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Prompted by suggestions that FeSi may be a strongly correlated insulator, somewhat analogous
to the Kondo insulators, we study the properties of a two-band Hubbard model Hamiltonian iri
the infinite-dimensional limit. By a calculation of the one-particle self-energy using self-consistent
second-order perturbation theory we are able to calculate the temperature dependence of the mag-
netic susceptibility and of angle-resolved photoemission spectra. The results are in fair agreement
with experimental data on FeSi.

I. INTRODUCTION

With the renewed interest in strongly correlated insu-
lators, FeSi has been the subject of renewed experimental
and theoretical examination. In&ared reQectivity and
angle-resolved photoemission measurements are provid-
ing a more detailed view of the efFects of strong corre-
lations on the electronic excitations in FeSi. In light
of these experiments, we have constructed a simplified
model for a strongly correlated insulator where the cor-
relation efFects can be easily calculated.

In early research, FeSi was identified as a narrow (= 50
meV) gap semiconductor with unusual magnetic proper-
ties. Its magnetic susceptibility was recognized as in-
explicable &om simple band. -structure models, which
would require extremely narrow bands. However, there
were no signs of the magnetic ordering which one might
expect Rom such localized states at low temperatures.
Since then, explanations for the magnetic behavior in
terms of spin Huctuations ' have had reasonable success
and have even predicted the existence of a temperature
induced magnetic moment, which was found experimen-
tally only much later.

The discovery of the high-temperature superconduc-
tors stimulated new interest in the subject of strongly
correlated insulators such as CeNiSn, Ce38i4Pt3, and
SmB6 and FeSi. In the case of FeSi, electronic-structure
calculations based on the local-density approximation2'
(LDA) find an insulating ground state and elastic prop-
erties in reasonable agreement with experiment; however
they have concluded that one-electron models are inad-
equate to explain in&ared reQectivity data. Neverthe-
less, these results have left open the possibility that the
true ground state is continuously connected to the one-
electron state as the electron-electron interactions mea-
sured by a Hubbard U are turned on.

In this paper, we construct a simple model Hamilto-
nian which appears to contain the physical ingredients
needed for understanding the data. We examine our
Hamiltonian, a two-band Hubbard model, in the limit

of large dimensions. This limit enables us to approxi-
mately calculate properties which can be compared to
angle-resolved photoemission experiments and magnetic
susceptibility measurements. In spite of the fact that the
large D limit is e6'ectively a local one, our model pre-
dicts strong momentum dependence of the quasiparticle
lifetime which should be observable in photoemission ex-
periments, as well as the usual band renormalization ef-
fects one expects to 6nd as a result of the correlations.
Despite the simpli6ed nature of the model we are able to
account for the observed temperature dependence of the
magnetic susceptibility and of the optical reBectivity at
a semiquantitative level.

II. A MODEL HAMILTONIAN

A. Rationale

Several experimental results guided the structure of
our model. The model density of states constructed by
Jaccarino et al. to fit their susceptibility and specific
heat data required a narrow bandwidth of order 50 meV
or less for a reasonable fit which is unphysically small
without renorrnalization efFects. Schlesinger et al. ob-
served a strong temperature dependence of the gap in
the optical measurements, which could be ascribed to
a loss of coherence. Such efFects occur at half-filling in
mean field solutions of the Anderson lattice Hamiltonian,
a focus of studies on cerium based strongly correlated in-
sulators (e.g. , Ref. 11 and references therein). However,
we do not expect to find the extremely narrow bands
characteristic of f states in a transition metal compound
such as FeSi, and indeed, the only anomaly in the speci6c
heat of FeSi matches well with FeSi's magnetic suscep-
tibility and lacks the heavy fermion behavior associated
with the Anderson lattice.

LDA calculations for FeSi show a nearly direct insu-
lating gap, surrounded by several narrow iron d bands
with rather small contributions kom the silicon orbitals.
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Thus we were led to construct the following two-band
Hamiltonian:

) ( ilG J~G i2O 22G)
(ij)u

+ ) v(c.g ci2G + H.c.)

iver

+ ) U(n, ,„n... + n, .„n,.„).

Here we have coupled two Hubbard bands c;~, which
may be thought of as the iron d bands, with a momentum
independent hybridization v. Choosing hopping terms of
opposite sign provides a simple direct gap.

In contrast to the Anderson lattice Hamiltonian's con-
duction band and strongly correlated f band, our model
has two symmetric tight binding bands, with a Hub-
bard U term acting within each band independently.
Note that a model with an additional on-site repulsion
U'/2(n. .. + n...)(n... + n...—1) would shift the energy
level at half-filling to a middle Hubbard band, leaving
the intraband U to dominate the physics. For simplicity
we do not include U' in the model. Instead, our form of
intraband U focuses on the competition between U and
v. For U = 0 the two bands mix and create a direct
gap of magnitude 2v. The ground state simply consists
of doubly occupying the states in the lower hybridized
band. As U + oo the electrons half ill each orbital to
avoid double occupancy.

B. Purther approximations: D = oo
and self-consistent perturbation theory

The large D approximation, where D is the number
of dimensions, introduced by Metzner and Vollhardt
to study the Hubbard model, naturally supports several
common approximations (e.g. , the "local" approxima-
tion, Gutzwiller's approximation, and some slave boson
results). These approximations underlie our understand-
ing of the heavy fermions, and so we chose the large D
limit for study. Using self-consistent second-order pertur-
bation theory for small and intermediate U, Schweitzer
and Czycholl~s found only minor corrections in 1/D for
the Anderson lattice Hamiltonian for D = 2, and found
that the corrections compared well with exact results for
D = 1. Vfe chose to follow their approach, as FeSi's struc-
ture is three dimensional, and the renormalization e6'ects
we seek are moderate. Note that in this approach no al-
lowance is made for possible symmetry breaking (e.g. ,
charge or spin density waves) in the ground state.

dki
pzgy(s) =

i=1 m

f D

s —) —2t cos k,

MT—e2'
dk —2itv' cos ke

k d h 2i=1

—e" exp[ —2D& t + O(t )].
27r

(2)

By performing a cumulant expansion in 7., the density
of states is reduced to a Gaussian to leading order in
D for a single band. %e measure all energies in units
of t*, and then for U = 0, we exactly diagonalize the
Hamiltonian. The resulting density of states is singular,
with a gap of Ap = 2v (in contrast to the indirect gaps
h oc vs /D in the Anderson lattice Hamiltonian where v
is a renormalized hybridization and D the bandwidth),

I E
po(s) = exp( —+~2 —v2) (~~~ ) v). (3)

For U g 0 we incorporate the effects of interactions
on the density of states, as well as other properties, by
calculating the self-energy Z(k, (G) of the particles. This
determines the full Green's function via Dyson's equa-
tion,

(4)

Searching for a self-consistent solution for this in per-
turbation theory, we simplify the form of Z(k, (d) by
noting we can choose Eyy ——Z22 and Z]2 ——E2$) be-
cause Z,z will, to second order, depend only on G;~, and
eg(k) = -e2(k).

The first order terms in the expansion correspond to
Hartree-Fock theory; they simply represent the efFect of a
mean background field upon the particles. If we assume
a paramagnetic state, then at half-filling Z;; (k, ur)

(1)

Un; =U/2. —

For the second order terms we take advantage of the
large D limit, in which the self-energy becomes momen-
tum independent. A standard diagrammatic expansion
yields

The first major simplification comes in the unper-
turbed density of states. The energies of the two hy-
bridized tight binding bands are e(k) = +gv2 + e(k)2,
where e(k) = t —g,.

z cos(k;). To keep the bandwidth
of the unhybridized states the same, we should set t =
t*/v 2D. This is easily seen by considering the density
of states for a single tight binding band. ,

Z, (k, i(G )= —UP ) Gij,cr(k2l d(d1)Gij, G(ksl &(dd2)&;, ,G(kj ) 'i(ddn &(d)1 + d(d)2)&(k) + k2 —ks —k)
scaly ~c 4Pg, leg

icy, k3

—U P ) f dEldEEdEEGE —(22, 2222)G'2, (E2, 2222)G'2, (E1, 222 2 ~21 + 2222)22(kill, 22, EE),
I4P y ~ WcP g

w(k; E), E2, es) = ) b(ky + k2 —ks —k) b(ei —e(k;)).
kgkgk3
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If we express the delta functions in m(k; ti, e'2, es) as integrals and sums over exponentials as before, we find that to
leading order in 1/D, iU(k; ei, e2, cs) = 1, and thus Z,.z is momentum independent. This result is true to all orders in
perturbation theory.

In evaluating the second order corrections to Zii(~) and Zi2(u) (again, assuming a paramagnetic state), the
I ehmann spectral representation of the Green's function,

1 dur ImG;~(k, (u+ ie)
u ~z )z —4p

defines the Green's function over the complex plane in terms of its values for real &equencies. Our expression for
Z~~~(u) only depends on the on-site real space component, so we define,

G~& ((d + xE) = ) Im G~& (k~ cd + xe)
k

1
dpi, exp( —e„)Im G,, (ei„u) + ie).

7r

G;z (w+ie) can be evaluated in terms of Fadeeva s function (see the Appendix), which has generally available numerical
implementations. Then we evaluate the sums over Matsubara &equencies,

U — — — f(zi)f (zz) [1 —f (zs)] + [1 —f (zi)][1—f(z2)]f(zs)
dzgdz2dz3G;~ zg G;~ z2 G,~ z3

Zy + Z2 —Z3 —'E4J~
(8)

If we analytically continue the self-energy (iu1 ~ u1 +
ie) then the energy denominator can be rewritten as an
integral over an exponential. The resulting expression
couples functions of the Green's functions only through
a Fourier transform which we evaluate numerically:

OO

0

Here n,~ (w) and P;~ (v ) are Fourier transforms of the site
diagonal Green's functions,

and dynamic susceptibilities are also easily calculated in
the large D limit. For all momenta except for q = 0 and
q = Q, if we exclude vertex corrections, the momenta de-
couple and the two-particle response function is simply
the product of the one-particle functions. In the case of
the optical conductivity, this decoupling, along with the
parity of the current operator were shown by Khurana
to force the vertex corrections to vanish. Thus to com-
pare our model with optical conductivity measurements,
we need only compute the joint density of states:

a (~, T) = f dip(e) p(e + ~) [I —f (e + ~, T)].

OO

n,~(~) = ds e ' 'G;~(s+ ie) f(s),

(10)

While vertex corrections are nonzero for the magnetic
susceptibility, for our system we expect no magnetic
instabilities, and so approximate the magnetic suscepti-
bility y(T) for small to to intermediate U as simply

g(T) oc lim 0.(~, T)/T.

To solve these equations self-consistently, we start with
a null self-energy, and calculate the corrections accord-
ing to Eq. (9). The succeeding values of the self-energy
are linear combinations of the current value and the new
calculation. By gradually mixing in the new solution, we
avoid oscillatory behavior. When mixing in 20% of the
new solution with the old, we find convergence within 10
iterations. Our choice of mesh size for the discrete Fourier
transform produced results consistent with larger mesh
sizes. The evaluation of the Green's function at &equency
~ +is in Eq. (4) is performed numerically; by keeping ie
finite we force a Gnite lifetime for all states.

With a self-consistent Z,~ (u) we calculate several
physical quantities. The spectral function A(ei„w)
——Im G(ek, u) and the one-particle density of states
p(cu) = Q„A(e&, ur) can be compared to angle-resolved
and angle-integrated photoemission studies. The static

III. R.ESUITS

Our model has two adjustable parameters, v and U
measured in units of the hopping parameter t*. To com-
pare our model with physical properties in FeSi, we use
our LDA calculation of the band gap (- 150 meV) rela-
tive to the width of the d bands ( 800 meV) to choose
v = 0.125. Our choice of suitable values for U is based
upon consistency between our results and experimental
observations.

Figure 1 depicts a calculation of the self-energy for
a range of temperatures. Our calculation satis6es I ut-
tinger's theorem, as Im Zii(~) = 0 at the Fermi energy
at zero temperature. While calculating the corrections
to the self-energy is the heart of our calculation, it is dif-
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the weight is divided between the two and remains
roughly constant. However, as the temperature increases,
the spectral weight rapidly shifts to the broadened quasi-
particle pole until that is all that remains visible. While
there is some uncertainty in the magnitude of this efFect
as a result of our fitting procedures, it is strong enough
that the shift in spectral weight is clearly established.

The two-particle Green's functions provide other tests
of our model. The static susceptibility, which we approx-
imate by y(T) = o (0, T)/T provides a nice illustration
of the efFects of the on-site correlation. In Fig. 7 we
have plotted y(T) for the interacting and noninteracting
cases, respectively, and compared them to experimen-
tal data. By trying difFerent values of U, we And the
best semiquantitative agreement for y(T) at U = 0.36.
Both cases exhibit a gap which eventually turns over to
a Curie form y oc 1/T, but the 6nite U case saturates
more quickly and provides a much better fit to the data.

In Fig. 7 by scaling y(T) we connect the energy scales
of our theory to experiment. For this scale, the natu-
ral energy unit (which comes &om the hopping term t)
corresponds to an energy of 0.7 eV. This leads to a renor-
malized gap size of about 70 meV, and a noninteracting
one of about 140 meV for the above choices of v and U.
These correspond well to the experi. mental findings and
to the LDA calculations of FeSi, respectively.
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I 1 I I I I I I I I distributed over a much larger range in energies. While
there is some shift of spectral weight to within the gap,
the reduction of the main peak far exceeds this as it is
distributed across all temperatures. The gap fills in uni-
formly, with significant filling by T 4/2, in contrast to
models where there are &ee carriers in a Drude peak.

IV. DISCUSSION
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FIG. 7. Magnetic susceptibility y(T) of our model for
U = 0.0 (crosses) and U = 0.36 (plus signs) as a function
of temperature. The solid line indicates experimental mea-
surements on FeSi from Jaccarino et al. (Ref. 7).
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FIG. 8. Joint density of states o(u, T). Diiferent curves
indicate temperature, for v = 0.125 and U = 1.0.

Another experimental test is the optical conductivity.
In Fig. 8 we show the joint density of states as a function
of temperature. For this measurement we have chosen
U = 1 as it seems to give better qualitative agreement
with the trends observed in the photoemission data of
Park et a/. At low temperatures we have a gap indicat-
ing the separation between the two quasiparticle bands
and a secondary band created by transitions to states
in the background. As we increase the temperature, the
conductivity smears out, and the spectral weight becomes

In this paper we have begun exploring the possibilities
of a simple model Hamiltonian for modeling the narrow
gap semiconductor FeSi, using the large D limit to corn-
pare with specific experimental results. The large D limit
provides a simple method of incorporating the effect of
electron correlations. After choosing model parameters
for the base Hamiltonian consistent with our earlier elec-
tronic structure calculations in the LDA, we calculated
one- and two-particle properties in self-consistent second
order perturbation theory which we believe will provide a
reasonable approximation at small to intermediate values
of U.

The many-body effects modify the Bloch states re-
sulting in a quasiparticle spectrum with an incoherent
background. The effects of the correlations on the quasi-
particle peaks lead to a reduction of the gap, which, for
moderate values of U, may explain the discrepancies seen
between band structure calculations and observed prop-
erties of FeSi.

The renormalization of the quasiparticle peaks also
manifests itself as an apparent narrowing of the bands
themselves. The resulting paramagnetic susceptibility
explains the observations of y(T) which had long ago
been fit to an extremely narrow two-band model. While
one might question the need to consider correlation ef-
fects given the relatively good fit for the U = 0 case in
Fig. 7, one must remember that even in the noninteract-
ing state our infinite dimensional model has very narrow
bands in the DOS [Eq. (3)]. Nevertheless, the correla-
tion reduced bandwidths are more rapidly saturated as
the temperature increases, resulting in a more favorable
comparison with experiment.

Several features &om our calculation should be very
apparent in angle-resolved photoemission experiments
(e.g. , Ref. 6). The lifetime and spectral weights of the
narrow quasiparticle peaks are strongly temperature de-
pendent as a result of particle-hole pair creation. The
incoherent portion of the spectral function is also temper-
ature dependent. This could be potentially significant in
analyzing photoemission spectra, as it may bias at tempts
to normalize spectral weights at different temperatures.

However, our model does not reproduce the shifts of
spectral weight seen by Schlesinger et al. in the optical
conductivity. Thus either the D ~ oo limit is inadequate
to account for the shifts or there is some question about
these experimental findings. Note that because of neglect
of vertex corrections, we do not expect the same values of
the parameters to work for both y(T) and the optical or
photoemission measurements. In fact, we find different
values of U seem appropriate for y(T) and for single-
particle properties.
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Nonetheless, the simplicity of this model, a strongly
correlated, direct gap insulator, should lend itself well
to a variety of analytical techniques. Future exploration
could be made using Gutzwiller projection operators or
calculating finite D corrections. Georges and Kotliar
have shown that in the large D limit the Hubbard model
can be transformed into an impurity problem with a sup-
plementary self-consistency equation, and which can be
solved exactly, even in the limit of large U (where the
form of self-consistent second order perturbation theory
used here fails). This inspired a great deal of work
which should extend to our model as well. All of these
ofFer opportunities to gain further insights in the physics
of strongly correlated insulators.
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APPENDIX: LOCAL GREEN'S FUNCTION

~ dt
tv(z) = — - (Imz ) 0),

7r Z t (A1)

C (~) = Im ) [G o '(ur; k) —Z (~)]

1
C(~) = Irn deI, e '&[G o'(~;ek) —Z(cu)]

7r

(A2)

Because the self-energy is independent of the momenta,
the integrals can be expressed in terms of tv(z), yielding

2
Gq2(tu) = Im [Zi2(w) —v]g(w),

((u) = i~—~(V [~ Z»(~)] [" Z»(~)] )
[~ —Zi, (~)] —[v —Z, 2 (~)]

(A3)

which has a widely available computer implementation. ~

We start with the Dyson equation, and replace the mo-
mentum summation by an integration over the density of
states,

For a given &equency, we can evaluate the local Green's
function numerically in terms of Fadeeva's function,

where we have taken the root within the domain of
E&i. (A1).

' Present address: The Kernel Group, Inc. , 1250 Capitol of
Texas Highway S., Bldg. 3, Suite 601, Austin, TX 78746.

~ Author to whom all correspondence should be sent.
Z. Schlesinger et aL, Phys. Rev. Lett. 71, 1748 (1993).
L. Mattheiss and D. Hamann, Phys. Rev. B 47, 13114
(1993).
C. Fu, M. Krijn, and S. Doniach, Phys. Rev. B 49, 2219
(1994).
J. Sarrao et al. , Physica B 199&200, 478 (1994).
M.A. Continentino, G.M. Japiassu, and A. Troper, Phys.
Rev. B 49, 4432 (1994).
C. Park et aL (unpublished).
V. Jaccarino et al. , Phys. Rev. 160, 476 (1967).
Y. Takahashi, M. Tano, and T. Moriya, J. Magn. Magn.
Mater. 31-34, 329 (1983).
S. Evangelou and D. Edwards, J. Phys. C 16, 2121 (1983).
K. Tajima, Y. Endoh, J. Fisher, and G. Shirane, Phys. Rev.
B 38, 6954 (1988).

S. Doniach, C. Fu, and S. Trugman, Physica B 199&200y
450 (1994).
W. Metzner and D. Vollhardt, Phys. Rev. Lett. 82, 324
(1989).
H. Schweitzer and G. Czycholl, Solid State Commun. 74,
735 (1990).
E. Miiller-Hartmann, Z. Phys. B 74, 507 (1989).
M. Abramowitz and I. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1972); G. Poppe and C. Wi-
jers, ACM Trans. Math. Soft 16, 38 (1990).
A. Khurana, Phys. Rev. Lett. 64, 1990 (1990).
V. Zlatic and B. Horvatic, Solid State Commun. 75, 263
(1990).
A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).
A. Georges and W. Krauth, Phys. Rev. B 48, 7167 (1993);
X.Y. Zhang, M. Rozenberg, and G. Kotliar, Phys. Rev.
Lett. 70, 1666 (1993); M. Jarrell, ibid. 69, 168 (1992).


