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Correlated few-electron states in vertical double-quantum-dot systems
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The electronic properties of semiconductor, vertical, double-quantum-dot systems with few elec-
trons are investigated by means of analytic, configuration-interaction, and mean-Geld methods. The
combined effect of a high magnetic 6eld, electrostatic confinement, and interdot coupling induces a
class of few-electron ground states absent in single quantum dots. In particular, the role played by
the isospin (or quantum-dot index) in determining the appearance of ground states is analyzed and
compared with the role played by the standard spin.

I. INTRODUCTION

The behavior of a small number of electrons confined
into a single quasi-two-dimensional quantum dot (QD) in
the presence of a magnetic field has been studied over the
past few years. Most of the work has focused on the
high magnetic field regime of fully spin-polarized elec-
trons where incompressible electron states analogous to
the Laughlin states of the fractional quantum Hall ef-
fect exist. Only very recently the problem of spin and
its implications has been addressed. The ground and
excited states of a spin-unpolarized QD turn out to be
much more complex than those of the polarized QD. The
role of spin and spin-induced interactions can be effec-
tively simulated by the isospin (layer index) in double
layer systems where the isospin-up isospin-down states
correspond to electrons on layer 1 or layer 2. Recent
experimental and theoretical studies of a dou-
ble layer two-dimensional electron system (Dl 2DES) in
a high magnetic field have shown a rich variety of in-
compressible states related to the quantum Hall effect
(QHE). For instance, in a recent experiment (Ref. 11)
Murphy et aL have reported the existence of an incom-
pressible QHE state at a filling factor of individual layers
v = 1/2 (Ref. 26) in the absence of interlayer tunneling.
This coupling-induced QHE state has no analog in sin-
gle layer systems. The distance between layers, i.e. , the
strength of the Coulomb coupling, determines whether
the incompressible state appears or not. This exper-
iment seems to confirxn the predictions made in Refs.
15—17, and 21 that the QHE states are supported by
the interlayer Coulomb interactions and by the single-
particle symmetric-antisymmetric gap in the presence of
arbitrary tunneling. The breakdown of these states oc-
curs when the Coulomb coupling is switched off and the
intralayer correlations become dominant.

In this work we examine the role of confinement, mag-
netic field, and interdot coupling in the generation of
few-electron states in a vertical double-quantum-dot sys-
tem (DQDS). We concentrate on the high inagnetic field

limit where electrons in the ground and low-lying states
are spin polarized due to Zeeman energy, and the effect
of the isospin degree of freedom can be isolated. The
appearance of several ground states (GS) with an unex-
pected isospin is the most striking feature of such systems
in comparison with isolated polarized QD's.

The paper is organized as follows: Sec. I is devoted to
the description of the model; in Sec. II, we present the
analytical results for the simplest possible case of two
electrons in a DQDS; in Sec. III, we present numeri-
cal results for up to six electrons, and Sec. IV contains
conclusions of the work.

II. THE MODEL

We consider a pair of identical vertical coupled QD's
with parabolic in-plane confinement, containing N elec-
trons, and separated by a distance D as shown in Fig. 1.
The normalized single-particle states ~m, n; o) of each in-
dividual QD (in the presence of a magnetic field B ori-
ented normal to the plane of the QD) are simply har-
monic oscillator states,

~m, on) =

with o' labeling the QD index or z component of the
isospin quantum number. In analogy with the standard
spin, o takes on the values +1/2, —1/2 (for brevity, +, —,
from now on) for electrons in the "upper" and "lower"
QD, respectively. The single-particle energies are those
of a pair of harmonic oscillators (the Zeeman energy is
omitted and h = 1 for the rest of this work),

~ „.=n+(n+-', )+n (m+-', ), (2)

with A~ = [gu2 + 4uoz + &o,j/2. io, is the cyclotron
frequency and uo is the frequency characterizing the
parabolic confinement of both QD's. We shall restrict
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QD Energy

Omitting linear terms in p, , and (' allows us to
emphasize the appearance of isospin-isospin interactions
in the DLQD Hamiltonian:
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AlGaAs The Hamiltonian (4) contains two SU(2) symmetry-
breaking fields: The first one along the x direction and
proportional to the hopping t, and the second one along
the z direction, the isospin-isospin interaction, propor-
tional to V@ (in addition to the usual charge-charge in-
teraction). The Coulomb matrix elements are given by

Vtttlttt2ttt31124 Ittt ttt2OSOZOSS4 + Vtttlttt2ttt3ttt4
)

1
D ++ +— )

Vtttlttt2OISZISO4 Ottlttt2ttt3ttl4 Vtttlltt2ttt3ttt4
)

1
E ++ +

this discussion to the case of high magnetic fields (B )
2 —3 T) where electrons are spin polarized, and the condi-
tion (d ) (dp is satisfied. In this regime, one can restrict
the basis set to n = 0 and the problem becomes one
dimensional. We shall omit index n in what follows.

AHowing for interdot tunneling, the full-interacting
Hamiltonian of the DQDS can be expressed in second
quantization as

) i~a O'&OnIZCWSIZCrn12' + (& ~O r'I) tCWOSZCOSS'OZj

mcTcT

1+- ) /pm' m2 m3 m4"crier' Cm~~Cm o.i Cm3crl Cm4cr

mq mq m, 3m4 crier'

where c~, c are the single-particle creation and annihi-
lation operators, V ', ' ' ' the Coulomb interaction
terms, and t is the interdot hopping matrix element. We
have included here interdot direct and exchange terms
but neglected some off-diagonal scattering elements, neg-
ligible in the weak hopping (t + 0) limit.

Alternatively, we can use an isospin 1/2 operator repre-
sentation to define isospin operators in terms of previous
creation and annihilation single-particle operators as

pm, m,

m1m2

m$ m2

= Cm, +Cm, +

m~+ m2+

my+

+ Cm Cm2 )

Cm, Cm2-y

+ Cm Cm, +.

FIG. 1. A schematic picture of a DEEDS. Such a type of
semiconductor structures can be now routinely fabricated by
means of combined growing and etching techniques.

where V++ (identical to V ) are intradot Coulomb ma-
trix elements, and V+ are interdot Coulomb matrix el-
ements.

As far as the symmetry-breaking term t is concerned,
two physical situations can be distinguished: the "inco-
herent" and the "coherent" one. The incoherent case
(t = 0) describes isolated QD's coupled only by Coulomb
interactions. Electrons cannot transfer (exchange) be-
tween QD's, and are localized on individual QD's. This
distinguishability manifests itself in the anticommutation
relation (ct,c, I) = b th, , This is the well-

known "layered. electron gas" model.
The second case is the coherent behavior of QD's,

where electrons cannot be in a specific QD but occupy
the symmetric (s) or antisymmetric (as) orbitals of a pair
of QD's. The transformation from orbitals localized on
individual dots to the symmetric-antisymmetric orbitals
is equivalent to the rotation of the isospin. Let us define
a rotated isospin representation, (n), which diagonalizes
the hopping part of the Hamiltonian (4) for arbitrary
hopping matrix element t:

tc += (n .+n, ),

1
(5)

II=) (e p +tg' )
m

1+- ) Vmym2m3m4
D pm~ m4 pm2m3

mqm2m3m4

1+— ) Vmj m2m3m4 p&
mym4 mgm3 '

m] mgm3m4

We wish to emphasize that this transformation does not
depend on the strength of the hopping matrix element.
We can define isospin operators p, (', I,

' in the space of
coherent operators (n) to write the coherent Hamilto-
nian as



CORRELATED FEW-ELECTRON STATES IN VERTICAL. . . 1771

In this rotated isospin space the hopping matrix element
t is simply equivalent to an external field. The coherent
Hamiltonian (6) is similar to the previous one (4) in the
sense that it also presents two SU(2) symxnetry-breaking
terms: that proportional to the hopping t and the isospin-
isospin interactions proportional to V@ (again, in ad-
diton to the normal SU(2) invariant charge-charge in-
teractions). This isospin-isospin interaction V~, present
in both Hamiltonians, is, ultimately, responsible for the
physics in a DQDS. Since this physics is dominated by
Coulomb interaction, we shall concentrate on the t + 0
limit.

III. ANALYTICAL RESULTS FOR THE
TWO-ELECTRON DEEDS

The case of N = 2 is the simplest case that deserves
to be studied in detail and can be solved analytically.

We can write the total wave function 4'(rx, zx r2, z2) as a
product of the center-of-mass (&) wave function, relative
motion ( r ) wave function, and the rotated isospin wave
functions (symmetric or antisymmetric)

( „.) =0 '
(&)& (.)I, j&

—= IM™,M';, j&

i, j = s, as. (7)

The center-of-mass motion (characterized by an angular
momentum M' ) separates &om the Hamiltonian, and
isospin states can be characterized by four orthogonal ro-
tated isospin states (is, s), las, as),

l
s, as), ias, s)}. These

states can be written in a more familiar language of the
usual isospin states, e.g. , (l+, +) = lI = 1,I, = +1)},
based on orbitals localized on individual QD's:

is, s)

as, as

is, as)
las, s)

1 II=1,I,=+1)+iI=1,I,=—1)
~2

1 l
I=1,I,=+1)+l

I=1,I,=—1)
~2

~x, (lI =1,I, =+1) —lI =
iI =0, I, =0).

~iI=1,I, =O)
—iI=1,I, =0)
1, I, = —1)},

The first three states correspond to a well-defined isospin
I = 1 but an undefined z component of I. The expec-
tation value of I for the three coherent states I = 1 is
zero, but quantum Quctuations are present in the I = 1
states, in contrast with the incoherent I = 0 state. This
means that the two I = 1 states ~(is, s) + las, as)}
and ls, as) are not eigenstates of I„and one cannot de-
termine on which QD the electrons are localized. They
correspond to having both electrons in one or the other
QD of the DQDS. On the other hand, the lI = 1, I, = 0)
and lI = 0, I, = 0) states (~(is, s) —ias, as)} and ias, s),

I

respectively) correspond to electrons on opposite QD's
and their energy is determined only by interdot interac-
tion V+ ——VD —VE.

We can now write the relative particle Hamiltonian in
the rotated isospin space as a 4x 4 matrix. It is easy to see
that the first three states correspond to total isospin I =
1 and hence the in-plane relative particle wave function
must be antisymmetric. This corresponds to odd relative
angular momentum, M", of the relative particle. The
Hamiltonian K1 for the I = 1 states can be written as

(t+n M. +(M"iv~iM"& (M l&zlM &
0

(M" i&ziM"& —t+ n-M + (M" Iv~1M'&
0 o n M" +(M. ivDyvEiM") )

(9)

and for I = 0, we simply have

n M + (M" iV —V iM") = Ho, (10)

with relative angular momentum M" being even.
From the rotated isospin Hamiltonian (9), it is clear

that (a) only the symxnetric-antisymmetric states are
coupled, (b) coupling is due to the symmetry-breaking
exchange interaction V~, (c) the coupling between
symmetric-antisymmetric states is present even in the
absence of tunneling (t = 0), and (d) only these coupled
symmetric-antisymmetric states are affected by interdot
hopping (t).

The two-electron Hamiltonian can be easily diagonal-
ized and simple analytical expressions for energies and
wave functions obtained (not shown here for brevity).

Figure 2 shows the evolution of the total energy spectrum
as a function of the distance between QD's for a given
value of the total angular momentum M = M +M'
6 and zero hopping matrix element t. Standard values
of dielectric constant and effective mass for GaAs have
been taken throughout the calculations and the confin-
ing energy of the QD's in the DQDS is taken to be 5
meV. From now on, it is also convinient to define an in-
terdot coupling constant: n = V+000/V+oo+00. One can see
in Fig. 2 the energy splitting of the I = 1 states (when
M" odd), which are degenerate when n = 1, as the dis-
tance increases (i.e., as the coupling constant a lowers
its value). Those with I, = 0 go down in energy while
those with I, = +1 remain degenerate and constant (no-
tice that this would not be the case any more if t g 0).
It must be pointed out that the total isospin I is a good
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quantum number for any value of the coupling constant
in the two-electron DQDS. This is no longer the case for
a higher number of electrons as will be shown below. In
Fig. 3, we show the phase diagram (isospin I and an-
gular momentum M) of the two-electron DQDS GS as a
function of the magnetic field B and coupling constant o, .
The inagnetic field changes the ratio of kinetic (0 ) to
Coulomb energy and induces changes in the isospin and
angular momentum of the DQDS GS. Similar transitions
of the isospin and angular momentum of the GS can be
induced by changing the coupling constant as shown in
Fig. 3.

FIG. 2. Evolution of the energy spectrum as a function
of the distance between QD's of a two-electron DQDS with
total angular momentum M = 6. Notice the splitting of the
I = 1 set of states into I = 0 and +1 states as the distance
between QD's increases. The corresponding center of mass
and relative angular momenta have been explicitly stated in
the figure.

10—
IÃ = 4I

The zero distance limit (ZDL) (D = 0, n = I), i.e. ,
the limit of having the QD's forming the DQDS super-
imposed in real space, although unrealistic, is interesting
and deserves to be studied in detail. In this particu-
lar case (always with t -+ 0), the SU(2) isospin symme-
try is not broken by the isospin-isospin interactions since
V~ = 0. In the ZDL the DQDS of identical QD's under
high magnetic fields is completely equivalent to a single
QD with Lande factor g ~ 0, i.e., in the zero Zeeman
limit. The role of spin in the DQDS (frozen out by the
magnetic field) is now played by the isospin. In the case
of nonidentical QD's, the presence of an "isospin Zeeman
energy" (for instance, a difFerence between the confine-
ment energies of each QD) would make the DQDS equiv-
alent to the spin-polarized single QD . The feasibility of
fabricating identical QD's with zero "isospin Zeeman en-
ergy" is one of the most appealing possibilities presented
by such systems. As will be shown below, it is the funda-
mental origin of the electronic properties that appear in
a DQDS at high magnetic fields, compared to those ap-
pearing in the same regime of fields in a single QD (i.e. ,
in a spin-polarized QD).

We now extend our study to a larger number of elec-
trons by employing exact diagonalization techniques.
The intradot and interdot electron-electron correlations
have been taken fully into account by expanding the
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FIG. 3. The phase diagram (angular momentum and
isospin) of the two-electron DQDS ground states.

FIG. 4. (a) Evolution of the absolute GS angular momen-
tum M as a function of the single-particle kinetic energy
(magnetic field and confinement) for four electrons in the
ZDL. (b) The same for six electrons. Along with M, the
values of the total isospin I of the stable states discussed in
the text are also shown.
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many-body wave function in terms of Slater determi-
nants (or configurations) and diagonalizing the Hamil-
tonian (3) for four and six electrons. The Hilbert space
has been restricted to the states of the lowest Landau
level of each QD (n = 0). Due to the circular symmetry,
the diagonalization can be done in separate subspaces of
configurations with the same z component of the total
angular momentum, M. In the absence of hopping any
subspace of given M can be split, in turn, into orthogonal
subspaces of given I . In this way, the size of the matri-
ces to diagonalize becomes smaller and computationally
more accessible. The GS's and lowest-lying eigenvalues
and eigenfunctions of all the subspaces of difFerent M
were obtained using standard diagonalization routines.

Figures 4(a) and 4(b) show the evolution of M for the
DQDS absolute GS as a function of 0 (i.e. , B) for four
and six electrons. The absolute GS angular momentum

I

M goes through a series of increasing values as 0 lowers
its value (i.e., the magnetic field rises). The competition
between kinetic energy and Coulomb repulsive energy de-
termines the value of M: the kinetic energy (due to the
confinement and magnetic field) favors electrons in the
center of the QD, the Coulomb repulsion tends to spread
the charge.

The results in Figs. 4(a) and 4(b) show a remarkable
stability of the GS's with M = 6, I = 2 for four electrons,
and M = 15,I = 3 for six electrons, against changes
in 0 . These stable GS's are the only ones appear-
ing with maximum total isospin I, and are fivefold de-
generate (I, = 2, 1, 0, —1, —2) and sevenfold degenerate
(I, = 3, 2, 1,0, —1, —2, —3), for four and six electrons, re-
spectively. In particular, the I = 0 states are described
exactly in this ZDL by the Jastrow-type correlated wave
function [111],

O(Z1, ..., ZN(2, tel, ...) tUNi2) mi —mj zi —mj
1&i&j&Ni2 1&i&j&Nj2 1&i,j&N/2

Nj N/

x exp
l ).l~*'I /4l ) .I~*I /4~'

l l+&i" I+&~i21—&i".
I

—
&iv)2

proposed by Halperin in the context of &actional QHE
wave functions with spin degrees of freedom, and used
later in the context of a DL2DES. The electron coor-
dinates of the upper dot are given by zi = x; —iy; and
those of the lower dot by mi = x,' —iy,', and + and —de-
note the values of the QD indices (see previous section).
The symbol A represents the antisymmetrization oper-
ator. Alternatively, these states can be also expressed
in terms of the single-particle occupation numbers of
each QD, v+ and v . For instance, for six electrons
v+' = 0.5 for m = 0, 1, 2, 3, 4, and 5, and 0 for the fol-
lowing m's. If we define a filling factor for the DQDS as
vD lD = (v+ + v &~ where the brackets denote average
over the lowest occupied m's, the GS's M = 6 (N = 4)
and M = 15 (ItI = 6) clearly correspoiid to vD lDs = 1.
These v & = 1 states can be considered, in turn, as
precursors of the incompressible state at total v = 1 ob-
served in a DL2DES.

In Fig. 5, we show the six-electron excitation spectrum
of a DQDS with a v ~ s = 1 degenerate GS of angular
momentum M = 15 (marked with a star in the plot).
In particular, the fully isospin-polarized state within the
degenerate subspace has been considered as the absolute
GS in what follows. The excitation spectrum consists
of two branches: the branch with M ( 15 and that
with M & 15. Let us first concentrate on the branch
of the spectrum with angular momentum M & 15. By
examining the wave function, we have been able to iden-
tify those excitations corresponding to isospin Pip exci--
tations (solid dots in the plat). Those with M close
to M = 15 can be associated with isospin flip spin-
mave-like edge excitations. Those with M farther be-
low M = 15 correspond to isospin flhp quasiparticle exci--
tations (magnetoexcitons2s) and consist in flipping the
electron's isospin and moving it from the edge of the

I

v ~ s = 1 droplet to a reversed isospin single-particle
state m closer to the center of the DQDS. The value of
the total isospin of such excitations is the maximum pos-
sible value according to the spin Hip and to the subspace
in which it is found, i.e., the value of M of the excita-
tion [all those shown with solid dots in Fig. 5, on the left
branch, correspond to I = (N —1)/2 = 5/2]. We can
see that isospin-Hip excitations are not, in general, the
lowest energy states in subspaces of given M, but there

Z9.0

g 28.0—

Zr.5-

I I l I I I I

10 1Z 14 16 18 20 22 24 26

FIG. 5. The excitation spectrum of six electrons in a DEEDS
in the ZDL. The GS is marked with a star. Isospin-reversed
quasiparticle excitations are distinguished by solid dots and
quasihole excitations by open dots. The arrows show those
subspaces whose GS's will become the absolute GS in the
presence of isospin (spin) Zeeman energy for increasing B (to
the right of M = 15) and for decreasing H (to the left of
M = 15).
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appear a few other states of lower energy and minimum
value of I within each subspace.

We have also identified isospin-conserving quasihole-
quasielectron pair excitations (open dots in the plot) con-
sisting of a quasihole in a single-particle state of m ( 5
and an electron added to the edge of the droplet. Simi-
larly to the spin-fIip excitations, those with M far from
M = 15 present the better-de6ned character of a single,
localized hole in the droplet. These excitations present
the maximum possible value of I (N/2 = 3). In contrast
with the isospin-Hip excitations, there appear many exci-
tations of lower energy and minimum isospin within each
subspace of given M.

Prom the excitation spectrum, we can understand the
evolution of the absolute GS angular momentum with
Q . The stability of the vD&DS 1 GS's is nothing but
the direct consequence of the cusplike structure or gap ex-
hibited by the excitation spectrum (see Fig. 5), and such
state can be referred to as an incompressible GS. Up to
the values of 0 studied, no other stable GS's seem to
appear in our calculations. In the case of identical QD's
almost all the lowest states of difFerent subspaces of M
will become the absolute GS of the DQDS at a certain
value of B, which is in clear contrast with the case of a
single, isolated polarized QD. In this ZDL the GS takes
on almost all possible values of M for the range of vari-
ation of 0, but such values change very quickly with
0 (except the v ~ = 1), presenting no stability. The
relevance of these kinds of absolute GS's in a single QD
at low magnetic fields (when the Zeeman energy cannot
be considered infinite) has been stressed in Ref. 8. Their
importance lies in suppressing, through the spectral func-
tion of the system, the single-electron tunneling rates, 34

and therewith, in strongly modifying the transport prop-
erties of the system. One would expect that the presence
of such states in the DQDS would give rise to similar ef-
fects on transport properties of these systems as long as
they do not disappear for a realistic situation, i.e. , for a
certain distance between QD's. Taking into account re-
alistic values of the distance is the topic of the following
sections.

As mentioned previously, a significant difference be-
tween the confining energies of the QD's forming the
DQDS (or the presence of the g factor for a single QD
at high B) tends to favor fully isospin-polarized (spin-
polarized for a single QD) absolute GS's. Quantum dots
with fully polarized electrons have been extensively stud-
ied over the past few years. It is known that, for instance,
for four and six electrons, when only the spin-polarized
states are relevant to the GS properties, the value of M
for the absolute GS is restricted to a series of specific
numbers: 6, 10, 14, ..., for four electrons ' and 15, 21,
25, ..., for six electrons. 4 These numbers are known in
the literature as "magic" numbers. ' This can be seen
easily from Fig. 5: The lowest states in each subspace of
M will correspond now (in the presence of isospin Zee-
man energy) to isospin-conserving quasihole (M ) 15)
or isospin-flip quasiparticle (M ( 15) excitations. Only
those with quasiholes (quasiparticle) close to the center
of the droplet will become the GS of the DQDS as B
changes (those with downward-pointing arrows in Fig.

5). A simple description of the magic absolute GS's (for
M ) 15) in terms of "bosonic" operators acting upon the
electronic v = 1 droplet has been presented elsewhere.

B. Short distances:
Weak SU(2) symmetry-breaking interactions

0

D =50A fN = 81

10—

0
— (5)

15—

0

D =100A
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0.6 0.5 0.4 0.3 0.Z

FIG. 6. (a) Evolution of the absolute GS angular mo-
mentum M as a function of the single-particle kinetic en-
ergy (magnetic field and confinement) for six electrons for
D = 50 A. (b) The same for D = 100 A.

We now discuss how the minimum-isospin GS's of a
ZDL DQDS evolve for realistic distances between QD's.
Figures 6(a) and 6(b) show, for D = 100 A. and 50 A. ,
the evolution with 0 of the M value of the absolute
GS (from now on we will restrict to the six electrons
case). As was clearly shown in Fig. 2, as the distance
between QD's increases, or the symmetry-breaking inter-
action term V~ is stronger, the isospin multiplet degen-
eracy is removed and the GS will always have I, = 0,
i.e., equal number of electrons in each dot. The to-
tal isospin, I, is no longer a good quantum number for
D P 0, but one can still trace it back to its original
value at D = 0, and use it to label the states as long
as the distance is not too large. As can be seen in Figs.
6(a) and 6(b), for short distances (D =50 A. , a 0.8)
many of the absolute minimum-isospin GS's in the ZDL
survive. The M = 15 GS also remains stable. On in-
creasing the distance (D = 100 A, n 0.6) the situ-
ation changes dramatically: The symmetry-breaking in-
teractions have made all the minimum-isospin GS's of
the ZDL disappear. Instead, many stable states appear
(M = 6, 9, 12, 15, 18, ... ,), and the only stable GS in the
ZDL, M = 15, has become less relevant. At the same
time, the overlap of such GS (or the Jastrow-type wave
function shown above) with those of the same M at dis-
tances different from zero decreases with D. Instead of
showing this overlap we have chosen to show in Fig. 7 the
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FIG. 7. Single-particle occupation numbers v+ (v ) of the
v ~ = 1 state as a function of the distance.
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single-particle occupation numbers v+ (v ) in the ZDL,
for D = 50 A. , and for D = 100 A. One can see that the
regular occupations forxning the v = 1 state in the
ZDL melt as the distance between the QD's increases,
and the value of M = 15 becomes less relevant for the
GS. These stable states have their origin in the "superpo-
sition" of the stable ones for each QD with three electrons
(M = 3, 6, 9, ...,).z's The next section will clarify what we
mean by such superposition.
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FIG. 8. Evolution of the renormalized (—6eo) GS energy as
a function of B. Crosses show the HF approximation results
discussed in the text and dots those from the exact diagonal-
ization calculations. The inset shows a phase diagram for the
interdot correlation as a function of B and D.

C. Large distance limit:
Strong SU(2) symmetry-breaking interactions

We have seen in the previous section that, as the dis-
tance D between dots increases the situation seems to
change noticeably. In order for this large-D limit to be
understood, we have carried out a self-consistent Hartree-
Fock (HF) treatment of the interdot coupling, but con-
serving the intradot correlation. The procedure is the fol-
lowing. A GS solution of total angular momentum, M+,
by means of an exact diagonalization of, for instance,
the full-interacting Hamiltonian of the upper QD, II+,
is found as described in the previous section. Then, the
single-particle energies of the lower dot are modiGed by

= ~~+ ~~~ (12)

where in the calculation of the self-energy Z+, Hartree-
Fock-like diagrams have been used. If the interdot hop-
ping is forbidden, then only a Hartree-type diagram is al-
lowed and corresponds to taking into account the single-
particle occupation numbers of the upper GS, v+, to-
gether with the coupling term V+ ' ' ' '. Now, an
exact diagonalization of the lower full-interacting Hamil-
tonian, R, with the corrected single-particle energies is
done, a lower GS of M is found, and the occupations
of this GS are used to modify, in turn, the single-particle
energies of the upper dot. The process continues until
convergence is achieved.

Figure 8 shows the evolution of the renormalized GS
energy of our DQDS as a function of the magnetic field
(or 0 ) for the case of three electrons in each dot (I, = 0)
and for four different distances. The GS's for D = 200
A. (a = 0.3) correspond to a superposition of M+ = 3,
M = 3 (which gives us M = M+ + M = 6), M+ = 6,
M =6(M=12), andM+ =9, M =9(M =
18). The possible values for M+ and M (3,6,9,...,) are
the corresponding magic angular momenta M mentioned
above for the case of three electrons in a single QD.2's

As we bring the dots together, these states shift to lower
Gelds, so one can think of the interdot coupling in terms
of an "additional" magnetic Geld which adds to the bare
one to give a stronger effective value of B.

Exact energies are also shown in Fig. 8. At large dis-
tances (D = 200 A) both procedures give the same en-
ergy for the GS. As the dots are brought together, the ex-
act GS energy becomes smaller than the HF energy. This
fact is more noticeable for the shortest distances where
this deviation takes place at B 7 T and B = 4 T for
D = 100 A. and D = 50 A. , respectively. This deviation
points out the fact that interdot correlations have grown
to play their role, a role that cannot be described in terms
of a xnean-Geld theory. A phase diagram is shown in the
inset: The interdot correlation grows to be relevant with
the inverse of the distance (as one would expect), and
with the strength of the magnetic Geld. Now one can
understand the appearance of the vD = 1 &om a dif-
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ferent point of view: The incompressible state at short
distances (M = 15) has its origin in the spatial interdot
correlations, and cannot be obtained as a simple super-
position of two equal QD stable electronic configurations.
The origin of such particular occupation numbers can be
understood. One can form a GS with M = 15 out of two
single QD configurations with M+ = 3 and M = 12.
These two con6gurations match perfectly with each other
in the sense that the three magnetic Aux quanta of the
M = 12, i.e., the three quasiholes in the center of the
lower QD "recoinbine" with the three quasiparticles of
the M+ = 3 configuration of the upper QD. Of course,
one cannot label the electrons of diferent dots due to the
inherent particle indistinguishability so one must think in
terms of a linear combination of the above total config-
uration with the reversed one: quasiholes in the upper
dot and quasiparticles in the lower one. Thus, the origin
of the v = 1 &om the spatial interdot correlations
becomes clear.

V. CONCLUSIONS

In this work we have analyzed the correlated electronic
states appearing in double-quantum-dot systems. The

simplest case of two electrons was solved analytically.
By means of exact diagonalization of the full-interacting
Hamiltonian for up to six electrons, minimuxn-isospin
ground states were found to appear for short distances
between identical quantum dots, and to disappear as the
distance increased. Mean-field calculations revealed the
critical distances at which the interdot correlations were
significant, signaling the appearance of the minimum-
isospin ground states.
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