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The interaction Frohlich-like Hamiltonian between an electron and interface optical phonons in asym-
metric single and step quantum-well (QW) structures is obtained and studied. We observe that the
behaviors of electron —interface-phonon coupling functions as functions of wave number k have two
anomalies. The first is that, in an asymmetric single QW and general step QW, the interaction between
an electron and the lowest frequency interface mode is large in the vicinity of the Brillouin-zone center.
The second anomaly is that in step QW's the interaction between an electron and the fifth interface mode
has a maximum which relates to the inAection point in the dispersion (co5-k) plot. The physical origins
of these two anomalies have been analyzed. The electron —interface-phonon-scattering rates for in-

trasubband and intersubband transitions in asymmetric single and step QW structures are also calculated
and are given as functions of well width, step width, and step height. It is shown that the electron
scattering depends strongly on the potential parameters, and the usual selection rules for these transi-
tions break down in asymmetric heterostructures.

I. INTRODUCTION

It is well known that electron —interface-phonon in-
teraction and scattering are important in semiconductor
heterostructures such as quantum wires, quantum wells
(QW's), and superlattices. Electron —optical-phonon
scattering controls such phenomena as the cooling of op-
tically excited carriers on the picosecond time scale as
well as transport and optical properties at room tempera-
ture; thus reliable values for the scattering rates in realis-
tic structures are needed for quantitative studies of their
properties.

Recently, Lin, Chen, and George investigated the
optical-phonon modes, ' electron-phonon interaction, '

polaron states, and magnetopolaronic effect in QW's.
Their results have quantitatively demonstrated the im-
portance of the electron —interface-phonon interaction in
a QW structure. The electron —interface-phonon interac-
tion has been investigated in symmetric and asym-
metric single QW's. We have studied the interface (and
surface ) optical-phonon modes in four-layer (and finite
double ) heterostructures of polar crystals. The
electron —interface-phonon scattering has also been stud-
ied for symmetric single QW's, ' " symmetric mul-
tiheterointerface structures, ' and graded QW's of
Al Ga& As. However, to date there has been little
theoretical work on electron —interface-phonon scattering
in asymmetric heterostructures such as asymmetric single
and step QW structures which are of great practical im-
portance. Jain and Sarma' pointed out that the
electron —interface-phonon interaction and electron relax-

ation depend strongly on the potential parameters and
boundary conditions in heterostructures. Therefore the
study of the electron —interface-phonon interaction and
scattering in these practically important asymmetric het-
erostructures is necessary for the further investigation of
their properties. The purpose of this paper is to investi-
gate the interaction Frohlich-like Hamiltonian between
an electron and interface optical-phonon modes and the
electron —interface-phonon scattering in asymmetric sin-
gle and step QW structures by using the orthonormal
eigenmodes of interface optical-phonon modes given re-
cently in Ref. 9, denoted as paper I hereafter. The
present study may have significant consequences for de-
vice applications based on asymmetric layered structures
where the electron —interface-phonon interaction is an
important carrier relaxation mechanism.

This paper is organized as follows. In Sec. II, we out-
line the theory of the electron —interface-phonon interac-
tion and scattering. In Sec. III, we present and discuss
numerical results. Section IV gives a summary.

II. THEORY

A. Electron —interface-phonon interaction Hamiltonian

For the description of the electron —optical-phonon in-
teraction Hamiltonian we follow strictly the work of
Mori and Ando and Wendler. ' That is to say the
electron-phonon Frohlich-like Hamiltonian H, j, is ob-
tained by quantizing the interaction energy —e@(r) of an
electron at the position r with the electrostatic potential
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r (k,z)=
1/2

Ae

8A E0co (k)

X I dz'e "~' ' [i,sgn(z z')]—n*(k, z. '),

produced by the phonons. For the interface optical-
phonon modes given in paper I, the electron —interface-
phonon interaction Hamiltonian can be obtained as

H, ,„=gee "~r (k,z)[a (1)+e'(—k)],
m k

where the electron-phonon coupling function I (k, z)
(which describes the coupling strength of a single elec-
tron at position z with the mth optical phonon mode) is
given as follows:

I (k,z)=
1 /2

ilie 1

8 A c,0' (k) v'k (3a)

c.p is the absolute dielectric constant, the index
m ( =1,2, 3,4, 5,6) labels the six branches of interface
optical-phonon modes for a four-layer heterostructure
and m (=1,2, 3,4) for an asymmetric trilayer hetero-
structure, 01 (k) is the normal frequency of vibration ob-
tained by solving the dispersion relation Eqs. (12) or (31)
in paper I, and the step function is defined. as
sgn(z —z')=+1 for z )z' and sgn(z —z')= —1 for
z (z'. Substituting the eigenvector n.(k,z) expression
[Eq. (18)] in paper I into Eq. (2), we find the coupling
function I (k, z) for a four-layer heterostructure as fol-
lows:

where 2 is the cross-sectional area of the heterostructure, where f (k, z) is defined as follows:

—a &z&0
[g +g +g (

ka 1) (g+g )
—2kb] k

[(b, , b, )e "'+b, ]e—"'+ [5 —b, +6 —
( b, + b, )e "b]e"',

fm ~z) ~ [(g g )
—2ka+g g +g ]

—kz+[g (g+g )
—2kb] kz 0&

[(b,, 62)e "'+b—,4(e ""—1)+b.2 —b, ]e "', z ~ b .

(3b)

For the definitions of 6, b, l, 62, b, 3, b,4, b, &, and A, see paper I. By using Eqs. (17) and (23) in paper I and the formula

7l Goov(MLv ~Tv)

co 0)T (e0, e„—)[e (coL„—c0 ) (coT—co )]— (4)

for the interface modes, we finally obtain the following result:

~le 1(~L1 ~T1)2 2 2 2 2

~Tl(e01 coo 1 ) I coo 1[~L1 ~m ( ) ] [~T1 ~m (k) ] 1

e2 (~2 ~2 )2
[g2(1 e

—2ka) g2(1 e2ka)]
~T2(e02 eoo2) Ieoo2I ~L2 ~m( )] I ~T2 ~m(k)] I

2
(

2 2 )2

[g2(e 2kb 1) g2(e 2kb
1)]—

~'T3(e03 —e 3) I e.3I ~L3 —~'. (k) ]—[~'T3 —~'. (k) l]'
~ e04(~L4 ~T4)2 2 2 2 2

0 T4(e04 e 4) I e 4[~L4 ~ (k) ] [0iT4
(5)

where coL and coT are the Brillouin-zone-center frequencies of the LO and TO modes, v( =1,2, 3,4) is the material in-
dex, E'p is the static dielectric constant, and e is the high-frequency dielectric constant.

Let us now briefiy discuss the above results in two cases. When a = b =0 and r2 =r3 =0, from Eqs. (1), (3), and (5) we
can obtain the same result as in Table III of Ref. 5 for the single heterostructure model. Moreover, in the case of a =b,
r 1

= r4, and r2 =r3, from Eqs. (1), (3), and (5) we can obtain the same result as in Table IV of Ref. 5 for the double het-
erostructure (single QW) model. Thus the results obtained in the present study are more general than those in Ref. 5 by
Mori and Ando.

B.Electron subbands

Assuming the usual efFective-mass approximation for the conduction band, the envelope wave function for the elec-
tron in the ith conduction subband in a general step QW (shown in Fig. 1) is obtained from the solution of the
Schrodinger equation as follows:
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a„exp(k„z), z ~ —a
—a &z&0

exp( —k„,.z), z ~ b,

a2; sin(k, z)+a~; cos(k, z),
n~; exp(k„z)+a5; exp( —k„z), O~z ~b (6)

where k&;=[2m&(V& E;—)]' /R, k;=[2m E;]' /A', k„=[2m, (V, E;—)]'~ IA, and k„, =[2m„(V„E;)]—' /trt, withE,
being the ith electron energy level. The electron effective masses (potentials) in the four regions are m&(V&), m„(0),
m, ( V, ), and m„( V„), respectively, and a„;(n = 1,2, 3,4, 5) in Eq. (6) are defined as follows:

a„.=—y&~;a3; exp(kI;a ) l[yi~; cos(k~;a )+sin(k~;a )],
az; —=a3;[cos(k;a ) —y&; sin(k;a)]/[y&; cos(k;a )+sin(k;a )],
a3; =—[cosh(k„b) +y,„; sinh( k„.b ) ] exp( k„;b )—,
az ——(1 —y,„;) exp[ —(k„.+k„;)b]/2,

a„=(1+y,„;)exp[(k„—k„, )b]/2,

where y&;=k;m&/k&;m and y,„;=k„;m,/k„m„. The subband energy equation in a general step QW is obtained as
follows:

[cos(k;a )
—y, ; sin(k, .a )][cosh(k„b)+y,„; sinh(k„b)]

+y „[sinh(k„b)+y, „;cosh(k„.b)][y&; cos(k;a)+sin(k;a)]=0, (8)
where y „=k„m /k„;m, .

The constant B, in Eq. (6) .can be determined by the normalization condition as follows:

B; =1/(D . +D )'

where

D„=~a&; ~
exp( —2k& a)/2k&, +a( a2;~ + ~a3; ~ )/2+(~a3; ~

—
~a2; ) sin(2k;a)/4k;

and

+ [cos(2k„;a)—1]Re(az; a3; ) /2k; +exp( —2k„,.b) /2k„.

( ~a~; ~

—~a4; ~
)/2k„+ [~a4; ~

exp(2k„.b) —
~a5; ~

exp( —2k„b)]/2k„+2b Re(a~;a5; ), for k„real,
((a~;) +[a5;[ )b+Re(a~;a5;) sin(2(k„(b)/[k„( —Im(a4, a5,. )[cos(2[k„)b)—1]/(k„( for k„ imaginary .

(10a)

(lob)

Here Re and Im denote real and imaginary parts, respectively.

C. Electron —interface-phonon scattering

In this subsection, as an application of the interaction Hamiltonian given in Sec. II A we consider a one-phonon pro-
cess. The electron —interface-phonon-scattering rates in a four-layer heterostructure can be obtained from the usual Fer-
mi golden rule

fd&,&[E, s, +&~—(k)]l &k/IH, „hll k &I'

2

g Jd'k „IF (k)l'5[E, —eI+Rro (k)](x,„+-,'+ —,')6, „~~,
16mEo co k k f m ph 2 2 kk&Wk &

where N„h is the interface-phonon occupation number,
the upper sign is for phonon absorption, and the lower is
for emission. F (k) is the overlap integration defined as

Vl

V,

V„

F (k) = I PI(z)f (k, z)g;(z)dz, (12)

where f (k, z) is given in Eq. (3b) and g,. and gI are the
electron envelope subband wave functions in the initial
and final states, respectively. The total electron energy c.

is written as the sum of parallel and transverse com-
ponents:

O b

FIG. 1. Cxeornetry of a general step QW structure. Here V„
Vi, and V„respectively, denote the step height, the left barrier
height, and the right barrier height; a is the well width; and b

the step width.
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Ak, +E,
2m

(13)

where k, is the electron wave vector in the xy plane
parallel to the interface. E can be obtained by solving the
subband energy equation (8).

For intrasubband scattering within the first subband,
we consider the scattering rate W" " for phonon emis-
sion. Assuming that the electron energy is just enough to
emit one interface phonon, from Eq. (11)we can obtain

where k» satisfies

d COm

k» —A k»
m

X(N h+1), (14)

k „fico —( k „)=0 . (15)

For the intersubband transition between the first and
second subbands, we still consider the scattering rate
JF' " for phonon emission. Assuming that the electron
is initially at the bottom of the second subband, we have

g2 d COmX,k2)+Am* dk

where k2, satisfies

X(N h+1), (16)

Ak
, +A'co (ki, )

—(E2 —E, )=0, (17)

and (E2 E&) is the en—ergy diff'erence between the first
and second subbands.

III. NUMERICAL RESULTS AND DISCUSSION

In order to see more clearly the behaviors of the
electron —interface-phonon interaction and scattering in
asymmetric QW structures, we have calculated the cou-
pling function I (k, z) and scattering rates in
GaAs/Al Ga, „As QW structures. The parameters used

in our calculations are as follows. The potential height of
Al Ga, „As is determined by V(x ) =0.6(1266x
+260x ) meV. ' The corresponding electron effective
mass is given by m, =(0.0665+0.0835x )m o,

'

where mo is the free-electron mass. The dielectric con-
stants @0=13.18—3.12x and e =10.89—2.73x. ' The
bulk phonon energies' %co„o(x) =36.25 —6.55x + 1.79x
meV and A'coTo(x)=33. 29 —0.64x —1.16x meV (GaAs
type). For an investigation of the

~
I (k, z)

~

—k relation in
symmetric and asymmetric single QW's, commonly used
step QW's, and general step QW's, we have chosen four
typical examples with structure parameters shown in
Table I.

Figure 2 shows the I (k,z) —z relation for sample 4,
where (a) is for the three lower-frequency modes 1, 2, and
3, and (b) is for the three higher-frequency modes 4, 5,
and 6. The plots indicate that the electron interaction
with modes 2 and 5 ]denoted as e-p(2) and e-p(5), re-
spectively] are mainly localized in the vicinity of the left
interface (at z = —100 A); the e-p (3) and e-p (6) peaks at
the middle interface (z =0); and the e-p(1) and e-p(4)
peaks at the right interface (z =50 A). Moreover, from
Fig. 2 and numerical results for other layered structures,
we can conclude that the higher-frequency modes are
much more important for the electron-phonon interac-
tion than the lower-frequency modes. Paper I indicates
that, in the long-wavelength limit, the frequency magni-
tudes of all the higher-frequency modes are greater than
or equal to coLo(0) and those of all the lower-frequency
modes are greater than or equal to coTo(0) and less than
coLo(0). For simplicity, we denote hereafter the higher-
frequency modes as interface LO modes, and the lower-
frequency modes as interface TO modes.

Figure 3 shows the absolute values ~I (k, z)
~

as func-
tions of k for samples 1 and 2 in Figs. 3(a) and 3(b), re-
spectively. We can see that the behavior of the

~
I (k, z)

~

—k relation for interface modes 2, 3, and 4 in the
symmetric single QW is analogous to that in the asym-
metric one. However, the behavior of the

~
I (k, z)

~

—k re-
lation for the first interface mode has an obvious
difference in the symmetric and asymmetric QW's. In
comparison with the negligibly small interaction between
the electron and the first interface mode in the symmetric
single QW, as shown in Fig. 3(a), the e-p (1) interaction is
quite large in the vicinity of the Brillouin-zone center in
the asymmetric single QW as shown in Fig. 3(b). This
anomalous behavior can be related to the previously men-
tioned (in paper I) frequency-forbidden phenomenon in
asymmetric layered structures. In a symmetric single
QW, the long-wavelength limit of the first interface mode

Sample number

TABLE I. Sample parameters.

Structure

Alo. 35Gao. 65AS/GaAs/Alo. 3sGao. 6sAs
Alo 35Gao. 6sAs/GaAs/Alo. 4Gao. 6As
Alo. 35Gao. 65As/GaAs/A10. 2Gao. 8AS/Alo. 356ao. 65As
Alo. 35Gao. 65As/GaAs/Alo. 2Gao. 8As/Alo 4Gao. 6As

Well width
(A)

100
100
100
100

Step width
(A)

0
0

50
50
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is equal to the bulk TO mode of the side (barrier) materi-
al. It is well known that the electron does not couple to
TO-phonon modes of p polarization because the TO
modes are not accompanied by the appearance of surface
or bulk polarization charges. ' Hence the e-p (1) interac-
tion is extremely small in a symmetric single QW, and
this behavior has been quantitatively shown in Fig. 3(a). '

In an asymmetric single QW (e.g., sample 2), on the other
hand, the long-wavelength limit of the first interface
mode is a frequency co [see Eqs. (30b) and (32) of paper
I] which is not the TO frequency of the barrier material
(Ala. 3soao. 6sAs or Alo. &Gao. 6As in our sainple) (and thus
called the forbidden frequency of the side materials). The
interface mode with the long-wavelength frequency co

may cause a polarization in media and hence the e-p (1)
interaction in an asymmetric single QW can be much
stronger than that in a symmetric single QW, as shown in
Fig. 3. Incidentally, it is well known that the dispersion
relation for the interface modes in a single heterostruc-
ture is e, (co)+ez(co) =0 [see Eq. (2.10) of Ref. 5], its solu-
tions are co+ which are similar to Eq. (30b) of paper I.
Moreover, the results of Table III in Ref. 5 clearly show
that the interaction between an electron and the interface

Ol
0.1

o~
-0.$

-0.3

w3

-300 -200 -1 00
I

0

z(A)

300

FIG. 2. Spatial dependence of the electron —interface-phonon
coupling function I ( k, z) divided by {Ae /A c~) ' for a general
step QW Alp 35Gao 65As/GaAs/Ala 2Gao, As/Ala 4Gap 6AS

(GaAs type) with 100-A GaAs and 50 A Alo2Ga08As, and
k =0.02 A . Here and in Figs. 3—8, the numbers by the
curves represent the interface phonon frequency in order of in-

creasing magnitude (a) for the three lower-frequency modes; and
(b) for the three higher-frequency modes.

E
0 +

o
O.OO 1.75 3.50

~a I I I a I0
0 5 2 3 4 5

FIG. 3. Absolute values ~1 (k, z)~ divided by (Pie /Aeo)' as
functions of k, (a) for an A1035Ga06&As/GaAs/A1035Gao 65As
symmetric QW and (b) for an Alo 35Gao 65As/GaAs/
Alo 4Gao 6As asymmetric single QW. Here well width a = 100 A
for both QW's.

modes with frequencies m+ is important. Thus the
frequency-forbidden behavior and its significant inhuence
to the electron —interface-phonon interaction may be a
common phenomenon for asymmetric heterostructures.

The ~I (k, z) ~-k relation for samples 3 and 4 are shown
in Figs. 4(a) and 4(b), respectively. We can see that the
interaction between an electron and interface modes 2, 3,
4, 5, and 6 in the commonly used step QW is analogous
to that of the general step QW. However, in the vicinity
of the Brillouin-zone center, the e-p (1) interaction of the
general step QW (sample 4) is much stronger than that in
the commonly used step QW (sample 3). The physical ori-
gin of this anomaly is similar to that for the asymmetric
single QW mentioned above. That is, since the long-
wavelength limit of the first interface mode is a frequency
co diff'erent from the TO frequencies of the side materi-
als (Alo 35Gao 65As and Alc 46a06As), it can produce a
polarization and a large interaction with the electron.

Figures 4(a) and 4(b) also show that the interaction be-
tween an electron and the fifth interface mode has a max-
imum at k(a +b)= 0 9. In ord'er .to clarify the physical
origin of this anomalous behavior in the ~I (k, z) ~-k rela-
tion, we have carefully analyzed the corresponding
dispersion plots (A@5-k) for the fifth interface mode (these
plots are similar to the fifth branch of Fig. 3 in paper I)
and have found that the co~-k plots for the two step QW's
have an inflection point located at k (a +b) =0 9 That is, '. .
the maximal point of the ~I (k,z)~-k plots exactly corre-
sponds to the inAection point in the dispersion relation.
We have also noted that the inQection does not exist in
the dispersion (co —k) plots for the interface modes other
than the fifth mode (i.e., j%5). Thus we can conclude
that the inflection of the dispersion relation significantly
strengthens the electron —interface-phonon interaction.
The appearance of the inAection in the co5 —k relation
and its intimate relation to the polarization eff'ect can be
explained as follows. The I (k, z) —z plots in Figs. 2(a)
and 2(b) suggest that the polarization eff'ect of interface
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1 is zero. These usual selection rules will break down if
the QW potential has any asymmetry, ' since in this case
phonon mode 1 and the 6rst subband electronic state
g, (z) are not strictly symmetric, and mode 2 and the
second subband state $2(z) are not strictly antisymmetric.
Thus the intrasubband (1~1) scattering for phonon
mode 2 and the intersubband (2~1) scattering for mode
1 are not completely forbidden. However, if the asym-
metry of the QW potential is not serious, mode 1 (2) can
still dominate in the (1~1) intrasubband [(2~1) inter-
subband] transition. For example, if we measure the
asymmetry degree of the QW Alp 35Gap &5As/GaAs/
Alp 4Gap 6AS to be approximately

~
V„—V& ~

/ V„=0. 1, we
can estimate that the contribution of mode 2 (1) to the
(1~1) intrasubband [(2~1) intersubband] scattering
should be one order of magnitude smaller than that of the
dominant mode 1 (2). This rough estimate is in semiquan-
titative agreement with the corresponding exactly calcu-
lated results shown in Figs. 5(a) and 5(b).

Figure 5(b) also shows that the total intersubband
scattering rate for the asymmetric QW's (solid curve W, )

deviates from that for the symmetric QW's (dashed
curve) even at large well widths. This is mainly due to the
fact that asymmetric and symmetric QW's (with the same
well width) have diff'erent values of the overlap integra-
tion [Eq. (12)].

Figure 6 shows the scattering rates as functions of

0.0
0.01 0.07 0.1 3 0.1 9 045

X3
FIG. 8. Intrasubband (a) and intersubband (b) scattering

rates as functions of x 3 for Alo 35Gao 6,As/GaAs/
Al„Ga, As/Alp 4Gap 6As step QW's with well width a =50

3 3

A and step width b =50 A.

0.0—
20 80 120

FIG. 7. Intrasubband (a) and intersubband (b) scattering
rates as functions of step width b for
Alp 35Gap 6,As/GaAs/Alp, Gap 9As/Alp 4Gap 6As step QW's
with we11 width a =50 A.

well width a for Alp 55Gap s5As/GaAS/Alp i Gap 9As/
Alp &Gap 6As step QW's, where the step width b is fixed at
50 A. %'e can see again that the usual selection rules
break down in these asymmetric heterostructures. More-
over, in the case when the second subband energy level
crosses the step height, i.e., E2( = V, ) =77.52 meV (corre-
sponding to a = 120 A), the scattering rates have no obvi-
ous changes. From Eqs. (6), (7), (9), (10), (12), and (17) we
can see that k2i and I' (k2, ) are continuous functions of
E, and E2, hence the scattering rates 8" "have no ob-
vious changes in the case that E2 crosses the step height.

Figure 7 shows the scattering rates as functions of step
width b for Alp 35Gap $5As/GaAs/Alp, Gap 9As/
Alp 4Gap &As step QW's, where the well width a is fixed at

0
50 A. Figure 7(a) indicates that the intrasubband scatter-
ing rate 8; is an insensitive function of step width, while
Fig. 7(b) shows that the intersubband scattering rate W,
is a complicated function of b.

Figure 8 shows the scattering rates as a function of the
Al mole fraction x 3 for Alo 35Gao 65As/GaAs/
Al Ga i „As/Alp 4Gap 6As step QW's, where well"3 3

width a =50 A and step width b =50 A. We can see that
the intrasubband scattering rate 8, is an insensitive func-
tion of x3, while the intersubband scattering rate 8; is a
complicated function of x 3.

We have also calculated the scattering rates for com-
monly used step QW's. The situations are similar to
those of general step QW's shown in Figs. 6—8.
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IV. SUMMARY

In this paper the interaction Frohlich-like Hamiltonian
between an electron and interface optical phonons and
the electron —interface-phonon-scattering rates in asym-
metric single and step QW structures have been given.
The main results obtained in the present paper are as fol-
lows.

(1) The interface LO modes are in general more impor-
tant than the interface TO modes for the electron-phonon
interaction and scattering in heterostructures.

(2) The electron —interface-phonon coupling strength as
a function of wave number k has two anomalies. One is
that, in asymmetric single QW's and general step QW's,
the electron interaction with the lowest frequency inter-
face mode is large in the vicinity of the Brillouin-zone
center, and this anomaly indicates that the forbidden fre-
quency mode (see paper I) may cause an obvious polariza-
tion and interaction with an electron. The second anom-
aly is that in step QW's the electron interaction with the
fifth interface mode has a maximum relating to the
inAection point of the co&-k relation, and this fact suggests
that the existence of the inAection in the dispersion rela-
tion significantly strengthens the corresponding electron-
phonon interaction.

(3) The electron scattering depends strongly on the po-

tential parameters, and the usual selection rules for the
intrasubband and intersubband transitions break down in
asymmetric QW structures, in accordance with the
opinion of Jain and Sarma. '

(4) In a step QW structure, the total intrasubband
scattering rate is an insensitive function of step height
and step width, while the intersubband scattering rate is a
complicated function of step height and step width.

(5) The scattering rates are continuous functions of the
electron subband energy E. In particular, they have no
obvious changes when E crosses the step height.

We expect that the results obtained in this paper may
motivate further experimental and theoretical studies of
the electron-phonon interaction and carrier relaxation
mechanism in asymmetric QW structures such as asym-
metric single and step QW's, which are of great practical
importance.
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