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Size efFects in optical second-harmonic generation by metallic nanocrystals
and semiconductor quantum dots: The role of quantum chaotic dynamics
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Second-harmonic generation in small metallic nanocrystals and semiconductor quantum dots is stud-
ied both experimentally and theoretically. The enhancement of the nonlinear optical response with the

0
decrease of the particle radius from 100 to about 10 A has been experimentally observed. The theoreti-
cal description based on the model of chaotic motion of noninteracting electrons in the particles agrees
satisfactorily with the experimenta1 data.

I. INTRODUCTION

The unique physical properties of metallic nanocrystals
(MN) and semiconductor quantum dots (QD) have been
attracting researchers attention for the past few years.
The primary concern is with the experimental observa-
tion and proper understanding of various quantum size
effects in these quasi-zero-dimensional systems which
can be used as nanometer-size structural components in
composite materials and ultrafast optoelectronic devices
(such as switches, memory cells, etc.).

The spatial confinement of electrons in QD and MN
strongly affects both the linear and nonlinear optical
properties of the systems. The enhancement of the opti-
cal nonlinearity of QD (in comparison with that of the
bulk semiconductor) is predicted in Ref. 2 for the case
when the size quantization of the exciton motion is taken
into account. For semiconductor microcrystallites em-
bedded in glass matrices various nonlinear optical effects
described by third-order susceptibility have been studied
experimentally: degenerate four-wave mixing, nonlinear
absorption, and encoded second-harmonic generation.
It should be noted that up to the present time the third-
order (cubic) optical nonlinearity of QD has been studied
to a much greater extent than the second-order (quadra-
tic) one. Experimentalists preferred the cubic efFects be-
cause the quadratic effects, such as reflected second-
harmonic (SH) generation, appeared to be negligibly
small in macroscopic arrays of QD and MN considered
(at the macroscopic level) as centrosymmetric media.
The measurements of size dependence of rejected SH
generation in metal and semiconductor nanostructures
were reported in Ref. 6.

The theoretical study of the nonlinear optical response
of small particles demands the departure from the stan-
dard solid-state theory of the bulk materials. Since the
noticeable fraction of atoms in a small particle belongs to
its surface, the infIuence of the particle shape becomes
very important. In many theoretical models for optical
response of small particles (MN and QD) the particle
shape is supposed to be centrosymmetric, most often
spherical. However, in a more realistic approach to
studying quadratic optical effects in nanometer-size parti-

cles the fluctuations of the particle shape should be taken
into account. These fiuctuations (being the generic
feature of mesoscopic systems) cannot be ignored for at
least two reasons. First, the quadratic susceptibility of a
centrosymmetric system is equal to zero in the dipole ap-
proximation. Therefore, one may expect that even small
shape distortions breaking the inversion symmetry of the
particles lead to a noticeable enhancement of second-
order optical response due to the appearance of nonzero
dipole quadratic susceptibility. Second, the deviations
from the exact symmetry may demolish the integrability
of the electron motion. Then the electron in a small par-
ticle should be described by a model of a quantum chaot-
ic system. Its energy spectrum, wave functions of sta-
tionary states, and matrix elements of dynamical vari-
ables become random quantities that should be described
statistically. ' It is worth noting that in such a case one
has to deal with two basically distinct sources of irregu-
larity of physical quantities. The first one is the mesos-
copic nature of the system revealing itself in fluctuations
of the particle shape and other parameters characterizing
the system. The second source is the stochasticity of the
electron dynamics that occurs for any given particle
shape that demolishes the integrability of the electron
motion.

This approach has its history. The model of the com-
pletely random Hamiltonian that belongs to the Gaussian
ensemble was applied to the electrons in small metallic
particles by Gor'kov and Eliashberg. ' Much later, along
with the development of the classical theory of the chaot-
ic dynamics, the applicability of such a model has been
connected to the measure of the stochastic component of
the energy surface of the classical counterpart of the sys-
tem. "' Although this connection has been derived from
the analysis of the two-dimensional systems (billiards and
nonlinear oscillators), its relevance to the three-
dimensional case is universally accepted. However, to
our knowledge, no systematic study of the nonlinear opti-
cal properties of MN and QD in terms of quantum chaot-
ic dynamics has been carried out previously and no prop-
er model for the calculation of the quadratic susceptibili-
ty has been established.

In this paper the dependence of quadratic optical
response of MN and QD on the mean particle size is in-
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vestigated both experimentally and theoretically. In our
experimental studies the rejected SH generation tech-
nique is used. In the theoretical interpretation of the ob-
served size eFects special emphasis is put on the role of
stochasticity of the electron motion. In the model pro-
posed for the calculation of the response of small parti-
cles we use two basic concepts. First, we consider the en-
ergy intervals and the matrix elements of the model to be
random quantities with the statistical properties taken
from the theory of strongly chaotic quantum systems.
Second, to evaluate the coarse-grained behavior of these
variables smoothed over energy intervals that contain
many energy levels of the system, we use the correspon-
dence principle. For example, we replace the average
square of the matrix element of a dynamic variable by the
properly scaled spectral density of its classical analog. '

The size dependence of the quadratic susceptibility in the
chaotic model is compared with those obtained in the al-
ternative approach based on the regular model.

II. EXPERIMENT

A. M(e,tallie nanocrystallites

The size dependence of the surface-enhanced second-
harmonic generation was studied in the silver island films
(IF) with the ultrasmall particles. The samples of IF were
prepared by evaporation of all components in an ul-
trahigh vacuum chamber with residual pressure about
10 Torr. The surface of the sodium chloride mono-
crystals covered with a thin film of silicon monoxide
(SiO ) was used as a substrate for IF. While in the vacu-
um chamber before the deposition the sodium chloride
crystals were heated to 700 K to clear their surface. The
silicon monoxide layers 50 nm thick were deposited at a
rate of 0.2 nm s '. Silver was evaporated on the SiO
layer by a calibrated source with the same rate of 0.2 nm
s '. After the silver nanocrystallite deposition the island
films were again covered with an amorphous SiO„layer
50 nm thick to protect the metal nanocrystallites from
environment.

After the complete evaporating proced. ure the initial
substrates were cleaved into samples for nonlinear optical
experiments and transmitting electron microscopy. The
typical structure of silver island films is shown in Fig. 1.
Using a JEM 100 C transmitting electron microscope we
determined the following parameters of the films: the
average particle radius A ranged from 1 to 10 nm, mass
thickness d ranged from 0.1 to 3.4 nm, and filling factor
q ranged from 0.07 to 0.4. The characteristic particle ra-
dius was found by taking an average over several hundred
islands. The histograms of the corresponding distribu-
tion functions are presented in Fig. 2.

The island films were irradiated by a Q-switched
YAG:Nd + (yttrium aluminum garnet) laser (pulse dura-
tion 1S ns, repetition rate 12.S Hz). The incident TEMoo
radiation with wavelength A, =1064 nm was p polarized.
The SH intensity measurements were carried out at the
value of the pump intensity I -0.5 MW/cm . No sam-
ple damage has been observed for this intensity. The SH
radiation was marked out by a double monochromator,

FIG. 1. Typical structure of a silver island film as observed in
transmitting electron microscope. The bar is 20 nm long.
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FIG. 2. Histograms n(R) of the size distribution functions
(relative number of particles with the average radius R) for two
samples (a) and (b) of silver island films. o.R is the standard de-
viation of the particle radius.
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FIG. 3. The SH enhancement factor 6 as a function of the
average radius R of silver particles (R is measured in nanome-
ters). The arrows indicate the peculiarities of the experimental
size dependence.

and its intensity I was detected by photomultiplier and
conventional gated electronics. The calibration of the
electronic detection system was performed with the help
of reflected SH generation at the surface of the bulk silver
sample. For this material a value of I2 /I = 1.4X 10
cgs units is well known. '

The film samples differed in the average island radius R
as well as in the surface concentration of islands n' g', so
that the filling factor q

g' =wn g R varied from sample
to sample. It should be emphasized in this connection
that the measured value of the SH intensity I2 cannot
characterize explicitly the size effect in the quadratic op-
tical response of the islands since in our experiments I2
varied as a function of two arguments, R and q' s' (or R
and n' '). For that reason, in order to select the pure
size effect, the measured values of the SH signal were nor-
malized in accordance with the procedure described in
Sec. II C. The corresponding dependence is shown in
Fig. 3.

B. Semiconductor quantum dots

In the present experiments the rejected SH was gen-
erated upon the reflection of a YAG'. Nd + laser beam
with wavelength of 1064 nm from the surface of a com-
posite material consisting of CdSe nanocrystals embedded
in a glass matrix. Other details of the SH measurements
are described in Sec. II A.

The investigated sample of semiconductor-doped glass
was prepared by a method of secondary heat treatment. '

The cadmium selenide concentration was about 0.5%%uo of
volume fraction and uniform over the bulk of the glass
bar. The average size of the nanocrystals varied from 50
to 5 nm for various parts of the glass bar because of the
special secondary heat procedure. The monotonous char-
acter of the average size variation along the sample was
monitored by the spectral shift of the absorption band

0.7 1.4 1.7

log R (R (nm))

FIG. 4. The SH enhancement factor G as a function of the
average radius R of CdSe crystallites (R is measured in nanome-
ters). The inset shows the SH intensity I2„(inarbitrary units)
measured as a function of R.

edge.
Thus for the sam le studied the filling factor

q
c ' =(4m/3)n ds'R (where n c s' is the volume

concentration of CdSe crystallites) was constant due to
the preparation technique. This allowed us, in contrast
with the case of silver island films, to treat the measured
SH intensity as a function of a single variable R (see the
inset in Fig. 4). The experimental data, normalized as de-
scribed in Sec. II C, are shown in the main panel of Fig.
4

C. Handling of the experimental data

In our experiments the SH radiation was generated
upon reAection of laser light from a macroscopic disor-
dered two- (silver island film) or three-dimensional (CdSe
crystallites in a glass matrix) array of particles. To select
the pure size effect in the quadratic optical response of
the particles one needs to obtain an expression relating
the measured value of the SH intensity with the effective
second-order susceptibility of a single particle y2—=a2/V
(where a2 and V are the quadratic polarization and
volume of the particle, respectively). The particles may
be treated as pointlike dipoles oscillating at SH frequency
since the parameters of the systems under study satisfy
the inequalities

R «l «A,„,
where R is the average particle size, l the average dis-
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tance between neighboring particles, and A,
„

the pump
wavelength. For silver islands +l '-n'A ' ', for CdSe
i y Sta11iteS P CdSe ) n ( CdSe ) —) / 3 Wh ere n ( Ag )

( n ( CdSe )
) iS

the surface (volume) concentration of the particles. The
detected SH radiation from both metal and semiconduc-
tor particles was diffuse and depolarized, thus substan-
tiating the fluctuational nature of the nonlinear optical
sources:

(2)

where the overbar denotes averaging over the ensemble of
particles. Taking into account the inequalities (1) and (2)
one can write for the measured intensity of the diffuse SH
component generated by a disordered array of particles
the relation

I(exp)(R )

I„nV lI(2', q(A. g))L2(d), q) ~
(4)

In order to express the denominator in the right-hand
side of Eq. (4) as a known function of the measured pa-
rameters R, q, we have used the following additional ap-
proximations.

(i) The particle shape distortions are supposed to be
sufficiently small to neglect their influence on L (2rd, q)
and V [therefore V=(4vr/3)R ]. At the same time these
distortions are of key importance for the calculation of
ly2l —see Sec. III.

(ii) The linear-optical response of the particle is de-
scribed with the local (bulk) dielectric constant: It is as-
sumed that the size-dependent nonlocal effects are negli-
gible within the available size ranges ( 1 nm ~ R
~ 10 nm, 5 nm ~R ' '~ 50 nm).

(iii) The values of L( o, q)twas calculated using the ex-
pression obtained in Ref. 15 within the framework of a
simple effective-medium approximation.

Finally, the enhancement factor describing the size
dependence of the quadratic optical response was defined
as follows:

G(R )
—I(norm)(R )/I(norm)(R ) (5)

The experimental dependence G(R ) is shown in Fig. 3

I2'" ' nV lL(2co, q)L (co, q)l ly2(rd) I
Here n =n' ', n' ', Vis the average particle volume,
I is the pump intensity, and L(co) and L(2 r)dare the lo-
cal field factors describing average local field corrections
due to the linear response of particles at the pump and
the second-harmonic frequency, respectively (it is as-
sumed that the fluctuations of the local field factor and
the particle volume are negligibly small in contrast to
those of the quadratic susceptibility). The local field fac-
tor depends on the local environment of particles and, as
a result, turns to be a function of the filling factor

(Ag) (CdSe)
)

Thus the dependence yz(R ) is determined by the nor-
malized SH intensity:

for silver islands and in Fig. 4 for CdSe crystallites. One
can see that the enhancement of the quadratic response
upon decrease in the particle size amounts to 6 orders of
magnitude for metal particles and 5 orders of semicon-
ductor ones.

III. THEORY

A. The model

We shall treat a particle as a system of noninteracting
electrons confined by the impenetrable boundary surface
of nearly spherical form with average radius R. Later
this surface will be called a (three-dimensional) billiard.
The electrons' interaction with the crystal lattice will be
taken into account by the dispersion law borrowed from
the bulk material.

Since the intraband transitions are taken into account
in the metallic particles and interband optical transitions
in the semiconductor particles with two different energy
bands, the electron mass m should be considered as the
effective mass m, z for both types of particles. For the
metallic particle m, z is the mass of conduction electron
and for every energy band in the semiconductor m, z has
a specific value.

Because of the irregularity of the billiard form the clas-
sical motion of electrons, elastically reflecting from the
boundary, will be considered as completely ergodic on
the energy surface. The quantum properties of the elec-
tronic states accordingly will be imported from the ran-
dom matrix theory.

Let E„bethe energy eigenvalue and A,
„

the typical
length of the space volume available to an electron with
energy E„.The system can be considered quasiclassical if
the inequality

(6)

holds; for the billiards A.„=R.
For metallic particles m can be identified with the elec-

tron rest mass m„and the value E„canbe estimated by
the Fermi energy EF. For the semiconductor particles
one can take the value E„ from the range
0 &E„»2%co —E where Ace is the energy of the radiation
quantum and Eg is the width of the energy gap.

Inserting numerical values in (6), one can see that our
model appears to be always quasiclassical for the metallic
case ((„=10 ) and can be quasiclassical for the semi-
conductor case (10 &g„(1).That justifies the appeal
to the correspondence principle in the following.

B. The quadratic susceptibility

By analogy with the linear susceptibility, one can as-
sume that the effective quadratic susceptibility of the
electron in the external static potential is the full dipole
moment of the particle divided by the volume.

The quantum expression for the typical component
y2

——y " (2ro) of the tensor of effective quadratic suscepti-
bility of the electron to the electric field with the frequen-
cy co in the dipole approximation has the form'
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X2 g g(1)g(2)
n n n

where

b,„"=(co„2'i5) = (n—coo+—b,"— i5), —

b'„'=(cok„(oi5—)=(—ncoo+—b, ( ' i5), —

(8)

and 3„is the following combination of matrix elements:

An g XnmXmkXkn
mk

(10)

e 3 +nm +mk+kn

2A' „mk (~mn —2' i 5mn )(cokn —cg i—5k„)
Here n, m, k are indices of the eigenstates of electrons be-
longing to the discrete energy spectrum, x; is the matrix
element of the Cartesian coordinate between the states,
co," is the frequency of the corresponding transition, and
6; is the relaxation parameter. The summing over a11

electrons within the particle billiard can be replaced by
the summation over the states n of individual electrons in
(7). Matrix elements in (7) have properties which are gen-
eric for the matrix elements of dynamical variables in the
quantum chaotic system. ' On the energy scale
[p(E„)] ' «b,E «E„,where p(E„)is the averaged den-
sity of energy levels, matrix elements behave as statisti-
cally independent random variables. The probability dis-
tribution of the off-diagonal elements x; is Gaussian with
a zero mean. Therefore, nonlinear susceptibility of the
chaotic system g2 should be treated as a statistical quanti-
ty.

The rigorous statistical analysis of the quadratic sus-
ceptibility is beyond the means of existing theory. We
shall simplify the problem by the assumption that the
fluctuations of the denominator of expression (7) are
negligible due to the repulsion of levels in the energy
spectrum of the chaotic system. ' That allows us to con-
sider the level sequence as a nearly equidistant one and
the denominator as a regular quantity. We use
E„—=Ace„=An coo where Acoo is the average energy
difference between the levels ficta=[p(E„)] '. Then we
have

The differences 6'" and 6' ' are proportional to the
level-spacing values: 6"" =coo. Relaxation constants
in Eq. (9) are taken to be equal: 5 „=5k„—=5. Then only
statistical Quctuations of 3„,the numerator of expression
(8), should be considered. Statistical properties of x;J. im-

ply that & A„&=0. Here and below, the angular brackets
denote averaging over the spectral interval AE which
contains the large number of energy levels.

The quantities observed in the experiment, such as the
intensity of the rejected light, are determined by the
averaged squared value o.r of g2 given by Eq. (8). Be-
cause of the Gaussian statistics of the matrix elements x,.
it can be expressed by two-point correlation function of

& I
A„l'&

X 2 + (g(1))2(g(2))2

We can omit the second sum in (11) on the following
grounds. The two-point correlator of the matrix ele-
ments of the adjacent pairs of levels in the quasiclassical
limit can be replaced by the correlator of the Fourier am-
plitudes of the corresponding classical dynamical vari-
ables:

&X„„X„+J„+J& lg ()
=—&x(co)x(co ) & (12)

Since the classical stochastic motion in a billiard is a sta-
tionary random process, the Fourier components of the
Cartesian coordinate x are 6 correlated

&x(co)x((o') & —=S(co)5(co+co'),

where S(co) is the spectral density of the coordinate. Be-
cause of that the two-point correlations such as
& l A„A„+& are negligible and the second sum in (11)
effectively vanishes.

Thus we obtain the estimate of the typical nonlinear
susceptibility in our model

'&& lx kl'&& lxk„l'&

21)1 „k[(co „—co) +5 ][(cok„—2') +5 ]

1 /2

(14)

This quantity can be evaluated in the quasiclassical
limit from the correspondence rule'

nearly circular two-dimensional billiards. ' The approxi-
mate expression for S(co)„which has a typical error of
about 10%, in this case has the form

&lx;, l'&l~ o—=
2

(15)
6

where S(co) is the spectral density of the classical coordi-
nate; co;~ = lE, EJ l/A'; E—:(E;+E& )/2. —.

Assuming the particle shape to be almost spherical we
can use for the spectral density in our model the expres-
sion found in the theory of the stochastic motion in the

S(co)=S„(co)=20R 0 for co) 2Q,

and S(co)=0 for co&20. The characteristic frequency
Q =U/2R, where U is the electron velocity.

The density of levels p(E) for the metallic particles can
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be calculated straightforwardly:

y 3/2E 1/2

pM (E)= (17)

p,(E)=,Jti(E (p) —E (p) —2%co)dp,
2V

(2vrh)'
(18)

where Ec(p) and Ei (p) are the dispersion laws for con-
duction and valence bands, respectively, and the reduced
mass of electron

mcm~m„=
mc+mv

(18')

where mc and mz are the effective masses for the con-
duction and valence bands correspondingly.

where V=4m.R /3 is the volume of a billiard. The elec-
tron in the semiconductor particle can be described as the
effective metallic system by the use of the combined level
density:

X~ =Y)X (20)

where x is the typical matrix element between the states
with "nearly opposite" parities that are given by the
quasiclassical asymptotic (15) and rI is a dimensionless
parameter which describes the degree of deviation of the
particle form from the central symmetry.

Let the surface of the particle be described by the equa-
tion r =R(8,@) where 8 and q& are the spherical angles.
We assume that the shape function R(B,y) has random
values with the uniform distribution in (B,y). Then the
average deviation from the spherical form is

proximating the particle form.
If the asymmetry of particle is small, we can expect the

absolute values of P„to be close to unity: ~P„~=1. The
sign of P„then can serve for the classification of states as
"nearly odd" and "nearly even. " The matrix element x, .

between the states with a "nearly same" parity may differ
from zero. We sha11 make the simplest assumption that
the values of such matrix elements can be estimated as

C. The symmetry violation

P„=JV„(r)ql„(—r)dr, (19)

where %„(r)is the wave function of the state
~
n ) in the

coordinate representation. The origin of the coordinate
system in (19) is chosen at the center of the sphere ap-

In the centrosymmetric system the matrix element of
the coordinate x;J between the states ~i ) and

~ j ) of the
same parity is identically zero, according to the parity
selection rule. At least one such element enters in every
term of the sum (7); that makes the quadratic susceptibili-
ty of spherically symmetric particles vanish: y2—=0. The
shape of the small particles with a weakly deformed sur-
face remains close to spherical but the central symmetry
can be broken. In the asymmetric particles we assume all
classical integrals of motion to be completely destroyed,
but parity, the specific discrete integral of motion without
the classical analog (at least for a given trajectory), will be
only weakly perturbed. The parity P„ofthe eigenstate
by definition is

'9=or ~ (22)

here the overbar denotes the averaging over the ensemble
of realizations, as well as in Eq. (2) (Sec. II C). The value
of o.„canbe obtained by additional assumptions.

The irregular nearly spherical surface can be con-
veniently described by the model of randomly modulated
sphere '

R(y, B)=R [1+EF(@,8)], (23)

where e ((1 is the modulation parameter and F(lp, B) is a
random function; its properties are described below.

(i) The function F(y, B) can be expanded in a series in
spherical harmonics 1'l (B,y); only a finite number of
terms contribute to this expansion:

cr„= [R(qr, B) r] = J—[R(y, B)—r] dQ,
R R

where r =—R, d 0=sin8 d 0 d y. On the ensemble of
different realizations of a random shape of the particle
the deviation from sphere o., produces some distribution.
Then we shall define the coeKcient of asymmetry as

R

F(&lp, B)= g . —A!OP!(X)+ g (Amlcosmlp+Bmlsinmy)P! (X)
m=1

Aml Cml~m & Bml Cml! m & Cm!
2I+1 (l —m)!

2m (1+m)!

1/2

X=cosO,
(24)

where P! (X) is the Legendre associated function.
(ii) The function F(lp, 8) is a random one: the

coefficients a„and P„are random numbers that take
values I, 0, and —I with equal probabilities.

(iii) The objects of the study are fine particles of the
crystalline materials. So the lattice constant ao can serve
as the elementary "step" of deformation (or the minimum
of modulation amplitude). Then the number of effective

I =R /zao, (25)

where z is an integer number, and

harmonics t' may be readily defined as the ratio of length
of the arch deformed on the surface to the modulation
amplitude:
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NL ~l'~N~,

maxNit =N—,„=R/ao, minNL N——;„=1 .
(25')

of shape are independent then for v-10 about 10 spec-
tra S„should be processed.

The form parameter, which defines the amplitude of sur-
face modulation by the full number of harmonics
N=(N~ NI—+ 1), is approximately

s&N =ao/R . (26)

After the definition of R (O, y) the degree of asymmetry i)
can be treated as the degree of modulation characterized
by the average deviation from the spherical form. The
calculation of a „bythe formula (21) with the additional
averaging over the ensemble of different modulations
leads to the expression for the coefficient of asymmetry:

D. The size dependence

3e
&2=

2 2& X &.mk
nmk

1/2

(2&)

where g„kis a typical term of the sum (14). The transi-
tion from sum to the integral in this expression,

gy„m„~fy„m„P(E„)dE„, (29)

The final expression for the nonlinear susceptibility
that includes the coefficient of the asymmetry has the
form

[(Ning+1) —(NL+1) ]'
i) = cr„=E&N

(N~ —NL +1) (27) which is possible in the quasiclassical limit, allows us to
get the scaling relation

Thus the coefficient g.depends upon two characteristics
of particle form: the modulation parameter c, and the full
number of harmonics N. Since these parameters are con-
nected to the particle size by Eqs. (25') and (26), the
coefficient of asymmetry yields an additional size depen-
dence in the nonlinear susceptibility.

The information about the details of the form of the
particle surface is insufficient for direct evaluation of pa-
rameters c,, N, Ng, and NI. We shall choose c,, N, N~,
and Nl in a very similar way and adjust them to the mea-
sured quantities. The low precision is only one of the
obstacles precluding the accurate estimate of these data.
In view of future experimental investigations the follow-
ing should be accounted for in the adjustment of the par-
ticle shape using the parameters N, N~, and NL.

(i) The evaluation of NI, Nz, and N requires the exper-
imental scanning of the surface topography for the indivi-
dual particle and the tabulating of the surface function
R(8, y) (23) on the coordinate grid (g, y). Then the
Fourier analysis of the surface and the construction of
the spectral density S„versus the number of harmonics n

should be made for every particle in the experimental
sample.

The characteristic width h„ofthe spectrum S„willal-
low an evaluation of parameters Nl, Nz, and N =5„+1.
An index "0"marks the parameters of the individual par-
ticle.

Note that the shape of the particle can be reconstruct-
ed without pronounced distortions of spectrum if the sur-
face topography is produced by scanning with the step
5-ao, when ao is the lattice constant.

(ii) On the ensemble of realizations of a shape in the ex-
perimental sample the parameters NL, N~, and N each
produce some distribution P(v) (v= NI, Nic, N ). The-
construction of such a distribution should allow the eval-
uation of the parameters NI, Nz, and N [(25') and (26)]
(which were introduced for the "typical" particle) as ex-
pected values for corresponding distributions P(v).

It should be emphasized that the above-mentioned en-
semble must be sufficiently numerous for a precise con-
struction of histograms P(v). If the different realizations

ao
y2(2co) =Kg

R

1/2

E

7/4

(30)

E = [(Ep+2A'co)(fico) ] Ep ' (31)

For the semiconductor quantum dots (for example, CdSe)
K =2 X 10; the energy E is defined by the width of the
energy gap Eg and the energy of the radiation quanta %co:

E=[E (fico) ] (2%co E)—
g (32)

If 2fico —E —+0 then the energy E turns into infinity. In
this case our model should be considered as semiquantita-
tive, since the condition of quasiclassically is hardly
satisfied.

It can be seen from expression (30) that the nonlinear
susceptibility of the individual particle strongly depends
on size of particle. Formula (30) may be compared with
the experimental data.

IV. RESULTS AND DISCUSSION

A. The size dependence of quadratic susceptibility

In Fig. 3 we have plotted the dependence of the SH
enhancement factor G on metallic particle radius. In Fig.
4 the dependence of the enhancement factor G on the
semiconductor particle radius is presented. In both cases

where IC is a numerical constant and a„,8„,and E„are
the atomic units of the length, electric field, and energy
correspondingly; E is the characteristic energy of the sys-
tem.

The estimate (30) is based on a quasiclassical expres-
sion for the matrix elements (15) and (16). The scale of
the frequency in Eq. (16) is determined by the velocity of
the electron in the particle v. For the metallic particle it
can be replaced by the Fermi velocity; thus for the parti-
cle with R =—5 nm one gets Q-=10' s '. For the serni-
conductor particle the estimate gives 0=-10' s

The energy E and the numerical coefficient depend on
the type of the particle. For the metallic nanocrystals
(for example, silver ones) K =3X 10 and
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FICx. 5. The surface of the particle [as a function R(g, y)]
computed with the parameters of random modulation: NL =1,
X& =6; @=0.2, 5-ao In addition, the particle of average ra-
dius R is shown.

this quantity is proportional to the squared susceptibility
of the individual particle [yz] (see Sec. II C).

The theoretical formula (30) gives the different types of
size dependence due to the difFerent forms of modulation
of the particle surface. The modulation by the
sufficiently larger number of X of harmonics with
X;„&l &X, seems to be rather probable in the case of
both metallic and semiconductor particles. The approxi-
mate shape of the particle reconstructed by the computa-
tions using (23), (24), and (25) is plotted in Fig. 5. This
form of modulation leads to the following type of size
dependence for the coefficient of asymmetry:

2
ao

(33)

Then we have from expression (29) the scaling relation
'5

ao(X2j'-
, R

(34)

The corresponding theoretical lines for MN and QD are
drawn in Figs. 3 and 4.

B. Comparison with alternative theories

In this paper the role of the particle shape asymmetry
is studied with the assumption that the shape distortions
are large enough to destroy completely the integrability
of the electron motion thus regulating in the ergodic pic-
ture. However, it should be stressed that it is not the
chaos but the shape asymmetry that gives rise to the
efFect considered above.

The opposite limiting case of small shape distortions,
in which the electron motion remains completely integra-
ble, has been studied in Ref. 6(a). It was shown that
small Auctuations of shape can also strongly afFect the
quadratic optical response of a particle made from a cen-
trosymmetric material (for example, Ag), since a nonzero
quadratic susceptibility appears in the dipole approxima-
tion because of the shape asymmetry. The assumption of
regularity of the electron motion permits the use of per-
turbation theory based on the coordinate-transformation
method analogous to that used in Ref. 21. This approach

yields somewhat weaker size dependence of the G factor
for MN, namely, G ~y2~ -R . It appears quite
reasonable that the behavior of G does not depend
strongly on the degree of regularity of the electron dy-
namics. However, the application of the perturbation
theory to the particles we dealt with in the experiment
(with high values of R' ' and quasiclassical energy
spectrum) seems to be a far-fetched extrapolation that
can give only qualitative results.

In comparison with the size dependence given by Eq.
(34), the dependence G(R ) obtained in Ref. 6(a) is in
much poorer agreement with the experimental data for
silver island films. The discrepancy becomes more pro-
nounced when one uses the corrected normalization pro-
cedure (see Sec. II C) which takes properly into account
the difFuseness of the SH radiation.

Formula (30) has been obtained in the off-resonance as-
sumption, hence, applying our model to the quadratic
response of QD, we have ignored the resonant effects
which may occur due to the interband optical transitions
in sufficiently small particles when the discreteness of
electron spectrum becomes pronounced. However, in
Ref. 6(b) it was shown that the resonant mechanism can
provide the experimentally observed enhancement of the
SH generation in CdSe nanocrystallites G ~ ~y2~ -FY
This result indicates that a more detailed experimental
and theoretical study of interrelation between resonant
and nonresonant mechanisms of enhancement in crystal-
lites with R ' '- 5 nm is needed.

The comparison with experiment shows that for each
case (MN and QD) the basic tendency in the size depen-
dence is correctly taken into account in the proposed
model. However, one should not overestimate the agree-
ment between the theory and experiment because of at
least three reasons.

First, some fragments of the experimental data are
likely to be not in favor of the proposed theoretical model
and may testify to a more complicated (nonmonotonous)
character of the real size dependences (in Fig. 3 the cor-
responding clusters of experimental points are indicated
with arrows).

Second, the lack of experimental information on the
details of the particle shape makes the theory verification
incomplete because of a high degree of arbitrariness in
the adjustment of the particle shape.

Third, the model we have studied is strongly idealized
in many respects. The most important, in our opinion,
physical factors which have remained beyond the present
consideration are as follows.

(i) The lack of explicit geometrical criteria of complete
ergodicity of the motion in three-dimensional billiards:
what degree of surface modulation is sufficient to make
the electron motion completely ergodic?

(ii) The interaction of electrons. How does it affect the
stochasticity of the electron motion? And vice versa,
how does the stochasticity modify many-particle excita-
tions, for instance, the surface plasmons which are re-
sponsible for resonant enhancement of the local field in
MN?

(iii) The electron "spill out" due to the finite height of
the boundary potential barrier. Describing the particle
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boundary as an infinite potential barrier eliminates this
efFect, whereas it has been shown that the quadratic op-
tical nonlinearity of a metal system essentially depends on
the self-consistent profile of electron density in the sel-
vage region. In this context the question is to what ex-
tent our results are sensitive to the form of the boundary
potential.

(iv) The finite-temperature effects. How strongly do
the kinetics of relaxation in the electron subsystem de-
pend on the particle size'?

Each of the aforementioned questions needs its detailed
and systematic investigation.

inter-relation of the proposed explanation with alterna-
tive ones needs more detailed study within the framework
of more realistic models. These statements determine the
actual status of the theoretical interpretation given in our
paper.

We think that the present work can be an instructive
starting point for further experimental and theoretical
studies since our results in this field indicate the impor-
tance of dynamic stochasticity effects for proper interpre-
tation of nonlinear optical and, as one may expect, other
physical phenomena in nanometer-size solid-state struc-
tures.
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