of the operator for ra-
diative transitions with polarization 7, and the subscript
0 refers to the ground state. With the simplified VB
structure mentioned above, the lowest-energy triplet exci-
ton has a P, VB state, and is coupled by HC to the
singlet excitons v with P, and P, VB states. We assume
that the value of |H7|? for these states is equal to that
for the lowest singlet exciton (with P, VB state). The
pFv terms in Eq. (1) vanish for this simplified VB struc-
ture. Adding the transition rates for different polariza-
tions 77, one finds

‘HSO 2

va

il =g S— = ()
Taa N g (Ea—'Ev)z 4

where 35 represents a sum over singlet states only, 75 ! is
the radiative transition rate for the lowest singlet exciton,
and 77, is the radiative transition rate for the triplet ex-
citon state @. Summing over the singlet excitons v with
P, and P, VB states, and averaging over the three triplet
states a, one finds

T—1=_L__7.—1
T 6E.,—E,)* °

where the energy denominator is now expressed in terms
of the energies E; (i =x, y, and z) for P; VB hole states,
and E,=E, is assumed. Equations (2) and (3) remain
true if phonon-assisted radiative transitions are included.
Each transition rate is an incoherent sum of the zero-
phonon rate and the phonon-assisted rate. The latter is
summed over the different phonon modes. The phonon-
assisted transitions can be represented in Eq. (1) by re-
placing H{ with the electronic factor of the second-order
matrix element®® for phonon-assisted radiative transitions
with polarization 7.

To compute 77 ' we must first determine the VB energy
splitting E, —E,. This quantity is poorly known, as will
become clear in the final paragraph of this section, and so
instead we compare our theory with the experimental
variation of 71 /7g as a function of band-gap upshift ener-
gy E,,- We also obtain-a value of (E, —E,) from the ex-
perimental results, for use in Sec. IV C.

We begin by analyzing experimental values of 7 /7g,
the ratio of triplet and singlet radiative lifetimes. 7;/7¢
is obtained from measurements of the PL lifetime as a
function of temperature,>®> with a constant correction
factor to allow for nonradiative processes (this correction
is discussed in the next paragraph). 7,/7g is plotted in
Fig. 2 as a function of band-gap upshift energy E up>
which is estimated as Ep; —1.0 eV (i.e., as the PL energy,
less the bulk-Si band-gap energy of 1.1 eV, plus 0.1 eV for
Epg, the estimated sum of exciton localization and binding
energies'®). In effective-mass theory (EMT), E, —E, is
proportional to E, in structures with the same shape but
different sizes. Thus Eq. (3), together with EMT, predicts
Tr/Ts <E ﬁp. The experimental points are a good fit to

) (3)
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FIG. 2. The ratio of triplet and singlet radiative lifetimes,
Tr/7s, plotted against the estimated band-gap upshift E,, on
logarithmic scales. E,, is estimated as Ep; —1.0 eV (see text).
The points are experimental values of 7r/7g, obtained from
Refs. 3 and 5 and corrected for the nonradiative contribution by
multiplying by three (see text). The solid line is the best
straight-line fit to all the points, and gives an exponent of 2.49.
The dashed line is the best straight-line fit to the points with
E ., <0.75 eV, and gives an exponent of 2.01.

T7/Ts < Eyp, with best-fit exponent n =2.49+0.07 (Fig.
2). The best-fit exponent for the points with Ep; <1.75
eV is 2.0110. 12 (Fig. 2); as expected, the EMT result is a
better approximation for smaller values of E,,. The er-
rors quoted represent the standard deviation of the fitting
parameter. As is found for the exchange splitting,” EMT
gives good qualitative agreement with experiment, but
does not give exact quantitative agreement. This reflects
the inaccuracy of EMT itself, particularly at larger values
of E,,. The assumption that E, is independent of Ep
also loses accuracy at larger values of E,,. It is notable
that the theory correctly predicts the increasing trend of
7s/Ts With E, i.e., that the decrease of 7 with E is
not as rapid as the decrease of 5.3

To obtain a value of E, —E, for use in Sec. IVC,
we use the experimental results for Epp =1.71 eV:>3
7r=4.89 ms and 753 =14.8 us. The experimental PL life-
times include a nonradiative contribution, whereas Eq.
(3) requires the radiative lifetime. A threefold decrease in
PL intensity is found when the temperature is reduced to
the low values at which 7 is determined.’ This is most
reasonably interpreted as a lower radiative efficiency for
the long-lived triplet state’ (an alternative interpretation
is discussed in Sec. V). The ratio 74 /7y is therefore mul-
tiplied by 3 to allow for this change in efficiency.
Thus 77!/75'=1.0X1073, from which Eq. (3) gives
(E,—E,)=0.38¢V.

This value of (E, —E,), estimated from the experimen-
tal singlet and triplet lifetimes, can be checked against
theoretical expectations (an independent experimental
measure is not available). It is convenient to express the



51 SPIN-ORBIT INTERACTION, TRIPLET LIFETIME, AND ...

VB splitting (E, —E,) in terms of the downshift E, of the
VBM, by defining the ratio R =(E,—E,)/E,. The
band-gap upshift is estimated as 0.71 eV. From the pho-
toemission and x-ray-absorption spectroscopy of Ref. 29,
we estimate that the downshift E, of the VBM is ~2 of
this, i.e., 0.47 eV. Thus we estimate R to be 0.80. We re-
quire a value of R from electronic-structure calculations,
for comparison with this result. However, the value of R
is strongly dependent on geometry. First-principles cal-
culations'®*~?? have been performed only on special struc-
tures which, for the purpose of estimating R, are not
representative of porous silicon (the reason for this will
be discussed shortly). Therefore the theoretical value of
R is unclear, and we can only consider the range of possi-
ble values. In bulk Si the ratio R in EMT varies from
6y,/(y;—27,)=0.56 in the (001) directions to
6y,/(y;—273)=6.23 in the (111) directions, where
¥n (n =1, 2, and 3) are the Luttinger parameters.’° For a
wire with [001] orientation and (110) and (110) surfaces,
the approximate EMT result 3y,/(y;—2y,)=0.28 is ob-
tained;?? in a first-principles calculation for a 9 X 8 wire, a
mean value of 0.20 is found, but the lowest state is not
the same as in EMT.?? For structures other than this
special type of wire, the EMT value of R will involve the
large v as well as the much smaller y,. The larger value
of R means that, in a first-principles calculation for a gen-
eral structure, R is expected to be larger than for the
[001] wire with (110) and (110) surfaces, and the level or-
dering is likely to be the same as in EMT. The values of
R discussed above bracket the result R =0.80 obtained
from experimental results by our estimates of
(E,—E,)=0.38 ¢V and E,=0.71 eVX1=0.47 eV. We
conclude that the estimate of (E, —E,) is consistent with
our limited knowledge of quantum-confined energy levels
in irregular crystalline silicon structures.

IV. FINE STRUCTURE OF THE TRIPLET

A. Optically detected magnetic resonance (ODMR)
and the triplet exciton

The triplet exciton state has very small energy split-
tings, of the order of 1 ueV to a few tens of ueV [Fig.
3(a)]. This fine structure can be expressed as a term in
the spin Hamiltonian, and, if it is not too large, can be
probed by optically detected magnetic resonance
(ODMR).?>3? The spin Hamiltonian H for a triplet is the
secular matrix for this threefold-degenerate state, ex-
pressed in terms of effective spin operators for spin uni-
ty.3#736 The interactions with other states of the system
are treated by perturbation theory and included in H. In
general, the spin Hamiltonian gives a complete descrip-
tion of the small number of energy levels between which
magnetic-resonance transitions occur, and is the most
convenient interface between theory and experiment.*’
Section IV B examines the spin Hamiltonian for the trip-
let exciton in porous silicon, and the general properties of
the consequent ODMR.

The information available from ODMR experiments
must be interpreted with care. The attribution of ODMR
signals is always difficult, because ODMR signals can

(@
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FIG. 3. The extremely small splittings of the lowest-energy
triplet exciton. (a) The first column shows the triplet exciton.
The only degeneracy is the threefold spin degeneracy. The
second column shows the splitting of this triplet state by the
second-order spin-orbit interaction. The threefold degeneracy
is lifted. (b) The effect of magnetic field B. The solid lines
represent the energy levels. The dashed lines are the energy lev-
els in the absence of second-order spin-orbit splittings. At B =0
the states are those shown in the second column of (a). At high
B, the second-order spin-orbit interaction is a small perturba-
tion compared to the magnetic field. In the high-B limit, the
m =1 and — 1 states are shifted equally by this perturbation, so
that the Am =2 transition energy is unchanged by the second-
order spin-orbit interaction. The shift of the m =0 state is
different, so that the Am = =*1 transition energies are altered by
the second-order spin-orbit interaction.

arise from magnetic resonance not only in the initial state
of PL, but alternatively in a feeder state or in a shunt
state (see, for example, Ref. 33). Also, when two spectral-
ly broad PL bands coincide in wavelength, one band may
dominate the overall PL intensity while the other dom-
inates the ODMR signal.37 Furthermore, although ideal-
ly the complete spin Hamiltonian can be deduced from
ODMR experiments, it does not always convey direct in-
formation about the chemical identity of the host materi-
al, particularly when there is no resolved hyperfine struc-
ture. The lack of chemical information is evident in the
spin Hamiltonian of Eq. (4) and the subsequent discussion
in Sec. IV B. In particular, the assertion that the similari-
ty of the ODMR spectra for different materials (porous
silicon and siloxene) ‘“provides conclusive evidence for
the existence of a common radiative center” (Ref. 38) is
unjustified.

There are several reports of ODMR experiments on
porous silicon. The first was by Lane et al.,*®* who ob-
served sharp PL-enhancing resonances [with a full width
at half maximum (FWHM) <25 G] at g =2. Subsequent
ODMR experiments have been reported by Stutzmann
and co-workers,*”*” by Meyer and co-workers,**~>° and
by Mochizuki and Mizuta.’! References 40—47 observe a
broad (FWHM=500 G) enhancing resonance with a
Gaussian line shape, together with a weaker but sharper
(FWHM =150 G) resonance at half the magnetic field,
which they attribute to the Am ==+1 (g=2) and +2
(g =4) resonances, respectively, of the triplet initial state
of PL. They also observe a sharp (FWHM <25 G)
quenching resonance at g =2 which they attribute to the



17 702

P, center. The P, center was identified in electron-spin
resonance (ESR) of the same samples.** The characteris-
tic anisotropy of the P, resonance was observed directly
in ODMR of porous silicon by Ref. 48. References
48-50 concentrate on the spectral dependence of the P,
ODMR signal, and on other ODMR signals of the ~1
eV PL band, but do not discuss other ODMR signals of
the S-band PL (i.e., the band due to quantum-confined ex-
citons, which peaks at ~1.5 eV in the samples of Ref.
48). Reference 51 discusses mainly the ~1-eV PL band
(this band will not be considered further in the present
work), and detects no ODMR signal on the S-band PL,
possibly due to a lack of sensitivity. Reference 48 points
out that the sign of the P, ODMR signal (quenching or
enhancing) for the S band is different in different stud-
ies***7 and can be reversed by thermal oxidation. The P,
resonance takes place in a single-electron (S =1) state
with an anisotropic g factor, and, for the S band, is an ex-
ample of an ODMR signal that is believed to take place
in a shunt state or feeder state rather than in the initial
state of PL. In all these ODMR studies,’? 404851 addi-
tional sharp-line g =2 resonances were found, whose ori-
gin is not properly understood.

B. The spin Hamiltonian for the luminescent triplet

The spin Hamiltonian for the lowest exciton triplet is

H=3DyS;S;+1p38;8:S; , @)

ij ihj

where subscripts i,j refer to Cartesian components, B is
the magnetic field, 5 is the Bohr magneton, g;; is the g
tensor, S;’s are the spin operators for spin unity, and D
is the fine-structure tensor. The first term in Eq. (4) is the
zero-field-splitting or fine-structure term. The second
term is the linear Zeeman term. The hyperfine interac-
tion of the exciton spin with the nuclear spins (of 2°Si and
'H) is negligible because the exciton extends over many
atomic sites. Equation (4) is the most general spin Hamil-
tonian that includes a zero-field splitting and a linear Zee-
man effect, for the S =1 case. The energy levels for this
spin Hamiltonian as a function of magnetic field are
shown in Fig. 3(b).

For the resonance lines so far reported in porous Si,
and in many other cases where spin-orbit interactions are
weak, g;; is close to 28;;. D; is real and symmetric, and
so can be diagonalized. When expressed in terms of the
principal axes X, Y, and Z of D;;, the first term of Eq. (4)
is

ij?

C+D{S;—1S(S+1)}+E(S;—S}) 5

and the energy levels, ignoring the constant C, are —2D
(Z-like state), +D +E (Y-like state), and iD —E (X-like
state).

For large B, the D;; term can be treated as a small per-
turbation. This is the usual regime in magnetic reso-
nance. The unperturbed spin states are the m =1, 0, and
— 1 states of the spin component fi-S, where n;=3g;B
and the caret (©) indicates normalization. The first- order
shift is the same for the m =1 and —1 levels, but

NASH, CALCOTT, CANHAM, AND NEEDS 51

different for the m =0 level. This means that, at least in
first-order perturbation theory, the energy of the m = —1
to m =1 transition (Am =2 transition) is unperturbed by
D;; and is therefore sharp. The energies of the m =0 to
m ==1 transitions (Am ==1 transitions), in contrast,
are perturbed by D;;. In porous silicon the excitons are
confined by structures with a variety of shapes, sizes, and
orientations with respect to B, so that different triplet ex-
citons will have different Am =21 transition energies,
leading to a broad overall feature for the Am ==+1 transi-
tions. The random orientation of the principal axes of
D;; with respect to B leads to a so-called powder pattern
in the ODMR spectrum.*? This broad spectrum exhibits
structure related to the values of D and E. However, the
addition of random terms to D and E, resulting from the
variety of sizes and shapes of confining structures, leads
to a broader, structureless ODMR spectrum.’? This is an
example of how a magnetic-resonance transition can be
inhomogeneously broadened when the resonant state has
a variety of environments. The broad Am ==+1 line and
comparatively sharp Am ==2 line predicted by theory
are consistent with the ODMR signals that Refs. 40—47
assign to a triplet (see Sec. IV A above).

The width of the ODMR line can be expressed in terms
of the parameters D and E of Eq. (5). If for simplicity we
neglect the E term, then the fine-structure splitting at
zero field is equal to D. Performing the perturbation
theory mentioned in the previous paragraph for the
large-B case, the fine-structure shift E; of the m =0 level
less that for m ==1 is E(=(1—A2)3D. If all orienta-
tions of the principal axes of D;; relative to B are con-
sidered, then the mean value of Ey, is zero, and the root-
mean-square (rms) value o ¢ of E is

=D/V’5. (6)

C. Dipole-dipole interaction and second-order
spin-orbit interaction

The fine-structure tensor D;; arises from two distinct
physical mechanisms: the magnetic dipole-dipole in-
teraction of the electron and hole, and the second-order
spin-orbit interaction. Here we investigate the second-
order spin-orbit interaction. The much weaker dipole-
dipole interaction is discussed in Sec. V. The spin-orbit
interaction also gives rise to a small correction to the 8ij
tensor (see the Appendix).

Treating the spin-orbit interaction H5C to second or-
der, its contribution to the spin Hamiltonian is

HHS
‘IB 2 E E ’ (7)

where the states a and 8 belong to the lowest-energy trip-
let, and the excited states v do not. H3°=—2[l-s (Sec.
II). The operators /; couple the P, hole ground state to
the P, and P, excited states. H5? couples the lowest ex-
citon state, with P, VB wave function, to excited states of
the exciton [labeled v in Eq. (7)] with P, and P, VB wave
functions. If the exchange splitting of the exc1ton excited
states v is ignored, then Eq. (7) reduces to
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HaﬁzAaaB > (8)

where A is a constant, i.e., the second-order spin-orbit in-
teraction causes only a uniform shift of the three states of
the lowest triplet,>®> which cannot be detected by magnet-
ic resonance. However, if the exchange splitting of the
excited states v is taken into account, then a zero-field-
splitting term arises in the spin Hamiltonian:

by rHEHS  HREY
aﬁ"z E —ET 2 _ T _ ’
" «—E, y E,—E,—A,

where 37 and 3° denote sums over triplet states and
singlet states, respectively, and A, is the exchange split-
ting of v, i.e., the energy difference of the singlet and trip-
let forms of v. ET is the energy of the triplet form of v
(equal to E, if v is a triplet and E,— A, if v is a singlet).
Thus, performing a binomial expansion of the denomina-
tor of the second sum,

hms HSHS | S HRHPA,
* <E,~ET < (E,—EIV

SO 7SO
=48 +2S‘M
o & (E,~EIy

A, A2

=Abppt ————
5 R(E,—E,)”?

S O O
— O =

1 —1
0]

—1 0 1

©C O = O =

A, A2
8(E,—E,)*

In the second step, the A,=0 result (8) is used, and the
zero-field splitting is expressed as a sum over singlet
states only, like the triplet radiative lifetime [Eq. (2)]. In
the last step, the sum is performed over singlet exciton
states v with P, and P, VB states. The 3X3 matrices are
expressed in the basis of m, =1, 0, and —1 triplet states.
In terms of the constants defined in Eq. (5), the result is

_A? A, A,
" 8 |(E,—E,* (E,—E,)? l ’
A2 A, A,
8 |(E,—E,* (E,—E,7 ] '

(Also, the principal axes X, Y, and Z of D;; [Eq. (5)] coin-
cide with the Cartesian axes x, y, and z defined in Sec. II;
this result is a consequence of our simple model of the
quantum-confined VB states, which is implicit in the
definition of x, y, and z.)

Assuming that A,=A, and E,=E,, and using the
value of (E, —E,) found in Sec. III for Ep; =1.71 eV,
one finds

D=18 pevr )

=18 pev—
where A=12.1 meV is the exchange splitting of the
lowest-energy exciton states. This calculated value of D
will be interpreted and discussed in Sec. V. For compar-
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ison with the experimental linewidths given in Sec. IV A,
the relation between a fine-structure energy shift 8¢ and
the resulting magnetic field shift 8B in fixed-frequency
ODMR is required. This can be deduced, from Eq. (4)
and the relation 8ij z26,-j, as

Se=2updB .

Thus an energy of 18 ueV corresponds to a magnetic field
of 1600 G.

A brief account of the electron-hole exchange interac-
tion in silicon will assist the subsequent discussion. Com-
bining the results of Ref. 54 for indirect-gap semiconduc-
tors with the EMT results of Ref. 55 for bound excitons,
the exchange splitting for a discrete exciton in which the
electron occupies only one of the conduction-band valleys
in k space is

A=37J,; [d’r @} (r,1)p;(r,1) ,

where
¢i(re’rh )E[wx(re’rh )’q)y(re’rh )’(Pz(re’rh )] (10)

is the envelope function for the exciton. The three com-
ponents (i =x, y, and z) multiply the three P;-like band-
edge Bloch functions of the bulk-Si valence band at T'.
Jij is a second-rank tensor which, when expressed in
terms of the cubic crystal axes (not the axes used else-
where in this paper), for the case in which the electron

occupies the [001] conduction-band valley, has the form

100 000
J;=J; |01 0|+J,]0 00
00 1 001

J; and J 4 are the coefficients of isotropic and anisotropic
terms in J;;, respectively.

Because the second-order spin-orbit term in D;; turns
out, through cancellations between terms from singlet
and triplet excited states, to be proportional to
A2A/(E, —E,)? rather than to A2/(E,—E,), it is neces-
sary to check for other terms that are of order
A2A/(E,—E,)?, in case there are further cancellations.
Such terms are of two types: the first type comprises
terms similar to those calculated above, but which in-
volve off-diagonal matrix elements of the exchange in-
teraction (in the present simple theory, these matrix ele-
ments exist only for the J, term of the exchange interac-
tion, and couple the excitons with different VB states P;);
the second type comprises terms that are second order
both in the spin-orbit interaction and in the off-diagonal
part of the exchange interaction, but which involve as an
intermediate state the lowest singlet state of the exciton,
with energy denominator A rather than (E, —E,): there-
fore these terms are of order A’A/(E,—E,)* overall.
Both types of terms depend on the orientation of the VB
principal axes defined in Sec. II with respect to the cubic
crystal axes, and so differ from one triplet exciton to
another. Neither term alters the basic energy scale of D
computed above, and both contribute to inhomogeneous
broadening of the ODMR. These are the only terms
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A"A"/(E,—E,)™ "1 with m =2 and n =1. No other
terms A"A"/(E,—E,)" " ~! with m +n <3 contribute
to the fine-structure splitting.

Even with the corrections discussed in the preceding
paragraph, the calculation of D;; given above is crude be-
cause it simplifies the valence-band structure by ignoring
both the P, /P, /P, mixing and the excited states in each
P; series; it uses a crude estimate of the VB energy split-
ting E, —E,, it neglects the electron term in H5°, and it
neglects the breakdown of EMT that occurs in small
structures, most obviously the breakdown of the EMT
formula Al-s (Ref. 24) for the hole spin-orbit coupling.
The calculation is not intended as a complete theory of
triplet ODMR in porous silicon.

V. DISCUSSION

Because the low-T" luminescent state for the S band in
porous silicon is believed to be a triplet exciton,> % and
because triplet luminescent states often exhibit strong
ODMR, it is tempting to suggest that some of the
ODMR signals found in experiments can be attributed to
the triplet initial state of PL. One property expected for
the ODMR signal of the triplet initial state of PL is that
it will occur only at low temperature:® as the tempera-
ture is raised, the singlet PL (with no initial-state ODMR
signal) quickly dominates over the triplet PL. Although
the majority of excitons still occupy the triplet state, the
triplet PL is overwhelmed by the singlet PL because the
latter has a much higher radiative transition rate. The
ODMR reported in Ref. 39 has this temperature depen-
dence, and the consistency of this property with expecta-
tions for a singlet/triplet exciton was pointed out in Ref.
3. However, given the large linewidth estimated by
theory (Sec. IV C), this resonance appears to be too nar-
row ( <25 G) to be consistent with attribution to the trip-
let initial state of PL. A rapid decrease of ODMR signal
with increasing T was also reported for the broad ODMR
found in siloxene,* but the T dependence of the porous
silicon ODMR was not discussed in Refs. 40-47. The
ODMR experiments of Refs. 4850 were limited to very
low temperatures.

Given the large linewidth expected for the ODMR of
the triplet initial state of PL (Sec. IV C), the broad signal
found in Refs. 40-47 is a promising candidate for the
initial-state resonance. Evidence for the triplet origin of
this signal is provided by the observation of Am ==+2
transitions,”* %" and by the fact that the latter are
sharper than the main Am ==+1 line (Sec. IV B). The ex-
perimental FWHM of the Am ==1 transition is 500 G
(5.8 peV), which for this Gaussian line shape implies a
standard deviation of 0¢=213 G (2.5 peV). If the whole
of this linewidth is attributed to the random orientation
of the principal axes of D;;, then Eq. (6) gives D =480 G
(5.5 peV). If A, =A in Eq. (9), then the theoretical value
of D is ~3 times larger than this experimental value.
Given the approximations made in the calculation of D
and noted at the end of Sec. IV C, the agreement with the
value of D deduced from the 500-G-wide resonance is sa-
tisfactory. The calculated D might be reduced not only
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by improving these approximations, but also if A, is
smaller than A. This might possibly occur if excitons
formed from P, and P, valence-band states are less
strongly localized than the low-energy exciton formed
from the VBM P, state. Alternatively, the linear com-
bination of J; and J, that is appropriate for P, and P,
excitons might be smaller than for P, excitons. Another
possibility that cannot yet be ruled out is that the ODMR
of the initial state of PL has not yet been detected, and
that the 500-G-wide resonance of Refs. 40—-47 arises in a
triplet state other than the initial state of PL (see Sec.
IV A).

The most important point to note about the results of
Sec. IVC is that the contribution of the second-order
spin-orbit interaction to the fine-structure splitting of the
initial-state triplet is not negligible compared to the mea-
sured value of this splitting. As noted in Sec. IV C, the
fine-structure tensor D;; has contributions from the
second-order spin-orbit interaction and from the magnet-
ic dipole-dipole interaction. Only if the second-order
spin-orbit interaction can be neglected can D;; be attri-
buted solely to the dipole-dipole interaction; then the size
of D;; can be used to measure the spatial separation L of
the electron and hole, with a large D;; indicating small
L.** This method was used in Refs. 40 47, which assign
the broad triplet resonance to the initial state of PL, and
attribute the large width to the magnetic dipole-dipole in-
teraction of the electron and hole. From this they deduce
that L is small, =4 A. References 40—47 conclude that
this is consistent with the localization of the exciton in a
Sie ring in a siloxene-based compound, rather than in the
larger (~30 A) crystalline silicon structures of the
quantum-confinement model, for which the dipole-dipole
D;; (proportional to L ~3) is very much smaller. The ar-
guments of Refs. 40—-47 are incorrect because, as demon-
strated in Sec. IV C, the second-order spin-orbit interac-
tion cannot be neglected. The conclusions of Refs.
40-47—that the length scale of the exciton is very short
(~4 A), and that the large fine-structure splitting cannot
be explained in terms of quantum confinement in much
larger (~30 A) structures of crystalline silicon—are for
this reason invalid. References 40-47 also deduce a
short exciton length scale from their ODMR results for
siloxene. This conclusion should be treated with caution,
until the second-order spin-orbit interaction in siloxene
has been properly investigated.

It has been reported that the linewidth of the broad
ODMR signal is independent of the PL wavelength,*6:47
and that this result is inconsistent with the quantum-
confinement theory. It would be desirable to confirm the
experimental result with ODMR measurements of mono-
chromated PL, since the wavelength selection in Refs. 46
and 47 is performed only with low-pass filters: this
method is particularly unsatisfactory for resolving the
high-energy tail of the PL. Also, it would be helpful to
know with more certainty whether the broad resonance
can be attributed to the initial state of PL. Nevertheless,
it is possible to investigate the predictions of the
quantum-confinement model. The arguments of Refs. 46
and 47 on the wavelength dependence of the ODMR
linewidth again neglect the second-order spin-orbit in-



teraction, which is the major source of the ODMR
linewidth in the quantum-confinement theory. The crude
theory of Sec. IV C, together with the experimental re-
sults for 77, 7, and A,>> predict a decrease of D from 28
ueVXA, /A at Epp =1.459 eV to 9 pueVXA, /A at
Ep; =2.254 eV. However, we emphasize once again that
the theory of Sec. IV C makes a number of approxima-
tions, and that quantitative knowledge about the excited-
state exchange splittings A, and A, as functions of Ep; is
lacking. Also, the calculation of the dependence on Ep;
ignores the possibility of a systematic change in shape of
the confining structures in a given sample, as a function
of Ep;.'® We regard the calculation of Sec. IV C as giv-
ing no more than a useful indication of the order of mag-
nitude of the ODMR linewidth.

Finally, it should be noted that the experimental study
of the broad triplet ODMR signal is still at an early
stage. In contrast to the phonon structure in resonantly
excited PL,>”® and the temperature dependence of the
PL lifetime,>>°"!2 which provides evidence of the
singlet-triplet splitting of the luminescent exciton, the
broad triplet ODMR has so far been observed in only one
laboratory.““"*"  Furthermore, the intensity of this
ODMR signal is perhaps rather low for a triplet initial
state whose luminescence is believed to compete with fas-
ter nonradiative recombination. These nonradiative pro-
cesses were invoked to explain the decrease in PL intensi-
ty at low temperatures (Sec. III). If, instead, the radiative
efficiency of the luminescent states is assumed to be con-
stant, and the decrease in PL intensity is attributed to a
temperature dependence of the feeder processes that
create luminescent or nonluminescent states, then the
measured value of 77! /75! does not require the correc-
tion factor applied in Sec. III. With this assumption,
771 /75'~3X1073 at Ep =1.71 eV, and the calculation
in the last two paragraphs of Sec. III would produce the
results E, —E,=0.22 eV and R =0.46. These values
lead to D =54 ueV XA, /A in place of Eq. (9). If the PL
efficiency is high, then the ODMR signal will be weak.
In this case, the initial-state resonance would be more
readily detected as a change in PL lifetime, by using
time-resolved ODMR. If there really are resonances as
broad as 54 ueV (4700 G), these would be more con-
veniently observed at higher microwave frequencies than
at the X-band (~9 GHz) frequencies used in Refs.
39-47.

VI. CONCLUSIONS

In summary, we have investigated the effect of spin-
orbit interaction on the exciton states of highly porous
silicon. The spin-orbit interaction is a weak perturbation,
but it has an important effect on the triplet exciton.
First, the triplet radiative lifetime, which is infinite if
spin-orbit coupling is neglected, acquires a finite value.
The measured lifetime, and its dependence on PL energy,
are consistent with the theory. Second, the degeneracy of
the triplet state is lifted, implying an inhomogeneous
fine-structure broadening of ODMR. Stutzmann and co-
workers observed a triplet resonance in ODMR, which
they attribute to the excitonic initial state of PL. Their
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analysis of the large ODMR linewidth appeared to indi-
cate much more strongly confined excitons than could be
explained by quantum confinement. However, their
analysis overlooked the spin-orbit interaction. Instead, it
attributed the fine-structure broadening to the much
weaker magnetic dipole-dipole interaction of the electron
and hole; within this model, the large ODMR linewidgh
implies that the exciton is much more localized (=4 A)
than in the quantum-confinement theory (=30 A). Our
simple calculation shows that the large broadening can be
explained within the quantum-confinement model, if the
spin-orbit interaction is included. The argument*~%
that the large ODMR linewidth implies an exciton so
compact as to be incompatible with the quantum-
confinement theory is therefore invalid.

ACKNOWLEDGMENTS

The authors are grateful to T. I. Cox and M. J. Kane
for a critical reading of the manuscript.

APPENDIX: MODIFICATION OF THE g FACTOR

The g;; tensor of the spin Hamiltonian is altered by
the spin-orbit interaction. The basis states used in the
perturbation theory of the present work are calculated
with neither the spin-orbit interaction H3C nor the Zee-
man interaction HZ. A perturbation treatment of
HZ?+ HSC gives rise to terms in the spin Hamiltonian
(Sec. IV B). The basic g factor g;; =28;; arises in first or-
der; the correction to g;; arises in second order. There
are three terms in the second-order treatment of
HZ+HS. The term in (H5°” is the second-order spin-
orbit interaction discussed in Sec. IVC. The term in
(H?)? contributes to the spin Hamiltonian a very small
term that is quadratic in magnetic field. g;; is modified by
the term in the spin Hamiltonian of order HZ X HS%; this
term is [cf. Eq. (7)]

HIOHY + HEHS
E,—E, ’

H,=3 (A1)
v

where a, B, and v are defined as in Eq. (7); HZ is given by

Ref. 25 as

HZ%=upgB-(Kml+g,s,+g,s)+H>;

m is the free-electron mass; s, is the electron spin; and
H? is the term from the Luttinger EMT Hamiltonian
that involves the vector potential A and the envelope-
function momenta p, and p,. g,, the electron g factor,
and g,, the spin-only hole g factor, are close to 2, so that
8.8, t8,8=28. Cyclotron resonance gives the experi-
mental value for the Luttinger parameter «,% from which
Km can be determined wusing the relation
Km =—(14+3k).? Small corrections to this relation,
and to the value of g,, arise from a generalization of
Luttinger’s approach to include an arbitrarily strong
(rather than an infinitely weak) spin-orbit interaction.’®
These corrections are negligible for silicon because the
spin-orbit interaction is weak. The experimental value
k= —0.42 thus implies Km =0.26.3°
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In the simple theory of the present work, the VB states
are pure P, P,, or P, states of the operator I. Thus H%°
couples the P, ground state to P, and P, states but not to
P, states. The three terms in H? behave differently in Eq.
(A1), depending on whether they couple P, and P, states
back to P, states.

(1) The B-(g,s, +g;s) term in H? does not alter the P;
state or the envelope function, and so does not contribute
to the H*X H5C term of H .5 [Eq. (A1)].

(2) The B-I term couples the P, and P, excited states
back to the P, ground state: its contribution to H 5 cor-
responds to a change in g;; of

AKm 5.5 + AKm 5

AT 8
E,—E, ""» " E,—E,"

Jx

If we set E,—E,=E,—E,=0.38 eV, as in Sec. IVC,
then g is increased by &g =0.02 for magnetic field B
along the x or y directions, but is unchanged for B|z.
Taking into account the random orientations of the
confining structures with respect to B, one finds a mean
shift in the resonance line of 26g, and a broadening corre-
sponding to a standard deviation of 0.38g. At the X-band
(~9 GHz) frequencies employed in Refs. 40-47, this
broadening effect is much smaller than either the experi-
mental broadening or the calculated broadening due to
fine-structure splitting (Sec. V), and can be neglected.
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The small correction to the average g factor is not
significant, as comparable corrections may arise from
term (3) in a full treatment of the Luttinger EMT Hamil-
tonian.?’

(3) H* can also couple the P, and P, states back to the
P, ground state, through the terms that involve A and
p, together with the Luttinger parameters ¥, or ¥ ;> but
these matrix elements vanish unless the envelope function
for the lowest P, state differs from those for the lowest P,
and P, states. The envelope functions are identical in the
simplest approximation to EMT, so that g;; is unchanged.

We conclude that, within the simple theory of the
present work, the spin-orbit interaction causes only a
small correction to g;;. This can be neglected compared
to the large fine-structure splitting discussed in the main
text. An exact treatment of the effective-mass theory
would calculate the basis states using the full Luttinger
Hamiltonian (but not including HS°+ H?). This would
require the use of a three-component wave function as in
Eq. (10), and would lead to mixing of the pure P,, P,, and
P, states employed above, and to differences between the
envelope functions that correspond to the dominant P;
components of these states. Corrections to the g factor
would then arise from term (3) as well as from term (2).
Such a calculation is beyond the scope of the present
work.
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